摘要
神经退行性疾病(NDD)概括了神经细胞群永久退化和神经系统功能受损的情况。通常与年龄的增加有关,随着人类预期寿命的增加,被诊断为NDD的患者比例也在增加。传统的NDD治疗和手术干预受到限制。然而,最近在理解疾病病理生理学、改进药物递送系统和靶向药物方面取得的突破,为治疗NDD提供了创新的治疗方法。实施这些新治疗方案的一个共同点是对神经外科技能的要求。在目前的叙述性综述中,我们强调了将令人兴奋的新临床前和临床发现纳入NDD护理。我们还讨论了神经外科在管理这些神经退行性疾病中的传统作用,并强调了神经外科在实现这些新开发的治疗中的关键作用。
关键词: 神经外科治疗,人类预期寿命神经退行性疾病(NDD),传统NDD疗法,药物输送系统,新的临床前临床发现。
[1]
Heemels, M.T. Neurodegenerative diseases. Nature, 2016, 539(7628), 179.
[http://dx.doi.org/10.1038/539179a] [PMID: 27830810]
[http://dx.doi.org/10.1038/539179a] [PMID: 27830810]
[2]
Brown, R.C.; Lockwood, A.H.; Sonawane, B.R. Neurodegenerative diseases: An overview of environmental risk factors. Environ. Health Perspect., 2005, 113(9), 1250-1256.
[http://dx.doi.org/10.1289/ehp.7567] [PMID: 16140637]
[http://dx.doi.org/10.1289/ehp.7567] [PMID: 16140637]
[3]
Meek, P.D.; McKeithan, E.K.; Schumock, G.T. Economic considerations in Alzheimer’s disease. Pharmacotherapy, 1998, 18(2P2), 68-73.
[http://dx.doi.org/10.1002/j.1875-9114.1998.tb03880.x] [PMID: 9543467]
[http://dx.doi.org/10.1002/j.1875-9114.1998.tb03880.x] [PMID: 9543467]
[4]
Shoulson, I. Experimental therapeutics of neurodegenerative disorders: Unmet needs. Science, 1998, 282(5391), 1072-1074.
[http://dx.doi.org/10.1126/science.282.5391.1072] [PMID: 9804537]
[http://dx.doi.org/10.1126/science.282.5391.1072] [PMID: 9804537]
[5]
Lamptey, R.N.L.; Chaulagain, B.; Trivedi, R.; Gothwal, A.; Layek, B.; Singh, J. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics. Int. J. Mol. Sci., 2022, 23(3), 1851.
[http://dx.doi.org/10.3390/ijms23031851] [PMID: 35163773]
[http://dx.doi.org/10.3390/ijms23031851] [PMID: 35163773]
[6]
Dal Bello-Haas, V. Physical therapy for individuals with amyotrophic lateral sclerosis: Current insights. Degener. Neurol. Neuromuscul. Dis., 2018, 8, 45-54.
[http://dx.doi.org/10.2147/DNND.S146949] [PMID: 30890895]
[http://dx.doi.org/10.2147/DNND.S146949] [PMID: 30890895]
[7]
Goldenberg, M.M. Medical management of Parkinson’s disease. P.T., 2008, 33(10), 590-606.
[PMID: 19750042]
[PMID: 19750042]
[8]
Yoshor, D.; Klugh, A., III; Appel, S.H.; Haverkamp, L.J. Incidence and characteristics of spinal decompression surgery after the onset of symptoms of amyotrophic lateral sclerosis. Neurosurgery, 2005, 57(5), 984-989.
[http://dx.doi.org/10.1227/01.NEU.0000180028.64385.d3] [PMID: 16284567]
[http://dx.doi.org/10.1227/01.NEU.0000180028.64385.d3] [PMID: 16284567]
[9]
Mesnage, V.; Houeto, J.L.; Welter, M.L.; Agid, Y.; Pidoux, B.; Dormont, D.; Cornu, P. Parkinson’s disease: Neurosurgery at an earlier stage? J. Neurol. Neurosurg. Psychiatry, 2002, 73(6), 778-779.
[http://dx.doi.org/10.1136/jnnp.73.6.778] [PMID: 12438494]
[http://dx.doi.org/10.1136/jnnp.73.6.778] [PMID: 12438494]
[10]
Bogdan, A.; Manera, V.; Koenig, A.; David, R. Pharmacologic approaches for the management of apathy in neurodegenerative disorders. Front. Pharmacol., 2020, 10, 1581.
[http://dx.doi.org/10.3389/fphar.2019.01581] [PMID: 32038253]
[http://dx.doi.org/10.3389/fphar.2019.01581] [PMID: 32038253]
[11]
Kouli, A.; Torsney, K.M.; Kuan, W.L. Parkinson's disease: Etiology, neuropathology, and pathogenesis. In: Parkinson's disease: Pathogenesis and clinical aspects; Codon Publisher: Brisbane (AU), 2018.
[12]
Simon, D.K.; Tanner, C.M.; Brundin, P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin. Geriatr. Med., 2020, 36(1), 1-12.
[http://dx.doi.org/10.1016/j.cger.2019.08.002] [PMID: 31733690]
[http://dx.doi.org/10.1016/j.cger.2019.08.002] [PMID: 31733690]
[13]
Moosa, S.; Martínez-Fernández, R.; Elias, W.J.; del Alamo, M.; Eisenberg, H.M.; Fishman, P.S. The role of high-intensity focused ultrasound as a symptomatic treatment for Parkinson’s disease. Mov. Disord., 2019, 34(9), 1243-1251.
[http://dx.doi.org/10.1002/mds.27779] [PMID: 31291491]
[http://dx.doi.org/10.1002/mds.27779] [PMID: 31291491]
[14]
Wang, Y.; Luo, K.; Li, J.; Liao, Y.; Liao, C.; Chen, W.S.; Chen, M.; Ao, L. Focused ultrasound promotes the delivery of gastrodin and enhances the protective effect on dopaminergic neurons in a mouse model of parkinson’s disease. Front. Cell. Neurosci., 2022, 16, 884788.
[http://dx.doi.org/10.3389/fncel.2022.884788] [PMID: 35656407]
[http://dx.doi.org/10.3389/fncel.2022.884788] [PMID: 35656407]
[15]
Martínez-Moreno, N.E.; Sahgal, A.; De Salles, A.; Hayashi, M.; Levivier, M.; Ma, L.; Paddick, I.; Régis, J.; Ryu, S.; Slotman, B.J.; Martínez-Álvarez, R. Stereotactic radiosurgery for tremor: Systematic review. J. Neurosurg., 2018, 1-12.
[PMID: 29473775]
[PMID: 29473775]
[16]
Groiss, S.J.; Wojtecki, L.; Südmeyer, M.; Schnitzler, A. Review: Deep brain stimulation in Parkinson’s disease. Ther. Adv. Neurol. Disord., 2009, 2(6), 379-391.
[http://dx.doi.org/10.1177/1756285609339382] [PMID: 21180627]
[http://dx.doi.org/10.1177/1756285609339382] [PMID: 21180627]
[17]
Malek, N. Deep brain stimulation in Parkinson’s Disease. Neurol. India, 2019, 67(4), 968-978.
[http://dx.doi.org/10.4103/0028-3886.266268] [PMID: 31512617]
[http://dx.doi.org/10.4103/0028-3886.266268] [PMID: 31512617]
[18]
Lozano, A.M.; Dostrovsky, J.; Chen, R.; Ashby, P. Deep brain stimulation for Parkinson’s disease: Disrupting the disruption. Lancet Neurol., 2002, 1(4), 225-231.
[http://dx.doi.org/10.1016/S1474-4422(02)00101-1] [PMID: 12849455]
[http://dx.doi.org/10.1016/S1474-4422(02)00101-1] [PMID: 12849455]
[19]
Limousin, P.; Foltynie, T. Long-term outcomes of deep brain stimulation in Parkinson disease. Nat. Rev. Neurol., 2019, 15(4), 234-242.
[http://dx.doi.org/10.1038/s41582-019-0145-9] [PMID: 30778210]
[http://dx.doi.org/10.1038/s41582-019-0145-9] [PMID: 30778210]
[20]
Luo, G.; Cameron, B.D.; Wang, L.; Yu, H.; Neimat, J.S.; Hedera, P.; Phibbs, F.; Bradley, E.B.; Cmelak, A.J.; Kirschner, A.N. Targeting for stereotactic radiosurgical thalamotomy based on tremor treatment response. J. Neurosurg., 2022, 136(5), 1387-1394.
[http://dx.doi.org/10.3171/2021.7.JNS21160] [PMID: 34715657]
[http://dx.doi.org/10.3171/2021.7.JNS21160] [PMID: 34715657]
[21]
Partridge, B.; Eardley, A.; Morales, B.E.; Campelo, S.N.; Lorenzo, M.F.; Mehta, J.N.; Kani, Y.; Mora, J.K.G.; Campbell, E.O.Y.; Arena, C.B.; Platt, S.; Mintz, A.; Shinn, R.L.; Rylander, C.G.; Debinski, W.; Davalos, R.V.; Rossmeisl, J.H. Advancements in drug delivery methods for the treatment of brain disease. Front. Vet. Sci., 2022, 9, 1039745.
[http://dx.doi.org/10.3389/fvets.2022.1039745] [PMID: 36330152]
[http://dx.doi.org/10.3389/fvets.2022.1039745] [PMID: 36330152]
[22]
Quadri, S.A.; Waqas, M.; Khan, I.; Khan, M.A.; Suriya, S.S.; Farooqui, M.; Fiani, B. High-intensity focused ultrasound: Past, present, and future in neurosurgery. Neurosurg. Focus, 2018, 44(2), E16.
[http://dx.doi.org/10.3171/2017.11.FOCUS17610] [PMID: 29385923]
[http://dx.doi.org/10.3171/2017.11.FOCUS17610] [PMID: 29385923]
[23]
Palmer, A.M. The role of the blood brain barrier in neurodegenerative disorders and their treatment. J. Alzheimers Dis., 2011, 24(4), 643-656.
[http://dx.doi.org/10.3233/JAD-2011-110368] [PMID: 21460432]
[http://dx.doi.org/10.3233/JAD-2011-110368] [PMID: 21460432]
[24]
Ganjeifar, B.; Morshed, S.F. Targeted drug delivery in brain tumors-nanochemistry applications and advances. Curr. Top. Med. Chem., 2021, 21(14), 1202-1223.
[http://dx.doi.org/10.2174/1568026620666201113140258] [PMID: 33185163]
[http://dx.doi.org/10.2174/1568026620666201113140258] [PMID: 33185163]
[25]
Amreddy, N.; Babu, A.; Muralidharan, R.; Panneerselvam, J.; Srivastava, A.; Ahmed, R.; Mehta, M.; Munshi, A.; Ramesh, R. Recent advances in nanoparticle-based cancer drug and gene delivery. Adv. Cancer Res., 2018, 137, 115-170.
[http://dx.doi.org/10.1016/bs.acr.2017.11.003] [PMID: 29405974]
[http://dx.doi.org/10.1016/bs.acr.2017.11.003] [PMID: 29405974]
[26]
Lu, Y.; Jiang, C. Brain-targeted polymers for gene delivery in the treatment of brain diseases. Top. Curr. Chem., 2017, 375(2), 48.
[http://dx.doi.org/10.1007/s41061-017-0138-3] [PMID: 28397188]
[http://dx.doi.org/10.1007/s41061-017-0138-3] [PMID: 28397188]
[27]
Ndemazie, N.B.; Inkoom, A.; Morfaw, E.F.; Smith, T.; Aghimien, M.; Ebesoh, D.; Agyare, E. Multi-disciplinary approach for drug and gene delivery systems to the brain. AAPS Pharm.Sci. Tech., 2022, 23(1), 11.
[http://dx.doi.org/10.1208/s12249-021-02144-1] [PMID: 34862567]
[http://dx.doi.org/10.1208/s12249-021-02144-1] [PMID: 34862567]
[28]
Anand, P.; Singh, B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch. Pharm. Res., 2013, 36(4), 375-399.
[http://dx.doi.org/10.1007/s12272-013-0036-3] [PMID: 23435942]
[http://dx.doi.org/10.1007/s12272-013-0036-3] [PMID: 23435942]
[29]
Talbott, E.O.; Malek, A.M.; Lacomis, D. The epidemiology of amyotrophic lateral sclerosis. Handb. Clin. Neurol., 2016, 138, 225-238.
[http://dx.doi.org/10.1016/B978-0-12-802973-2.00013-6] [PMID: 27637961]
[http://dx.doi.org/10.1016/B978-0-12-802973-2.00013-6] [PMID: 27637961]
[30]
Mangialasche, F.; Solomon, A.; Winblad, B.; Mecocci, P.; Kivipelto, M. Alzheimer’s disease: Clinical trials and drug development. Lancet Neurol., 2010, 9(7), 702-716.
[http://dx.doi.org/10.1016/S1474-4422(10)70119-8] [PMID: 20610346]
[http://dx.doi.org/10.1016/S1474-4422(10)70119-8] [PMID: 20610346]
[31]
Sen, T.; Thummer, R.P. CRISPR and iPSCs: Recent developments and future perspectives in neurodegenerative disease modelling, research, and therapeutics. Neurotox. Res., 2022, 40(5), 1597-1623.
[http://dx.doi.org/10.1007/s12640-022-00564-w] [PMID: 36044181]
[http://dx.doi.org/10.1007/s12640-022-00564-w] [PMID: 36044181]
[32]
Mehta, D.; Jackson, R.; Paul, G.; Shi, J.; Sabbagh, M. Why do trials for Alzheimer’s disease drugs keep failing? A discontinued drug perspective for 2010-2015. Expert Opin. Investig. Drugs, 2017, 26(6), 735-739.
[http://dx.doi.org/10.1080/13543784.2017.1323868] [PMID: 28460541]
[http://dx.doi.org/10.1080/13543784.2017.1323868] [PMID: 28460541]
[33]
Silverberg, G.D.; Mayo, M.; Saul, T.; Fellmann, J.; Carvalho, J.; McGuire, D. Continuous CSF drainage in AD: Results of a double-blind, randomized, placebo-controlled study. Neurology, 2008, 71(3), 202-209.
[http://dx.doi.org/10.1212/01.wnl.0000316197.04157.6f] [PMID: 18525029]
[http://dx.doi.org/10.1212/01.wnl.0000316197.04157.6f] [PMID: 18525029]
[34]
Tuszynski, M.H.; Thal, L.; Pay, M.; Salmon, D.P.; U, H.S.; Bakay, R.; Patel, P.; Blesch, A.; Vahlsing, H.L.; Ho, G.; Tong, G.; Potkin, S.G.; Fallon, J.; Hansen, L.; Mufson, E.J.; Kordower, J.H.; Gall, C.; Conner, J. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat. Med., 2005, 11(5), 551-555.
[http://dx.doi.org/10.1038/nm1239] [PMID: 15852017]
[http://dx.doi.org/10.1038/nm1239] [PMID: 15852017]
[35]
Harbaugh, R.E.; Reeder, T.M.; Senter, H.J.; Knopman, D.S.; Baskin, D.S.; Pirozzolo, F.; Chui, H.C.; Shetter, A.G.; Bakay, R.A.E.; Leblanc, R.; Watson, R.T.; DeKosky, S.T.; Schmitt, F.A.; Read, S.L.; Johnston, J.T. Intracerebroventricular bethanechol chloride infusion in Alzheimer’s disease. J. Neurosurg., 1989, 71(4), 481-486.
[http://dx.doi.org/10.3171/jns.1989.71.4.0481] [PMID: 2571689]
[http://dx.doi.org/10.3171/jns.1989.71.4.0481] [PMID: 2571689]
[36]
Nauta, H.J.W.; Wehman, J.C.; Koliatsos, V.E.; Terrell, M.A.; Chung, K. Intraventricular infusion of nerve growth factor as the cause of sympathetic fiber sprouting in sensory ganglia. J. Neurosurg., 1999, 91(3), 447-453.
[http://dx.doi.org/10.3171/jns.1999.91.3.0447] [PMID: 10470820]
[http://dx.doi.org/10.3171/jns.1999.91.3.0447] [PMID: 10470820]
[37]
Qi, X.M.; Wang, C.; Chu, X.K.; Li, G.; Ma, J.F. Intraventricular infusion of clusterin ameliorated cognition and pathology in Tg6799 model of Alzheimer’s disease. BMC Neurosci., 2018, 19(1), 2.
[http://dx.doi.org/10.1186/s12868-018-0402-7] [PMID: 29370749]
[http://dx.doi.org/10.1186/s12868-018-0402-7] [PMID: 29370749]
[38]
Fu, H.J.; Liu, B.; Frost, J.L.; Lemere, C.A. Amyloid-beta immunotherapy for Alzheimer’s disease. CNS Neurol. Disord. Drug Targets, 2010, 9(2), 197-206.
[http://dx.doi.org/10.2174/187152710791012017] [PMID: 20205640]
[http://dx.doi.org/10.2174/187152710791012017] [PMID: 20205640]
[39]
Elmer, B.M.; Swanson, K.A.; Bangari, D.S.; Piepenhagen, P.A.; Roberts, E.; Taksir, T.; Guo, L.; Obinu, M.C.; Barneoud, P.; Ryan, S.; Zhang, B.; Pradier, L.; Yang, Z.Y.; Nabel, G.J. Gene delivery of a modified antibody to Aβ reduces progression of murine Alzheimer’s disease. PLoS One, 2019, 14(12), e0226245.
[http://dx.doi.org/10.1371/journal.pone.0226245] [PMID: 31887144]
[http://dx.doi.org/10.1371/journal.pone.0226245] [PMID: 31887144]
[40]
Vellas, B.; Carrillo, M.C.; Sampaio, C.; Brashear, H.R.; Siemers, E.; Hampel, H.; Schneider, L.S.; Weiner, M.; Doody, R.; Khachaturian, Z.; Cedarbaum, J.; Grundman, M.; Broich, K.; Giacobini, E.; Dubois, B.; Sperling, R.; Wilcock, G.K.; Fox, N.; Scheltens, P.; Touchon, J.; Hendrix, S.; Andrieu, S.; Aisen, P. Designing drug trials for Alzheimer’s disease: What we have learned from the release of the phase III antibody trials: A report from the EU/US/CTAD Task Force. Alzheimers Dement., 2013, 9(4), 438-444.
[http://dx.doi.org/10.1016/j.jalz.2013.03.007] [PMID: 23809364]
[http://dx.doi.org/10.1016/j.jalz.2013.03.007] [PMID: 23809364]
[41]
Goldsmith, H.S.; Saunders, R.L.; Reeves, A.G.; Allen, C.D.; Milne, J. Omental transposition to brain of stroke patients. Stroke, 1979, 10(4), 471-472.
[http://dx.doi.org/10.1161/01.STR.10.4.471] [PMID: 505487]
[http://dx.doi.org/10.1161/01.STR.10.4.471] [PMID: 505487]
[42]
Goldsmith, H.S. A new approach to the treatment of Alzheimer’s disease: The need for a controlled study. J. Alzheimers Dis., 2011, 25(2), 209-212.
[http://dx.doi.org/10.3233/JAD-2011-101935] [PMID: 21403393]
[http://dx.doi.org/10.3233/JAD-2011-101935] [PMID: 21403393]
[43]
Oliveira, A., Jr; Hodges, H. Alzheimer’s disease and neural transplantation as prospective cell therapy. Curr. Alzheimer Res., 2005, 2(1), 79-95.
[http://dx.doi.org/10.2174/1567205052772759] [PMID: 15977991]
[http://dx.doi.org/10.2174/1567205052772759] [PMID: 15977991]
[44]
Luo, Y.; Sun, Y.; Tian, X.; Zheng, X.; Wang, X.; Li, W.; Wu, X.; Shu, B.; Hou, W. Deep brain stimulation for alzheimer’s disease: stimulation parameters and potential mechanisms of action. Front. Aging Neurosci., 2021, 13, 619543.
[http://dx.doi.org/10.3389/fnagi.2021.619543] [PMID: 33776742]
[http://dx.doi.org/10.3389/fnagi.2021.619543] [PMID: 33776742]
[45]
Hescham, S.; Aldehri, M.; Temel, Y.; Alnaami, I.; Jahanshahi, A. Deep brain stimulation for Alzheimer’s Disease: An update. Surg. Neurol. Int., 2018, 9(1), 58.
[http://dx.doi.org/10.4103/sni.sni_342_17] [PMID: 29576909]
[http://dx.doi.org/10.4103/sni.sni_342_17] [PMID: 29576909]
[46]
Epelbaum, S.; Burgos, N.; Canney, M.; Matthews, D.; Houot, M.; Santin, M.D.; Desseaux, C.; Bouchoux, G.; Stroer, S.; Martin, C.; Habert, M.O.; Levy, M.; Bah, A.; Martin, K.; Delatour, B.; Riche, M.; Dubois, B.; Belin, L.; Carpentier, A. Pilot study of repeated blood-brain barrier disruption in patients with mild Alzheimer’s disease with an implantable ultrasound device. Alzheimers Res. Ther., 2022, 14(1), 40.
[http://dx.doi.org/10.1186/s13195-022-00981-1] [PMID: 35260178]
[http://dx.doi.org/10.1186/s13195-022-00981-1] [PMID: 35260178]
[47]
D’Haese, P.F.; Ranjan, M.; Song, A.; Haut, M.W.; Carpenter, J.; Dieb, G.; Najib, U.; Wang, P.; Mehta, R.I.; Chazen, J.L.; Hodder, S.; Claassen, D.; Kaplitt, M.; Rezai, A.R. β-Amyloid plaque reduction in the hippocampus after focused ultrasound-induced blood– brain barrier opening in alzheimer’s disease. Front. Hum. Neurosci., 2020, 14, 593672.
[http://dx.doi.org/10.3389/fnhum.2020.593672] [PMID: 33132889]
[http://dx.doi.org/10.3389/fnhum.2020.593672] [PMID: 33132889]
[48]
Rezai, A.R.; Ranjan, M.; D’Haese, P.F.; Haut, M.W.; Carpenter, J.; Najib, U.; Mehta, R.I.; Chazen, J.L.; Zibly, Z.; Yates, J.R.; Hodder, S.L.; Kaplitt, M. Noninvasive hippocampal blood−brain barrier opening in Alzheimer’s disease with focused ultrasound. Proc. Natl. Acad. Sci., 2020, 117(17), 9180-9182.
[http://dx.doi.org/10.1073/pnas.2002571117] [PMID: 32284421]
[http://dx.doi.org/10.1073/pnas.2002571117] [PMID: 32284421]
[49]
Wasielewska, J.M.; Chaves, J.C.S.; Johnston, R.L.; Milton, L.A.; Hernández, D.; Chen, L.; Song, J.; Lee, W.; Leinenga, G.; Nisbet, R.M.; Pébay, A.; Götz, J.; White, A.R.; Oikari, L.E. A sporadic Alzheimer’s blood-brain barrier model for developing ultrasound-mediated delivery of Aducanumab and anti-Tau antibodies. Theranostics, 2022, 12(16), 6826-6847.
[http://dx.doi.org/10.7150/thno.72685] [PMID: 36276649]
[http://dx.doi.org/10.7150/thno.72685] [PMID: 36276649]
[50]
Shin, J.; Kong, C.; Lee, J.; Choi, B.Y.; Sim, J.; Koh, C.S.; Park, M.; Na, Y.C.; Suh, S.W.; Chang, W.S.; Chang, J.W. Focused ultrasound-induced blood-brain barrier opening improves adult hippocampal neurogenesis and cognitive function in a cholinergic degeneration dementia rat model. Alzheimers Res. Ther., 2019, 11(1), 110.
[http://dx.doi.org/10.1186/s13195-019-0569-x] [PMID: 31881998]
[http://dx.doi.org/10.1186/s13195-019-0569-x] [PMID: 31881998]
[51]
Han, M.; Hur, Y.; Hwang, J.; Park, J. Biological effects of blood-brain barrier disruption using a focused ultrasound. Biomed. Eng. Lett., 2017, 7(2), 115-120.
[http://dx.doi.org/10.1007/s13534-017-0025-4] [PMID: 30603158]
[http://dx.doi.org/10.1007/s13534-017-0025-4] [PMID: 30603158]
[52]
Kovacs, Z.I.; Kim, S.; Jikaria, N.; Qureshi, F.; Milo, B.; Lewis, B.K.; Bresler, M.; Burks, S.R.; Frank, J.A. Disrupting the blood–brain barrier by focused ultrasound induces sterile inflammation. Proc. Natl. Acad. Sci., 2017, 114(1), E75-E84.
[http://dx.doi.org/10.1073/pnas.1614777114] [PMID: 27994152]
[http://dx.doi.org/10.1073/pnas.1614777114] [PMID: 27994152]
[53]
Nilsson, P.; Iwata, N.; Muramatsu, S.; Tjernberg, L.O.; Winblad, B.; Saido, T.C. Gene therapy in Alzheimer’s disease - potential for disease modification. J. Cell. Mol. Med., 2010, 14(4), 741-757.
[http://dx.doi.org/10.1111/j.1582-4934.2010.01038.x] [PMID: 20158567]
[http://dx.doi.org/10.1111/j.1582-4934.2010.01038.x] [PMID: 20158567]
[54]
Milà-Alomà, M.; Salvadó, G.; Gispert, J.D.; Vilor-Tejedor, N.; Grau-Rivera, O.; Sala-Vila, A.; Sánchez-Benavides, G.; Arenaza-Urquijo, E.M.; Crous-Bou, M.; González-de-Echávarri, J.M.; Minguillon, C.; Fauria, K.; Simon, M.; Kollmorgen, G.; Zetterberg, H.; Blennow, K.; Suárez-Calvet, M.; Molinuevo, J.L. Amyloid beta, tau, synaptic, neurodegeneration, and glial biomarkers in the preclinical stage of the Alzheimer’s continuum. Alzheimers Dement., 2020, 16(10), 1358-1371.
[http://dx.doi.org/10.1002/alz.12131] [PMID: 32573951]
[http://dx.doi.org/10.1002/alz.12131] [PMID: 32573951]
[55]
Puhl, D.L.; D’Amato, A.R.; Gilbert, R.J. Challenges of gene delivery to the central nervous system and the growing use of biomaterial vectors. Brain Res. Bull., 2019, 150, 216-230.
[http://dx.doi.org/10.1016/j.brainresbull.2019.05.024] [PMID: 31173859]
[http://dx.doi.org/10.1016/j.brainresbull.2019.05.024] [PMID: 31173859]
[56]
Lennon, M.J.; Rigney, G.; Raymont, V.; Sachdev, P. Genetic Therapies for Alzheimer’s Disease: A Scoping Review. J. Alzheimers Dis., 2021, 84(2), 491-504.
[http://dx.doi.org/10.3233/JAD-215145] [PMID: 34569966]
[http://dx.doi.org/10.3233/JAD-215145] [PMID: 34569966]
[57]
Rafii, M.S.; Baumann, T.L.; Bakay, R.A.E.; Ostrove, J.M.; Siffert, J.; Fleisher, A.S.; Herzog, C.D.; Barba, D.; Pay, M.; Salmon, D.P.; Chu, Y.; Kordower, J.H.; Bishop, K.; Keator, D.; Potkin, S.; Bartus, R.T. A phase1 study of stereotactic gene delivery of AAV2-NGF for Alzheimer’s disease. Alzheimers Dement., 2014, 10(5), 571-581.
[http://dx.doi.org/10.1016/j.jalz.2013.09.004] [PMID: 24411134]
[http://dx.doi.org/10.1016/j.jalz.2013.09.004] [PMID: 24411134]
[58]
Garbuzova-Davis, S.; Willing, A.E.; Saporta, S.; Justen, E.B.; Misiuta, I.E.; Dellis, J.; Sanberg, P.R. Multiple transplants of hNT cells into the spinal cord of SOD1 mouse model of familial amyotrophic lateral sclerosis. Amyotroph. Lateral Scler., 2006, 7(4), 227-232.
[http://dx.doi.org/10.1080/17482960600864470] [PMID: 17127560]
[http://dx.doi.org/10.1080/17482960600864470] [PMID: 17127560]
[59]
Marcuzzo, S.; Isaia, D.; Bonanno, S.; Malacarne, C.; Cavalcante, P.; Zacheo, A.; Laquintana, V.; Denora, N.; Sanavio, B.; Salvati, E.; Andreozzi, P.; Stellacci, F.; Krol, S.; Mellado-López, M.; Mantegazza, R.; Moreno-Manzano, V.; Bernasconi, P. FM19G11-loaded gold nanoparticles enhance the proliferation and self-renewal of ependymal stem progenitor cells derived from ALS mice. Cells, 2019, 8(3), 279.
[http://dx.doi.org/10.3390/cells8030279] [PMID: 30909571]
[http://dx.doi.org/10.3390/cells8030279] [PMID: 30909571]
[60]
Malysz-Cymborska, I.; Golubczyk, D.; Kalkowski, L.; Burczyk, A.; Janowski, M.; Holak, P.; Olbrych, K.; Sanford, J.; Stachowiak, K.; Milewska, K.; Gorecki, P.; Adamiak, Z.; Maksymowicz, W.; Walczak, P. MRI-guided intrathecal transplantation of hydrogel-embedded glial progenitors in large animals. Sci. Rep., 2018, 8(1), 16490.
[http://dx.doi.org/10.1038/s41598-018-34723-x] [PMID: 30405160]
[http://dx.doi.org/10.1038/s41598-018-34723-x] [PMID: 30405160]
[61]
Delivery of arctiin via ultrasound with microbubbles exerted positive effects on motor function in a transgenic mice model of amyotrophic lateral sclerosis. Proceedings of the 2021 IEEE International Ultrasonics Symposium (IUS)., Xi'an, China11-16 Sep2021.
[http://dx.doi.org/10.1109/IUS52206.2021.9593418]
[http://dx.doi.org/10.1109/IUS52206.2021.9593418]
[62]
Shively, S.B.; Priemer, D.S.; Stein, M.B.; Perl, D.P. Pathophysiology of traumatic brain injury, chronic traumatic encephalopathy, and neuropsychiatric clinical expression. Psychiatr. Clin. North Am., 2021, 44(3), 443-458.
[http://dx.doi.org/10.1016/j.psc.2021.04.003] [PMID: 34373000]
[http://dx.doi.org/10.1016/j.psc.2021.04.003] [PMID: 34373000]
[63]
VanItallie, T.B. Traumatic brain injury (TBI) in collision sports: Possible mechanisms of transformation into chronic traumatic encephalopathy (CTE). Metabolism, 2019, 100, 153943.
[http://dx.doi.org/10.1016/j.metabol.2019.07.007] [PMID: 31610856]
[http://dx.doi.org/10.1016/j.metabol.2019.07.007] [PMID: 31610856]
[64]
Pierre, K.; Dyson, K.; Dagra, A.; Williams, E.; Porche, K.; Lucke-Wold, B. Chronic traumatic encephalopathy: Update on current clinical diagnosis and management. Biomedicines, 2021, 9(4), 415.
[http://dx.doi.org/10.3390/biomedicines9040415] [PMID: 33921385]
[http://dx.doi.org/10.3390/biomedicines9040415] [PMID: 33921385]
[65]
Alosco, M.L.; Mariani, M.L.; Adler, C.H.; Balcer, L.J.; Bernick, C.; Au, R.; Banks, S.J.; Barr, W.B.; Bouix, S.; Cantu, R.C.; Coleman, M.J.; Dodick, D.W.; Farrer, L.A.; Geda, Y.E.; Katz, D.I.; Koerte, I.K.; Kowall, N.W.; Lin, A.P.; Marcus, D.S.; Marek, K.L.; McClean, M.D.; McKee, A.C.; Mez, J.; Palmisano, J.N.; Peskind, E.R.; Tripodis, Y.; Turner, R.W., II; Wethe, J.V.; Cummings, J.L.; Reiman, E.M.; Shenton, M.E.; Stern, R.A.; Adler, C.H.; Alosco, M.L.; Au, R.; Balcer, L.; Banks, S.; Barr, W.; Bernick, C.; Bouix, S.; Cantu, R.C.; Chen, K.; Coleman, M.J.; Cummings, J.L.; Dodick, D.W.; Farrer, L.; Fitzsimmons, J.; Geda, Y.; Goldberg, J.; Helm, R.; Johnson, K.A.; Katz, D.I.; Kirov, I.; Koerte, I.K.; Kowall, N.; Lin, A.P.; Lui, Y.; Marcus, D.S.; Marek, K.L.; Mariani, M.; Marmar, C.; McClean, M.; McKee, A.C.; Mez, J.; Miller, J.; Palmisano, J.N.; Pasternak, O.; Peskind, E.R.; Protas, H.; Reiman, E.; Ritter, A.; Shenton, M.E.; Stern, R.A.; Su, Y.; Tripodis, Y.; Turner, R.W.; Weller, J.; Wethe, J.V. Developing methods to detect and diagnose chronic traumatic encephalopathy during life: Rationale, design, and methodology for the DIAGNOSE CTE Research Project. Alzheimers Res. Ther., 2021, 13(1), 136.
[http://dx.doi.org/10.1186/s13195-021-00872-x] [PMID: 34384490]
[http://dx.doi.org/10.1186/s13195-021-00872-x] [PMID: 34384490]
[66]
Mez, J.; Daneshvar, D.H.; Kiernan, P.T.; Abdolmohammadi, B.; Alvarez, V.E.; Huber, B.R.; Alosco, M.L.; Solomon, T.M.; Nowinski, C.J.; McHale, L.; Cormier, K.A.; Kubilus, C.A.; Martin, B.M.; Murphy, L.; Baugh, C.M.; Montenigro, P.H.; Chaisson, C.E.; Tripodis, Y.; Kowall, N.W.; Weuve, J.; McClean, M.D.; Cantu, R.C.; Goldstein, L.E.; Katz, D.I.; Stern, R.A.; Stein, T.D.; McKee, A.C. Clinicopathological evaluation of chronic traumatic encephalopathy in players of american football. JAMA, 2017, 318(4), 360-370.
[http://dx.doi.org/10.1001/jama.2017.8334] [PMID: 28742910]
[http://dx.doi.org/10.1001/jama.2017.8334] [PMID: 28742910]
[67]
Breen, P.W.; Krishnan, V. Recent preclinical insights into the treatment of chronic traumatic encephalopathy. Front. Neurosci., 2020, 14, 616.
[http://dx.doi.org/10.3389/fnins.2020.00616] [PMID: 32774238]
[http://dx.doi.org/10.3389/fnins.2020.00616] [PMID: 32774238]
[68]
McKee, A.C.; Stein, T.D.; Kiernan, P.T.; Alvarez, V.E. The neuropathology of chronic traumatic encephalopathy. Brain Pathol., 2015, 25(3), 350-364.
[http://dx.doi.org/10.1111/bpa.12248] [PMID: 25904048]
[http://dx.doi.org/10.1111/bpa.12248] [PMID: 25904048]
[69]
Albayram, O.; Kondo, A.; Mannix, R.; Smith, C.; Tsai, C.Y.; Li, C.; Herbert, M.K.; Qiu, J.; Monuteaux, M.; Driver, J.; Yan, S.; Gormley, W.; Puccio, A.M.; Okonkwo, D.O.; Lucke-Wold, B.; Bailes, J.; Meehan, W.; Zeidel, M.; Lu, K.P.; Zhou, X.Z. Cis P-tau is induced in clinical and preclinical brain injury and contributes to post-injury sequelae. Nat. Commun., 2017, 8(1), 1000.
[http://dx.doi.org/10.1038/s41467-017-01068-4] [PMID: 29042562]
[http://dx.doi.org/10.1038/s41467-017-01068-4] [PMID: 29042562]
[70]
Brenza, T.M.; Ghaisas, S.; Ramirez, J.E.V.; Harischandra, D.; Anantharam, V.; Kalyanaraman, B.; Kanthasamy, A.G.; Narasimhan, B. Neuronal protection against oxidative insult by polyanhydride nanoparticle-based mitochondria-targeted antioxidant therapy. Nanomedicine, 2017, 13(3), 809-820.
[http://dx.doi.org/10.1016/j.nano.2016.10.004] [PMID: 27771430]
[http://dx.doi.org/10.1016/j.nano.2016.10.004] [PMID: 27771430]
[71]
Vaswani, P.A.; Tropea, T.F.; Dahodwala, N. Overcoming barriers to parkinson disease trial participation: Increasing diversity and novel designs for recruitment and retention. Neurotherapeutics, 2020, 17(4), 1724-1735.
[http://dx.doi.org/10.1007/s13311-020-00960-0] [PMID: 33150545]
[http://dx.doi.org/10.1007/s13311-020-00960-0] [PMID: 33150545]
[72]
Mantri, S.; Fullard, M.E.; Beck, J.; Willis, A.W. State-level prevalence, health service use, and spending vary widely among Medicare beneficiaries with Parkinson disease. NPJ Parkinsons Dis., 2019, 5(1), 1.
[http://dx.doi.org/10.1038/s41531-019-0074-8] [PMID: 30701188]
[http://dx.doi.org/10.1038/s41531-019-0074-8] [PMID: 30701188]
[73]
Watson, J.L.; Ryan, L.; Silverberg, N.; Cahan, V.; Bernard, M.A. Obstacles and opportunities in Alzheimer’s clinical trial recruitment. Health Aff., 2014, 33(4), 574-579.
[http://dx.doi.org/10.1377/hlthaff.2013.1314] [PMID: 24711317]
[http://dx.doi.org/10.1377/hlthaff.2013.1314] [PMID: 24711317]
[74]
Rollin-Sillaire, A.; Breuilh, L.; Salleron, J.; Bombois, S.; Cassagnaud, P.; Deramecourt, V.; Mackowiak, M.A.; Pasquier, F. Reasons that prevent the inclusion of Alzheimer’s disease patients in clinical trials. Br. J. Clin. Pharmacol., 2013, 75(4), 1089-1097.
[http://dx.doi.org/10.1111/j.1365-2125.2012.04423.x] [PMID: 22891847]
[http://dx.doi.org/10.1111/j.1365-2125.2012.04423.x] [PMID: 22891847]
[75]
Dana, G.P. Key Barriers for Clinical Trials for Alzheimer’s Disease; Shaeffer Center for Health Policy and Economics: University of Southern California., 2020.
[76]
Raman, R.; Aisen, P.S.; Carillo, M.C.; Detke, M.; Grill, J.D.; Okonkwo, O.C.; Rivera-Mindt, M.; Sabbagh, M.; Vellas, B.; Weiner, M.; Sperling, R. Tackling a major deficiency of diversity in alzheimer’s disease therapeutic trials: An CTAD task force report. J. Prev. Alzheimers Dis., 2022, 9(3), 388-392.
[PMID: 35841239]
[PMID: 35841239]
33
2