Editorial

RNA Interference and Neuromuscular Diseases: A Focus on Hereditary Transthyretin Amyloidosis

Author(s): Marco Ceccanti* and Maurizio Inghilleri

Volume 24, Issue 1, 2024

Published on: 20 September, 2023

Page: [6 - 7] Pages: 2

DOI: 10.2174/1566523223666230913110011

conference banner
Abstract

Neuromuscular diseases are severe disorders affecting the peripheral nervous system, usually driving to death in a limited time. Many new drugs, through RNA-interference technology, are revolutionizing the prognosis and quality of life for these patients. Nevertheless, given the increased life expectancy, some new issues and phenotypes are expected to be revealed. In the transthyretin-mediated hereditary amyloidosis (ATTR-v, "v" for "variant"), the RNA interference was demonstrated to effectively reduce the hepatic synthesis of transthyretin, with a significant increase in disease progression in terms of polyneuropathy and cardiomyopathy. The increased life expectancy could promote the involvement of organs where the extra-hepatic transthyretin is deposited, such as the brain and eye, which are probably not targeted by the available treatments. All these issues are discussed in this editorial.

Keywords: Amyloidosis, transthyretin, neuromuscular diseases, small interference RNA, transthyretin amyloidosis, ocular amyloidosis.

[1]
McDonald CM, Campbell C, Torricelli RE, et al. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): A multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017; 390(10101): 1489-98.
[http://dx.doi.org/10.1016/S0140-6736(17)31611-2] [PMID: 28728956]
[2]
Mercuri E, Muntoni F, Baranello G, et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol 2021; 20(10): 832-41.
[http://dx.doi.org/10.1016/S1474-4422(21)00251-9] [PMID: 34536405]
[3]
Mercuri E, Darras BT, Chiriboga CA, et al. Nusinersen versus sham control in later-onset spinal muscular atrophy. N Engl J Med 2018; 378(7): 625-35.
[http://dx.doi.org/10.1056/NEJMoa1710504] [PMID: 29443664]
[4]
Adams D, Gonzalez-Duarte A, O’Riordan WD, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 2018; 379(1): 11-21.
[http://dx.doi.org/10.1056/NEJMoa1716153] [PMID: 29972753]
[5]
Benson MD, Waddington-Cruz M, Berk JL, et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med 2018; 379(1): 22-31.
[http://dx.doi.org/10.1056/NEJMoa1716793] [PMID: 29972757]
[6]
Miller TM, Cudkowicz ME, Genge A, et al. Trial of antisense oligonucleotide tofersen for SOD1 ALS. N Engl J Med 2022; 387(12): 1099-110.
[http://dx.doi.org/10.1056/NEJMoa2204705] [PMID: 36129998]
[7]
Adams D, Algalarrondo V, Polydefkis M, Sarswat N, Slama MS, Nativi-Nicolau J. Expert opinion on monitoring symptomatic hereditary transthyretin-mediated amyloidosis and assessment of disease progression. Orphanet J Rare Dis 2021; 16(1): 411.
[http://dx.doi.org/10.1186/s13023-021-01960-9] [PMID: 34602081]
[8]
Koike H, Misu K, Sugiura M, et al. Pathology of early- vs late-onset TTR Met30 familial amyloid polyneuropathy. Neurology 2004; 63(1): 129-38.
[http://dx.doi.org/10.1212/01.WNL.0000132966.36437.12] [PMID: 15249622]
[9]
Conceição I, Damy T, Romero M, et al. Early diagnosis of ATTR amyloidosis through targeted follow-up of identified carriers of TTR gene mutations. Amyloid 2019; 26(1): 3-9.
[http://dx.doi.org/10.1080/13506129.2018.1556156] [PMID: 30793974]
[10]
Solomon SD, Adams D, Kristen A, et al. Effects of patisiran, an RNA interference therapeutic, on cardiac parameters in patients with hereditary transthyretin-mediated amyloidosis. Circulation 2019; 139(4): 431-43.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.035831] [PMID: 30586695]
[11]
Cambieri C, Marenco M, Colasanti T, et al. Does patisiran reduce ocular transthyretin synthesis? A pilot study of two cases. Curr Neuropharmacol 2023.
[PMID: 37357518]
[12]
Akinc A, Querbes W, De S, et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther 2010; 18(7): 1357-64.
[http://dx.doi.org/10.1038/mt.2010.85] [PMID: 20461061]
[13]
Buxbaum JN, Brannagan T III, Buades-Reinés J, et al. Transthyretin deposition in the eye in the era of effective therapy for hereditary ATTRV30M amyloidosis. Amyloid 2019; 26(1): 10-4.
[http://dx.doi.org/10.1080/13506129.2018.1554563] [PMID: 30675806]
[14]
Gillmore JD, Gane E, Taubel J, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med 2021; 385(6): 493-502.
[http://dx.doi.org/10.1056/NEJMoa2107454] [PMID: 34215024]

© 2024 Bentham Science Publishers | Privacy Policy