Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

Innovative Discoveries in Neurosurgical Treatment of Neurodegenerative Diseases: A Narrative Review

Author(s): Matthew C. Findlay, Majid Khan, Mrinmoy Kundu, Chase M. Johansen and Brandon Lucke-Wold*

Volume 20, Issue 6, 2023

Published on: 28 September, 2023

Page: [394 - 402] Pages: 9

DOI: 10.2174/1567205020666230911125646

Price: $65

conference banner
Abstract

Neurodegenerative diseases (NDDs) encapsulate conditions in which neural cell populations are perpetually degraded and nervous system function destroyed. Generally linked to increased age, the proportion of patients diagnosed with a NDD is growing as human life expectancies rise. Traditional NDD therapies and surgical interventions have been limited. However, recent breakthroughs in understanding disease pathophysiology, improved drug delivery systems, and targeted pharmacologic agents have allowed innovative treatment approaches to treat NDDs. A common denominator for administering these new treatment options is the requirement for neurosurgical skills. In the present narrative review, we highlight exciting and novel preclinical and clinical discoveries being integrated into NDD care. We also discuss the traditional role of neurosurgery in managing these neurodegenerative conditions and emphasize the critical role of neurosurgery in effectuating these newly developed treatments.

Keywords: Neurosurgical treatment, human life expectancyneurodegenerative diseases (NDDs), traditional NDD therapies, drug delivery systems, novel preclinical, clinical discoveries.

[1]
Heemels, M.T. Neurodegenerative diseases. Nature, 2016, 539(7628), 179.
[http://dx.doi.org/10.1038/539179a] [PMID: 27830810]
[2]
Brown, R.C.; Lockwood, A.H.; Sonawane, B.R. Neurodegenerative diseases: An overview of environmental risk factors. Environ. Health Perspect., 2005, 113(9), 1250-1256.
[http://dx.doi.org/10.1289/ehp.7567] [PMID: 16140637]
[3]
Meek, P.D.; McKeithan, E.K.; Schumock, G.T. Economic considerations in Alzheimer’s disease. Pharmacotherapy, 1998, 18(2P2), 68-73.
[http://dx.doi.org/10.1002/j.1875-9114.1998.tb03880.x] [PMID: 9543467]
[4]
Shoulson, I. Experimental therapeutics of neurodegenerative disorders: Unmet needs. Science, 1998, 282(5391), 1072-1074.
[http://dx.doi.org/10.1126/science.282.5391.1072] [PMID: 9804537]
[5]
Lamptey, R.N.L.; Chaulagain, B.; Trivedi, R.; Gothwal, A.; Layek, B.; Singh, J. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics. Int. J. Mol. Sci., 2022, 23(3), 1851.
[http://dx.doi.org/10.3390/ijms23031851] [PMID: 35163773]
[6]
Dal Bello-Haas, V. Physical therapy for individuals with amyotrophic lateral sclerosis: Current insights. Degener. Neurol. Neuromuscul. Dis., 2018, 8, 45-54.
[http://dx.doi.org/10.2147/DNND.S146949] [PMID: 30890895]
[7]
Goldenberg, M.M. Medical management of Parkinson’s disease. P.T., 2008, 33(10), 590-606.
[PMID: 19750042]
[8]
Yoshor, D.; Klugh, A., III; Appel, S.H.; Haverkamp, L.J. Incidence and characteristics of spinal decompression surgery after the onset of symptoms of amyotrophic lateral sclerosis. Neurosurgery, 2005, 57(5), 984-989.
[http://dx.doi.org/10.1227/01.NEU.0000180028.64385.d3] [PMID: 16284567]
[9]
Mesnage, V.; Houeto, J.L.; Welter, M.L.; Agid, Y.; Pidoux, B.; Dormont, D.; Cornu, P. Parkinson’s disease: Neurosurgery at an earlier stage? J. Neurol. Neurosurg. Psychiatry, 2002, 73(6), 778-779.
[http://dx.doi.org/10.1136/jnnp.73.6.778] [PMID: 12438494]
[10]
Bogdan, A.; Manera, V.; Koenig, A.; David, R. Pharmacologic approaches for the management of apathy in neurodegenerative disorders. Front. Pharmacol., 2020, 10, 1581.
[http://dx.doi.org/10.3389/fphar.2019.01581] [PMID: 32038253]
[11]
Kouli, A.; Torsney, K.M.; Kuan, W.L. Parkinson's disease: Etiology, neuropathology, and pathogenesis. In: Parkinson's disease: Pathogenesis and clinical aspects; Codon Publisher: Brisbane (AU), 2018.
[12]
Simon, D.K.; Tanner, C.M.; Brundin, P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin. Geriatr. Med., 2020, 36(1), 1-12.
[http://dx.doi.org/10.1016/j.cger.2019.08.002] [PMID: 31733690]
[13]
Moosa, S.; Martínez-Fernández, R.; Elias, W.J.; del Alamo, M.; Eisenberg, H.M.; Fishman, P.S. The role of high-intensity focused ultrasound as a symptomatic treatment for Parkinson’s disease. Mov. Disord., 2019, 34(9), 1243-1251.
[http://dx.doi.org/10.1002/mds.27779] [PMID: 31291491]
[14]
Wang, Y.; Luo, K.; Li, J.; Liao, Y.; Liao, C.; Chen, W.S.; Chen, M.; Ao, L. Focused ultrasound promotes the delivery of gastrodin and enhances the protective effect on dopaminergic neurons in a mouse model of parkinson’s disease. Front. Cell. Neurosci., 2022, 16, 884788.
[http://dx.doi.org/10.3389/fncel.2022.884788] [PMID: 35656407]
[15]
Martínez-Moreno, N.E.; Sahgal, A.; De Salles, A.; Hayashi, M.; Levivier, M.; Ma, L.; Paddick, I.; Régis, J.; Ryu, S.; Slotman, B.J.; Martínez-Álvarez, R. Stereotactic radiosurgery for tremor: Systematic review. J. Neurosurg., 2018, 1-12.
[PMID: 29473775]
[16]
Groiss, S.J.; Wojtecki, L.; Südmeyer, M.; Schnitzler, A. Review: Deep brain stimulation in Parkinson’s disease. Ther. Adv. Neurol. Disord., 2009, 2(6), 379-391.
[http://dx.doi.org/10.1177/1756285609339382] [PMID: 21180627]
[17]
Malek, N. Deep brain stimulation in Parkinson’s Disease. Neurol. India, 2019, 67(4), 968-978.
[http://dx.doi.org/10.4103/0028-3886.266268] [PMID: 31512617]
[18]
Lozano, A.M.; Dostrovsky, J.; Chen, R.; Ashby, P. Deep brain stimulation for Parkinson’s disease: Disrupting the disruption. Lancet Neurol., 2002, 1(4), 225-231.
[http://dx.doi.org/10.1016/S1474-4422(02)00101-1] [PMID: 12849455]
[19]
Limousin, P.; Foltynie, T. Long-term outcomes of deep brain stimulation in Parkinson disease. Nat. Rev. Neurol., 2019, 15(4), 234-242.
[http://dx.doi.org/10.1038/s41582-019-0145-9] [PMID: 30778210]
[20]
Luo, G.; Cameron, B.D.; Wang, L.; Yu, H.; Neimat, J.S.; Hedera, P.; Phibbs, F.; Bradley, E.B.; Cmelak, A.J.; Kirschner, A.N. Targeting for stereotactic radiosurgical thalamotomy based on tremor treatment response. J. Neurosurg., 2022, 136(5), 1387-1394.
[http://dx.doi.org/10.3171/2021.7.JNS21160] [PMID: 34715657]
[21]
Partridge, B.; Eardley, A.; Morales, B.E.; Campelo, S.N.; Lorenzo, M.F.; Mehta, J.N.; Kani, Y.; Mora, J.K.G.; Campbell, E.O.Y.; Arena, C.B.; Platt, S.; Mintz, A.; Shinn, R.L.; Rylander, C.G.; Debinski, W.; Davalos, R.V.; Rossmeisl, J.H. Advancements in drug delivery methods for the treatment of brain disease. Front. Vet. Sci., 2022, 9, 1039745.
[http://dx.doi.org/10.3389/fvets.2022.1039745] [PMID: 36330152]
[22]
Quadri, S.A.; Waqas, M.; Khan, I.; Khan, M.A.; Suriya, S.S.; Farooqui, M.; Fiani, B. High-intensity focused ultrasound: Past, present, and future in neurosurgery. Neurosurg. Focus, 2018, 44(2), E16.
[http://dx.doi.org/10.3171/2017.11.FOCUS17610] [PMID: 29385923]
[23]
Palmer, A.M. The role of the blood brain barrier in neurodegenerative disorders and their treatment. J. Alzheimers Dis., 2011, 24(4), 643-656.
[http://dx.doi.org/10.3233/JAD-2011-110368] [PMID: 21460432]
[24]
Ganjeifar, B.; Morshed, S.F. Targeted drug delivery in brain tumors-nanochemistry applications and advances. Curr. Top. Med. Chem., 2021, 21(14), 1202-1223.
[http://dx.doi.org/10.2174/1568026620666201113140258] [PMID: 33185163]
[25]
Amreddy, N.; Babu, A.; Muralidharan, R.; Panneerselvam, J.; Srivastava, A.; Ahmed, R.; Mehta, M.; Munshi, A.; Ramesh, R. Recent advances in nanoparticle-based cancer drug and gene delivery. Adv. Cancer Res., 2018, 137, 115-170.
[http://dx.doi.org/10.1016/bs.acr.2017.11.003] [PMID: 29405974]
[26]
Lu, Y.; Jiang, C. Brain-targeted polymers for gene delivery in the treatment of brain diseases. Top. Curr. Chem., 2017, 375(2), 48.
[http://dx.doi.org/10.1007/s41061-017-0138-3] [PMID: 28397188]
[27]
Ndemazie, N.B.; Inkoom, A.; Morfaw, E.F.; Smith, T.; Aghimien, M.; Ebesoh, D.; Agyare, E. Multi-disciplinary approach for drug and gene delivery systems to the brain. AAPS Pharm.Sci. Tech., 2022, 23(1), 11.
[http://dx.doi.org/10.1208/s12249-021-02144-1] [PMID: 34862567]
[28]
Anand, P.; Singh, B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch. Pharm. Res., 2013, 36(4), 375-399.
[http://dx.doi.org/10.1007/s12272-013-0036-3] [PMID: 23435942]
[29]
Talbott, E.O.; Malek, A.M.; Lacomis, D. The epidemiology of amyotrophic lateral sclerosis. Handb. Clin. Neurol., 2016, 138, 225-238.
[http://dx.doi.org/10.1016/B978-0-12-802973-2.00013-6] [PMID: 27637961]
[30]
Mangialasche, F.; Solomon, A.; Winblad, B.; Mecocci, P.; Kivipelto, M. Alzheimer’s disease: Clinical trials and drug development. Lancet Neurol., 2010, 9(7), 702-716.
[http://dx.doi.org/10.1016/S1474-4422(10)70119-8] [PMID: 20610346]
[31]
Sen, T.; Thummer, R.P. CRISPR and iPSCs: Recent developments and future perspectives in neurodegenerative disease modelling, research, and therapeutics. Neurotox. Res., 2022, 40(5), 1597-1623.
[http://dx.doi.org/10.1007/s12640-022-00564-w] [PMID: 36044181]
[32]
Mehta, D.; Jackson, R.; Paul, G.; Shi, J.; Sabbagh, M. Why do trials for Alzheimer’s disease drugs keep failing? A discontinued drug perspective for 2010-2015. Expert Opin. Investig. Drugs, 2017, 26(6), 735-739.
[http://dx.doi.org/10.1080/13543784.2017.1323868] [PMID: 28460541]
[33]
Silverberg, G.D.; Mayo, M.; Saul, T.; Fellmann, J.; Carvalho, J.; McGuire, D. Continuous CSF drainage in AD: Results of a double-blind, randomized, placebo-controlled study. Neurology, 2008, 71(3), 202-209.
[http://dx.doi.org/10.1212/01.wnl.0000316197.04157.6f] [PMID: 18525029]
[34]
Tuszynski, M.H.; Thal, L.; Pay, M.; Salmon, D.P.; U, H.S.; Bakay, R.; Patel, P.; Blesch, A.; Vahlsing, H.L.; Ho, G.; Tong, G.; Potkin, S.G.; Fallon, J.; Hansen, L.; Mufson, E.J.; Kordower, J.H.; Gall, C.; Conner, J. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat. Med., 2005, 11(5), 551-555.
[http://dx.doi.org/10.1038/nm1239] [PMID: 15852017]
[35]
Harbaugh, R.E.; Reeder, T.M.; Senter, H.J.; Knopman, D.S.; Baskin, D.S.; Pirozzolo, F.; Chui, H.C.; Shetter, A.G.; Bakay, R.A.E.; Leblanc, R.; Watson, R.T.; DeKosky, S.T.; Schmitt, F.A.; Read, S.L.; Johnston, J.T. Intracerebroventricular bethanechol chloride infusion in Alzheimer’s disease. J. Neurosurg., 1989, 71(4), 481-486.
[http://dx.doi.org/10.3171/jns.1989.71.4.0481] [PMID: 2571689]
[36]
Nauta, H.J.W.; Wehman, J.C.; Koliatsos, V.E.; Terrell, M.A.; Chung, K. Intraventricular infusion of nerve growth factor as the cause of sympathetic fiber sprouting in sensory ganglia. J. Neurosurg., 1999, 91(3), 447-453.
[http://dx.doi.org/10.3171/jns.1999.91.3.0447] [PMID: 10470820]
[37]
Qi, X.M.; Wang, C.; Chu, X.K.; Li, G.; Ma, J.F. Intraventricular infusion of clusterin ameliorated cognition and pathology in Tg6799 model of Alzheimer’s disease. BMC Neurosci., 2018, 19(1), 2.
[http://dx.doi.org/10.1186/s12868-018-0402-7] [PMID: 29370749]
[38]
Fu, H.J.; Liu, B.; Frost, J.L.; Lemere, C.A. Amyloid-beta immunotherapy for Alzheimer’s disease. CNS Neurol. Disord. Drug Targets, 2010, 9(2), 197-206.
[http://dx.doi.org/10.2174/187152710791012017] [PMID: 20205640]
[39]
Elmer, B.M.; Swanson, K.A.; Bangari, D.S.; Piepenhagen, P.A.; Roberts, E.; Taksir, T.; Guo, L.; Obinu, M.C.; Barneoud, P.; Ryan, S.; Zhang, B.; Pradier, L.; Yang, Z.Y.; Nabel, G.J. Gene delivery of a modified antibody to Aβ reduces progression of murine Alzheimer’s disease. PLoS One, 2019, 14(12), e0226245.
[http://dx.doi.org/10.1371/journal.pone.0226245] [PMID: 31887144]
[40]
Vellas, B.; Carrillo, M.C.; Sampaio, C.; Brashear, H.R.; Siemers, E.; Hampel, H.; Schneider, L.S.; Weiner, M.; Doody, R.; Khachaturian, Z.; Cedarbaum, J.; Grundman, M.; Broich, K.; Giacobini, E.; Dubois, B.; Sperling, R.; Wilcock, G.K.; Fox, N.; Scheltens, P.; Touchon, J.; Hendrix, S.; Andrieu, S.; Aisen, P. Designing drug trials for Alzheimer’s disease: What we have learned from the release of the phase III antibody trials: A report from the EU/US/CTAD Task Force. Alzheimers Dement., 2013, 9(4), 438-444.
[http://dx.doi.org/10.1016/j.jalz.2013.03.007] [PMID: 23809364]
[41]
Goldsmith, H.S.; Saunders, R.L.; Reeves, A.G.; Allen, C.D.; Milne, J. Omental transposition to brain of stroke patients. Stroke, 1979, 10(4), 471-472.
[http://dx.doi.org/10.1161/01.STR.10.4.471] [PMID: 505487]
[42]
Goldsmith, H.S. A new approach to the treatment of Alzheimer’s disease: The need for a controlled study. J. Alzheimers Dis., 2011, 25(2), 209-212.
[http://dx.doi.org/10.3233/JAD-2011-101935] [PMID: 21403393]
[43]
Oliveira, A., Jr; Hodges, H. Alzheimer’s disease and neural transplantation as prospective cell therapy. Curr. Alzheimer Res., 2005, 2(1), 79-95.
[http://dx.doi.org/10.2174/1567205052772759] [PMID: 15977991]
[44]
Luo, Y.; Sun, Y.; Tian, X.; Zheng, X.; Wang, X.; Li, W.; Wu, X.; Shu, B.; Hou, W. Deep brain stimulation for alzheimer’s disease: stimulation parameters and potential mechanisms of action. Front. Aging Neurosci., 2021, 13, 619543.
[http://dx.doi.org/10.3389/fnagi.2021.619543] [PMID: 33776742]
[45]
Hescham, S.; Aldehri, M.; Temel, Y.; Alnaami, I.; Jahanshahi, A. Deep brain stimulation for Alzheimer’s Disease: An update. Surg. Neurol. Int., 2018, 9(1), 58.
[http://dx.doi.org/10.4103/sni.sni_342_17] [PMID: 29576909]
[46]
Epelbaum, S.; Burgos, N.; Canney, M.; Matthews, D.; Houot, M.; Santin, M.D.; Desseaux, C.; Bouchoux, G.; Stroer, S.; Martin, C.; Habert, M.O.; Levy, M.; Bah, A.; Martin, K.; Delatour, B.; Riche, M.; Dubois, B.; Belin, L.; Carpentier, A. Pilot study of repeated blood-brain barrier disruption in patients with mild Alzheimer’s disease with an implantable ultrasound device. Alzheimers Res. Ther., 2022, 14(1), 40.
[http://dx.doi.org/10.1186/s13195-022-00981-1] [PMID: 35260178]
[47]
D’Haese, P.F.; Ranjan, M.; Song, A.; Haut, M.W.; Carpenter, J.; Dieb, G.; Najib, U.; Wang, P.; Mehta, R.I.; Chazen, J.L.; Hodder, S.; Claassen, D.; Kaplitt, M.; Rezai, A.R. β-Amyloid plaque reduction in the hippocampus after focused ultrasound-induced blood– brain barrier opening in alzheimer’s disease. Front. Hum. Neurosci., 2020, 14, 593672.
[http://dx.doi.org/10.3389/fnhum.2020.593672] [PMID: 33132889]
[48]
Rezai, A.R.; Ranjan, M.; D’Haese, P.F.; Haut, M.W.; Carpenter, J.; Najib, U.; Mehta, R.I.; Chazen, J.L.; Zibly, Z.; Yates, J.R.; Hodder, S.L.; Kaplitt, M. Noninvasive hippocampal blood−brain barrier opening in Alzheimer’s disease with focused ultrasound. Proc. Natl. Acad. Sci., 2020, 117(17), 9180-9182.
[http://dx.doi.org/10.1073/pnas.2002571117] [PMID: 32284421]
[49]
Wasielewska, J.M.; Chaves, J.C.S.; Johnston, R.L.; Milton, L.A.; Hernández, D.; Chen, L.; Song, J.; Lee, W.; Leinenga, G.; Nisbet, R.M.; Pébay, A.; Götz, J.; White, A.R.; Oikari, L.E. A sporadic Alzheimer’s blood-brain barrier model for developing ultrasound-mediated delivery of Aducanumab and anti-Tau antibodies. Theranostics, 2022, 12(16), 6826-6847.
[http://dx.doi.org/10.7150/thno.72685] [PMID: 36276649]
[50]
Shin, J.; Kong, C.; Lee, J.; Choi, B.Y.; Sim, J.; Koh, C.S.; Park, M.; Na, Y.C.; Suh, S.W.; Chang, W.S.; Chang, J.W. Focused ultrasound-induced blood-brain barrier opening improves adult hippocampal neurogenesis and cognitive function in a cholinergic degeneration dementia rat model. Alzheimers Res. Ther., 2019, 11(1), 110.
[http://dx.doi.org/10.1186/s13195-019-0569-x] [PMID: 31881998]
[51]
Han, M.; Hur, Y.; Hwang, J.; Park, J. Biological effects of blood-brain barrier disruption using a focused ultrasound. Biomed. Eng. Lett., 2017, 7(2), 115-120.
[http://dx.doi.org/10.1007/s13534-017-0025-4] [PMID: 30603158]
[52]
Kovacs, Z.I.; Kim, S.; Jikaria, N.; Qureshi, F.; Milo, B.; Lewis, B.K.; Bresler, M.; Burks, S.R.; Frank, J.A. Disrupting the blood–brain barrier by focused ultrasound induces sterile inflammation. Proc. Natl. Acad. Sci., 2017, 114(1), E75-E84.
[http://dx.doi.org/10.1073/pnas.1614777114] [PMID: 27994152]
[53]
Nilsson, P.; Iwata, N.; Muramatsu, S.; Tjernberg, L.O.; Winblad, B.; Saido, T.C. Gene therapy in Alzheimer’s disease - potential for disease modification. J. Cell. Mol. Med., 2010, 14(4), 741-757.
[http://dx.doi.org/10.1111/j.1582-4934.2010.01038.x] [PMID: 20158567]
[54]
Milà-Alomà, M.; Salvadó, G.; Gispert, J.D.; Vilor-Tejedor, N.; Grau-Rivera, O.; Sala-Vila, A.; Sánchez-Benavides, G.; Arenaza-Urquijo, E.M.; Crous-Bou, M.; González-de-Echávarri, J.M.; Minguillon, C.; Fauria, K.; Simon, M.; Kollmorgen, G.; Zetterberg, H.; Blennow, K.; Suárez-Calvet, M.; Molinuevo, J.L. Amyloid beta, tau, synaptic, neurodegeneration, and glial biomarkers in the preclinical stage of the Alzheimer’s continuum. Alzheimers Dement., 2020, 16(10), 1358-1371.
[http://dx.doi.org/10.1002/alz.12131] [PMID: 32573951]
[55]
Puhl, D.L.; D’Amato, A.R.; Gilbert, R.J. Challenges of gene delivery to the central nervous system and the growing use of biomaterial vectors. Brain Res. Bull., 2019, 150, 216-230.
[http://dx.doi.org/10.1016/j.brainresbull.2019.05.024] [PMID: 31173859]
[56]
Lennon, M.J.; Rigney, G.; Raymont, V.; Sachdev, P. Genetic Therapies for Alzheimer’s Disease: A Scoping Review. J. Alzheimers Dis., 2021, 84(2), 491-504.
[http://dx.doi.org/10.3233/JAD-215145] [PMID: 34569966]
[57]
Rafii, M.S.; Baumann, T.L.; Bakay, R.A.E.; Ostrove, J.M.; Siffert, J.; Fleisher, A.S.; Herzog, C.D.; Barba, D.; Pay, M.; Salmon, D.P.; Chu, Y.; Kordower, J.H.; Bishop, K.; Keator, D.; Potkin, S.; Bartus, R.T. A phase1 study of stereotactic gene delivery of AAV2-NGF for Alzheimer’s disease. Alzheimers Dement., 2014, 10(5), 571-581.
[http://dx.doi.org/10.1016/j.jalz.2013.09.004] [PMID: 24411134]
[58]
Garbuzova-Davis, S.; Willing, A.E.; Saporta, S.; Justen, E.B.; Misiuta, I.E.; Dellis, J.; Sanberg, P.R. Multiple transplants of hNT cells into the spinal cord of SOD1 mouse model of familial amyotrophic lateral sclerosis. Amyotroph. Lateral Scler., 2006, 7(4), 227-232.
[http://dx.doi.org/10.1080/17482960600864470] [PMID: 17127560]
[59]
Marcuzzo, S.; Isaia, D.; Bonanno, S.; Malacarne, C.; Cavalcante, P.; Zacheo, A.; Laquintana, V.; Denora, N.; Sanavio, B.; Salvati, E.; Andreozzi, P.; Stellacci, F.; Krol, S.; Mellado-López, M.; Mantegazza, R.; Moreno-Manzano, V.; Bernasconi, P. FM19G11-loaded gold nanoparticles enhance the proliferation and self-renewal of ependymal stem progenitor cells derived from ALS mice. Cells, 2019, 8(3), 279.
[http://dx.doi.org/10.3390/cells8030279] [PMID: 30909571]
[60]
Malysz-Cymborska, I.; Golubczyk, D.; Kalkowski, L.; Burczyk, A.; Janowski, M.; Holak, P.; Olbrych, K.; Sanford, J.; Stachowiak, K.; Milewska, K.; Gorecki, P.; Adamiak, Z.; Maksymowicz, W.; Walczak, P. MRI-guided intrathecal transplantation of hydrogel-embedded glial progenitors in large animals. Sci. Rep., 2018, 8(1), 16490.
[http://dx.doi.org/10.1038/s41598-018-34723-x] [PMID: 30405160]
[61]
Delivery of arctiin via ultrasound with microbubbles exerted positive effects on motor function in a transgenic mice model of amyotrophic lateral sclerosis. Proceedings of the 2021 IEEE International Ultrasonics Symposium (IUS)., Xi'an, China11-16 Sep2021.
[http://dx.doi.org/10.1109/IUS52206.2021.9593418]
[62]
Shively, S.B.; Priemer, D.S.; Stein, M.B.; Perl, D.P. Pathophysiology of traumatic brain injury, chronic traumatic encephalopathy, and neuropsychiatric clinical expression. Psychiatr. Clin. North Am., 2021, 44(3), 443-458.
[http://dx.doi.org/10.1016/j.psc.2021.04.003] [PMID: 34373000]
[63]
VanItallie, T.B. Traumatic brain injury (TBI) in collision sports: Possible mechanisms of transformation into chronic traumatic encephalopathy (CTE). Metabolism, 2019, 100, 153943.
[http://dx.doi.org/10.1016/j.metabol.2019.07.007] [PMID: 31610856]
[64]
Pierre, K.; Dyson, K.; Dagra, A.; Williams, E.; Porche, K.; Lucke-Wold, B. Chronic traumatic encephalopathy: Update on current clinical diagnosis and management. Biomedicines, 2021, 9(4), 415.
[http://dx.doi.org/10.3390/biomedicines9040415] [PMID: 33921385]
[65]
Alosco, M.L.; Mariani, M.L.; Adler, C.H.; Balcer, L.J.; Bernick, C.; Au, R.; Banks, S.J.; Barr, W.B.; Bouix, S.; Cantu, R.C.; Coleman, M.J.; Dodick, D.W.; Farrer, L.A.; Geda, Y.E.; Katz, D.I.; Koerte, I.K.; Kowall, N.W.; Lin, A.P.; Marcus, D.S.; Marek, K.L.; McClean, M.D.; McKee, A.C.; Mez, J.; Palmisano, J.N.; Peskind, E.R.; Tripodis, Y.; Turner, R.W., II; Wethe, J.V.; Cummings, J.L.; Reiman, E.M.; Shenton, M.E.; Stern, R.A.; Adler, C.H.; Alosco, M.L.; Au, R.; Balcer, L.; Banks, S.; Barr, W.; Bernick, C.; Bouix, S.; Cantu, R.C.; Chen, K.; Coleman, M.J.; Cummings, J.L.; Dodick, D.W.; Farrer, L.; Fitzsimmons, J.; Geda, Y.; Goldberg, J.; Helm, R.; Johnson, K.A.; Katz, D.I.; Kirov, I.; Koerte, I.K.; Kowall, N.; Lin, A.P.; Lui, Y.; Marcus, D.S.; Marek, K.L.; Mariani, M.; Marmar, C.; McClean, M.; McKee, A.C.; Mez, J.; Miller, J.; Palmisano, J.N.; Pasternak, O.; Peskind, E.R.; Protas, H.; Reiman, E.; Ritter, A.; Shenton, M.E.; Stern, R.A.; Su, Y.; Tripodis, Y.; Turner, R.W.; Weller, J.; Wethe, J.V. Developing methods to detect and diagnose chronic traumatic encephalopathy during life: Rationale, design, and methodology for the DIAGNOSE CTE Research Project. Alzheimers Res. Ther., 2021, 13(1), 136.
[http://dx.doi.org/10.1186/s13195-021-00872-x] [PMID: 34384490]
[66]
Mez, J.; Daneshvar, D.H.; Kiernan, P.T.; Abdolmohammadi, B.; Alvarez, V.E.; Huber, B.R.; Alosco, M.L.; Solomon, T.M.; Nowinski, C.J.; McHale, L.; Cormier, K.A.; Kubilus, C.A.; Martin, B.M.; Murphy, L.; Baugh, C.M.; Montenigro, P.H.; Chaisson, C.E.; Tripodis, Y.; Kowall, N.W.; Weuve, J.; McClean, M.D.; Cantu, R.C.; Goldstein, L.E.; Katz, D.I.; Stern, R.A.; Stein, T.D.; McKee, A.C. Clinicopathological evaluation of chronic traumatic encephalopathy in players of american football. JAMA, 2017, 318(4), 360-370.
[http://dx.doi.org/10.1001/jama.2017.8334] [PMID: 28742910]
[67]
Breen, P.W.; Krishnan, V. Recent preclinical insights into the treatment of chronic traumatic encephalopathy. Front. Neurosci., 2020, 14, 616.
[http://dx.doi.org/10.3389/fnins.2020.00616] [PMID: 32774238]
[68]
McKee, A.C.; Stein, T.D.; Kiernan, P.T.; Alvarez, V.E. The neuropathology of chronic traumatic encephalopathy. Brain Pathol., 2015, 25(3), 350-364.
[http://dx.doi.org/10.1111/bpa.12248] [PMID: 25904048]
[69]
Albayram, O.; Kondo, A.; Mannix, R.; Smith, C.; Tsai, C.Y.; Li, C.; Herbert, M.K.; Qiu, J.; Monuteaux, M.; Driver, J.; Yan, S.; Gormley, W.; Puccio, A.M.; Okonkwo, D.O.; Lucke-Wold, B.; Bailes, J.; Meehan, W.; Zeidel, M.; Lu, K.P.; Zhou, X.Z. Cis P-tau is induced in clinical and preclinical brain injury and contributes to post-injury sequelae. Nat. Commun., 2017, 8(1), 1000.
[http://dx.doi.org/10.1038/s41467-017-01068-4] [PMID: 29042562]
[70]
Brenza, T.M.; Ghaisas, S.; Ramirez, J.E.V.; Harischandra, D.; Anantharam, V.; Kalyanaraman, B.; Kanthasamy, A.G.; Narasimhan, B. Neuronal protection against oxidative insult by polyanhydride nanoparticle-based mitochondria-targeted antioxidant therapy. Nanomedicine, 2017, 13(3), 809-820.
[http://dx.doi.org/10.1016/j.nano.2016.10.004] [PMID: 27771430]
[71]
Vaswani, P.A.; Tropea, T.F.; Dahodwala, N. Overcoming barriers to parkinson disease trial participation: Increasing diversity and novel designs for recruitment and retention. Neurotherapeutics, 2020, 17(4), 1724-1735.
[http://dx.doi.org/10.1007/s13311-020-00960-0] [PMID: 33150545]
[72]
Mantri, S.; Fullard, M.E.; Beck, J.; Willis, A.W. State-level prevalence, health service use, and spending vary widely among Medicare beneficiaries with Parkinson disease. NPJ Parkinsons Dis., 2019, 5(1), 1.
[http://dx.doi.org/10.1038/s41531-019-0074-8] [PMID: 30701188]
[73]
Watson, J.L.; Ryan, L.; Silverberg, N.; Cahan, V.; Bernard, M.A. Obstacles and opportunities in Alzheimer’s clinical trial recruitment. Health Aff., 2014, 33(4), 574-579.
[http://dx.doi.org/10.1377/hlthaff.2013.1314] [PMID: 24711317]
[74]
Rollin-Sillaire, A.; Breuilh, L.; Salleron, J.; Bombois, S.; Cassagnaud, P.; Deramecourt, V.; Mackowiak, M.A.; Pasquier, F. Reasons that prevent the inclusion of Alzheimer’s disease patients in clinical trials. Br. J. Clin. Pharmacol., 2013, 75(4), 1089-1097.
[http://dx.doi.org/10.1111/j.1365-2125.2012.04423.x] [PMID: 22891847]
[75]
Dana, G.P. Key Barriers for Clinical Trials for Alzheimer’s Disease; Shaeffer Center for Health Policy and Economics: University of Southern California., 2020.
[76]
Raman, R.; Aisen, P.S.; Carillo, M.C.; Detke, M.; Grill, J.D.; Okonkwo, O.C.; Rivera-Mindt, M.; Sabbagh, M.; Vellas, B.; Weiner, M.; Sperling, R. Tackling a major deficiency of diversity in alzheimer’s disease therapeutic trials: An CTAD task force report. J. Prev. Alzheimers Dis., 2022, 9(3), 388-392.
[PMID: 35841239]
[77]
Institute of Medicine (US) Forum on Drug Discovery D, and Translation. Transforming Clinical Research in the United States: Challenges and Opportunities: Workshop Summary; National Academies Press: Washington (DC), 2010.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy