Generic placeholder image

Current Engineering Letters and Reviews

Editor-in-Chief

ISSN (Print): 2666-948X
ISSN (Online): 2666-9498

Research Article

Design and Simulation of a CdTe/C2N/SnO2 Trilayer Photovoltaic Cell via SCAPS-1D

Author(s): Rupanjali Meena, Lalit kumar Lata*, Praveen Kumar Jain and Sarabjeet Singh Sethi

Volume 1, 2024

Published on: 28 September, 2023

Article ID: e140923221095 Pages: 12

DOI: 10.2174/2666948X01666230914145127

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Introduction: Simulation of cadmium telluride (CdTe)-based solar cells (CdTe/C2N/SnO2) using Solar Cell Capacitance Simulator-1D (SCAPS-1D) has been presented in this article.

Method: C2N was introduced as a buffer layer, SnO2 was introduced as a window layer, and CdTe was introduced as an absorber layer.

Result: The impact of the thickness of the CdTe, SnO2, and C2N layers, the defect density and carrier concentration of the CdTe layer, and the impact of ambient temperature were analyzed.

Conclusion: The optimized solar cell demonstrated a maximum power conversion efficiency (PCE) of 22.41% with an open circuit voltage (VOC) of 1.07 V, a short circuit current density (JSC) of 23.59 mA/cm2, and an FF of 88.51%, indicating huge promise in low-cost solar energy harvesting.

Keywords: CdTe, C2N, SnO2, solar cell, simulation, SCAPS-1D.

[1]
Gao RT, He D, Wu L, et al. Towards long-term photostability of nickel hydroxide/BiVO4 photoanodes for oxygen evolution catalysts via in situ catalyst tuning. Angew Chem Int Ed 2020; 59(15): 6213-8.
[http://dx.doi.org/10.1002/anie.201915671] [PMID: 31960559]
[2]
Rimmaudo I, Salavei A, Romeo A. Effects of activation treatment on the electrical properties of low temperature grown CdTe devices. Thin Solid Films 2013; 535: 253-6.
[http://dx.doi.org/10.1016/j.tsf.2012.11.113]
[3]
Gao RT, Wang L. Stable cocatalyst-free BiVO4 photoanodes with passivated surface states for photocorrosion inhibition. Angew Chem Int Ed 2020; 59(51): 23094-9.
[http://dx.doi.org/10.1002/anie.202010908] [PMID: 32888248]
[4]
Gao RT, Nguyen NT, Nakajima T, et al. Dynamic semiconductor-electrolyte interface for sustainable solar water splitting over 600 hours under neutral conditions. Sci Adv 2023; 9(1): eade4589.
[http://dx.doi.org/10.1126/sciadv.ade4589] [PMID: 36598972]
[5]
Gao RT, Zhang J, Nakajima T, et al. Single-atomic-site platinum steers photogenerated charge carrier lifetime of hematite nanoflakes for photoelectrochemical water splitting. Nat Commun 2023; 14(1): 2640.
[http://dx.doi.org/10.1038/s41467-023-38343-6] [PMID: 37156781]
[6]
Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED. Solar cell efficiency tables (Version 45). Prog Photovolt Res Appl 2015; 23(1): 1-9.
[http://dx.doi.org/10.1002/pip.2573]
[7]
Jimbo K, Kimura R, Kamimura T, et al. Cu2ZnSnS4-type thin film solar cells using abundant materials. Thin Solid Films 2007; 515(15): 5997-9.
[http://dx.doi.org/10.1016/j.tsf.2006.12.103]
[8]
Hegedus S. Thin film solar modules: The low cost, high throughput and versatile alternative to Si wafers. Prog Photovolt Res Appl 2006; 14(5): 393-411.
[http://dx.doi.org/10.1002/pip.704]
[9]
Mutalikdesai A, Ramasesha SK. Solution process for fabrication of thin film CdS/CdTe photovoltaic cell for building integration. Thin Solid Films 2017; 632: 73-8.
[http://dx.doi.org/10.1016/j.tsf.2017.04.036]
[10]
Amin N. Introduction of inorganic solar cellsComprehensive Guide on Organic and Inorganic Solar Cells. Elsevier 2022; pp. 57-63.
[http://dx.doi.org/10.1016/B978-0-323-85529-7.00005-0]
[11]
Mahmood J. Nitrogenated holey two-dimensional structures Nat Nat Commun 2015; Vol. 6: 6486.
[http://dx.doi.org/10.1038/ncomms7486] [PMID: 25744355 ]
[12]
Mahmood J, Li F, Jung SM, et al. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat Nanotechnol 2017; 12(5): 441-6.
[http://dx.doi.org/10.1038/nnano.2016.304] [PMID: 28192390]
[13]
Li C, Xu Y, Sheng W, Yin W-J, Nie G-Z, Ao Z. Apromising blue phosphorene/C2Nvan der Waals type-II heterojunction as asolar photocatalyst: A first-principles study Phys. Phys Chem Chem Phys 2022; 22: 615-23.
[http://dx.doi.org/10.1039/C9CP05667J]
[14]
Wang L, Zheng X, Chen L. Xiong Y and XuH 2018 Van der Waals heterostructures comprised of ultrathin polymer nanosheets forefficient Z-scheme overall water splitting Angew Angew Chem Int Ed 57: 3454-8.
[http://dx.doi.org/10.1002/anie.201710557]
[15]
Tripathi S, Lohia P, Dwivedi DK. Contribution to sustainable and environmental friendly non-toxic CZTS solarcell with an innovative hybrid buffer layer. Sol Energy 204: 748-60.
[http://dx.doi.org/10.1016/j.solener.2020.05.033]
[16]
Xu J. Frameworks Of C2nandc3nas New Anode Materials For Lithium-Ionbatteries. Adv Mater 2017; 29
[http://dx.doi.org/10.1002/adma.201702007] [PMID: 28692757]
[17]
Hussain T, Sajjad M, Singh D, Bae H, Lee H, Larsson JA. Sensing of volatile organic compounds on twodimensionalnitrogenated holey graphene, graphdiyne, and their heterostructure. Carbon 163: 213-23.
[http://dx.doi.org/10.1016/j.carbon.2020.02.078]
[18]
Yong Y, Cui H, Zhou Q, Su X, Kuang Y. C2N monolayer asNH3 and NO sensors: A DFT study. Appl Surf Sci 487: 488-95.
[http://dx.doi.org/10.1016/j.apsusc.2019.05.040]
[19]
Hashmi A, Khan I, Hong SJ. Ultra-high-capacity hydrogen storage in a Li decorated two-dimensional C2N layer. J of Materials Chem A 2017; 5(6)
[http://dx.doi.org/10.1039/C6TA08924K]
[20]
Guerrero-Avilés R, Orellana W. Hydrogen storage on cation-decorated biphenylene carbon and nitrogenated holey graphene. Int J Hydrogen Energy 2018; 43(51): 22966-75.
[http://dx.doi.org/10.1016/j.ijhydene.2018.10.165]
[21]
Sun J, Zhang R. A many-bodyGW1 BSE investigation of electronic and optical properties of C2NAppl. Phys Lett 2016; 109(13)
[http://dx.doi.org/10.1063/1.4963654]
[22]
Bafekry A, Stampf C, Ghergherehchimandshayesteh S. A first-principles study of the effects of atom impurities, defects, strain, electric field and layer thickness on the electronic and magnetic properties of the C2Nnanosheet. Carbon 2019; 157: 371-84.
[http://dx.doi.org/10.1016/j.carbon.2019.10.038]
[23]
Burgelman M, Nollet P, Degrave S. Modelling polycrystalline semiconductor solar cells. Thin Solid Films 2000; 361-362: 527-32.
[http://dx.doi.org/10.1016/S0040-6090(99)00825-1]
[24]
Bhari B. Numerical Simulation of Ultrathin CdTe Solar Cell by SCAPS-1D Conf Ser Mater Sci Eng vol. 1278: 012002.2023;
[http://dx.doi.org/10.1088/1757-899X/1278/1/012002]
[25]
Zepeda Medina JC, Rosendo Andrés E, Morales Ruíz C, et al. Performance simulation of solar cell based on AZO/CdTe heterostructure by SCAPS 1D software. Heliyon 2023; 9(3): e14547.
[http://dx.doi.org/10.1016/j.heliyon.2023.e14547] [PMID: 36967952]
[26]
Hossain MM, Jahan N, Ul Hossain R. Simulation and optimization of a highly efficient ZnO/Cu2O/CdS/CdTe solar cell using SCAPS-1D 2022 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE). Gazipur, Bangladesh 2022.
[http://dx.doi.org/10.1109/ICAEEE54957.2022.9836410]
[27]
Rahman MF. "Design and numerical investigation of cadmium telluride (CdTe) and iron silicide (FeSi2) based double absorber solar cells to enhance power conversion efficiency".AIP Adv. 2022; 12.
[http://dx.doi.org/10.1063/5.0108459]
[28]
Doroody C, Rahman KS, Rosly HN, et al. Impact of high resistivity transparent (HRT) layer in cadmium telluride solar cells from numerical simulation. J Renew Sustain Energy 2020; 12(2): 023702.
[http://dx.doi.org/10.1063/1.5132838]
[29]
Sarker K, Sumon MS, Orthe MF, Biswas SK, Ahmed MM. Numerical simulation of high efficiency environment friendly cubi2o4-based thin-film solar cell using SCAPS-1D. Int J Photoenergy 2023; 2023: 1-11.
[http://dx.doi.org/10.1155/2023/7208502]
[30]
Singh NK. Effect of MoS2 as a buffer layer on CdTe photovoltaic cell through numerical simulation J Eng Res 2021.
[31]
Simya OK, Mahaboobbatcha A, Balachander K. A comparative study on the performance of Kesterite based thin film solar cells using SCAPS simulation program. Superlattices Microstruct 2015; 82: 248-61.
[http://dx.doi.org/10.1016/j.spmi.2015.02.020]
[32]
Niemegeers M. Numerical modelling of AC-characteristics of CdTe and CIS solar cells Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference. Washington, DC, USA. 1996.
[33]
Decock K, Zabierowski P, Burgelman M. Modeling metastabilities in chalcopyrite-based thin film solar cells. J Appl Phys 2012; 111(4): 043703.
[http://dx.doi.org/10.1063/1.3686651]
[34]
S. O, A. G, and D. O. Simulation of the performance of CdTe/CdS/ZnO Multi-junction thin film solar cell Review of Information Engg Rev inf eng appl 2016; 3(1): 1-10.
[http://dx.doi.org/10.18488/journal.79/2016.3.1/79.1.1.10]
[35]
Zhou X, Han J. Design and simulation of C2N based solar cell by SCAPS-1D software. Mater Res Express 2020; 7(12): 126303.
[http://dx.doi.org/10.1088/2053-1591/abcdd6]
[36]
Green MA. General temperature dependence of solar cell performance and implications for device modelling. Prog Photovolt Res Appl 2003; 11(5): 333-40.
[http://dx.doi.org/10.1002/pip.496]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy