摘要
多项研究表明,T细胞在阿尔茨海默病发病机制中发挥着重要作用。鉴于免疫疗法在癌症和多种疾病中的成功应用,T细胞修饰疗法成为开发阿尔茨海默病和神经退行性疾病新疗法的一种有吸引力的方式。然而,这些研究大多涉及外周T细胞反应,而在人类受试者和相关动物模型中,记录T细胞浸润与阿尔茨海默病病理标志物(即淀粉样斑块和神经原纤维角)相关的直接病理证据很少,充其量只是初步的。在这里,我们简要总结了与T细胞浸润直接对应的可用病理数据,批判性地分析了当前的知识差距,并为未来的研究提出了一些关键建议。
关键词: T淋巴细胞,阿尔茨海默病,神经病理学,T细胞修饰治疗,基于免疫的治疗,神经退行性疾病。
[1]
Patel, U.; Abernathy, J.; Savani, B.N.; Oluwole, O.; Sengsayadeth, S.; Dholaria, B. CAR T cell therapy in solid tumors: A review of current clinical trials. eJHaem, 2022, 3(S1)(Suppl. 1), 24-31.
[http://dx.doi.org/10.1002/jha2.356] [PMID: 35844304]
[http://dx.doi.org/10.1002/jha2.356] [PMID: 35844304]
[2]
Solomon, G.E. T-cell agents in the treatment of rheumatoid arthritis. Bull. NYU Hosp. Jt. Dis., 2010, 68(3), 162-165.
[PMID: 20969545]
[PMID: 20969545]
[3]
Dai, L.; Shen, Y. Insights into T-cell dysfunction in Alzheimer’s disease. Aging Cell, 2021, 20(12), e13511.
[http://dx.doi.org/10.1111/acel.13511] [PMID: 34725916]
[http://dx.doi.org/10.1111/acel.13511] [PMID: 34725916]
[4]
DeMaio, A.; Mehrotra, S.; Sambamurti, K.; Husain, S. The role of the adaptive immune system and T cell dysfunction in neurodegenerative diseases. J. Neuroinflammation, 2022, 19(1), 251.
[http://dx.doi.org/10.1186/s12974-022-02605-9] [PMID: 36209107]
[http://dx.doi.org/10.1186/s12974-022-02605-9] [PMID: 36209107]
[5]
Huang, B.; Zhenxin, Y.; Chen, S.; Tan, Z.; Zong, Z.; Zhang, H.; Xiong, X. The innate and adaptive immune cells in Alzheimer’s and Parkinson’s diseases. Oxid. Med. Cell. Longev., 2022, 2022, 1-12.
[http://dx.doi.org/10.1155/2022/1315248] [PMID: 36211819]
[http://dx.doi.org/10.1155/2022/1315248] [PMID: 36211819]
[6]
Chen, Y.; Colonna, M. Spontaneous and induced adaptive immune responses in Alzheimer’s disease: New insights into old observations. Curr. Opin. Immunol., 2022, 77, 102233.
[http://dx.doi.org/10.1016/j.coi.2022.102233] [PMID: 35839620]
[http://dx.doi.org/10.1016/j.coi.2022.102233] [PMID: 35839620]
[7]
Togo, T.; Akiyama, H.; Iseki, E.; Kondo, H.; Ikeda, K.; Kato, M.; Oda, T.; Tsuchiya, K.; Kosaka, K. Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. J. Neuroimmunol., 2002, 124(1-2), 83-92.
[http://dx.doi.org/10.1016/S0165-5728(01)00496-9] [PMID: 11958825]
[http://dx.doi.org/10.1016/S0165-5728(01)00496-9] [PMID: 11958825]
[8]
Merlini, M.; Kirabali, T.; Kulic, L.; Nitsch, R.M.; Ferretti, M.T. Extravascular CD3+ T cells in brains of Alzheimer disease patients correlate with tau but not with amyloid pathology: An immunohistochemical study. Neurodegener. Dis., 2018, 18(1), 49-56.
[http://dx.doi.org/10.1159/000486200] [PMID: 29402847]
[http://dx.doi.org/10.1159/000486200] [PMID: 29402847]
[9]
Unger, M.S.; Li, E.; Scharnagl, L.; Poupardin, R.; Altendorfer, B.; Mrowetz, H.; Hutter-Paier, B.; Weiger, T.M.; Heneka, M.T.; Attems, J.; Aigner, L. CD8+ T-cells infiltrate Alzheimer’s disease brains and regulate neuronal- and synapse-related gene expression in APP-PS1 transgenic mice. Brain Behav. Immun., 2020, 89, 67-86.
[http://dx.doi.org/10.1016/j.bbi.2020.05.070] [PMID: 32479993]
[http://dx.doi.org/10.1016/j.bbi.2020.05.070] [PMID: 32479993]
[10]
Laurent, C.; Dorothée, G.; Hunot, S.; Martin, E.; Monnet, Y.; Duchamp, M.; Dong, Y.; Légeron, F.P.; Leboucher, A.; Burnouf, S.; Faivre, E.; Carvalho, K.; Caillierez, R.; Zommer, N.; Demeyer, D.; Jouy, N.; Sazdovitch, V.; Schraen-Maschke, S.; Delarasse, C.; Buée, L.; Blum, D. Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain, 2017, 140(1), 184-200.
[http://dx.doi.org/10.1093/brain/aww270] [PMID: 27818384]
[http://dx.doi.org/10.1093/brain/aww270] [PMID: 27818384]
[11]
Moreno-Valladares, M.; Silva, T.M.; Garcés, J.P.; Saenz-Antoñanzas, A.; Moreno-Cugnon, L.; Álvarez-Satta, M.; Matheu, A. CD8+ T cells are present at low levels in the white matter with physiological and pathological aging. Aging, 2020, 12(19), 18928-18941.
[http://dx.doi.org/10.18632/aging.104043] [PMID: 33049712]
[http://dx.doi.org/10.18632/aging.104043] [PMID: 33049712]
[12]
Batterman, K.V.; Cabrera, P.E.; Moore, T.L.; Rosene, D.L. T cells actively infiltrate the white matter of the aging monkey brain in relation to increased microglial reactivity and cognitive decline. Front. Immunol., 2021, 12, 607691.
[http://dx.doi.org/10.3389/fimmu.2021.607691] [PMID: 33664743]
[http://dx.doi.org/10.3389/fimmu.2021.607691] [PMID: 33664743]
[13]
Sweeney, M.D.; Ayyadurai, S.; Zlokovic, B.V. Pericytes of the neurovascular unit: Key functions and signaling pathways. Nat. Neurosci., 2016, 19(6), 771-783.
[http://dx.doi.org/10.1038/nn.4288] [PMID: 27227366]
[http://dx.doi.org/10.1038/nn.4288] [PMID: 27227366]
[14]
Berger, T.; Weerth, S.; Kojima, K.; Linington, C.; Wekerle, H.; Lassmann, H. Experimental autoimmune encephalomyelitis: The antigen specificity of T lymphocytes determines the topography of lesions in the central and peripheral nervous system. Lab. Invest., 1997, 76(3), 355-364.
[PMID: 9121118]
[PMID: 9121118]
[15]
Rogers, J.; Luber-Narod, J.; Styren, S.D.; Civin, W.H. Expression of immune system-associated antigens by cells of the human central nervous system: Relationship to the pathology of Alzheimer’s disease. Neurobiol. Aging, 1988, 9(4), 339-349.
[http://dx.doi.org/10.1016/S0197-4580(88)80079-4] [PMID: 3263583]
[http://dx.doi.org/10.1016/S0197-4580(88)80079-4] [PMID: 3263583]
[16]
Unger, M.S.; Marschallinger, J.; Kaindl, J.; Klein, B.; Johnson, M.; Khundakar, A.A.; Roßner, S.; Heneka, M.T.; Couillard-Despres, S.; Rockenstein, E.; Masliah, E.; Attems, J.; Aigner, L. Doublecortin expression in CD8+ T-cells and microglia at sites of amyloid-β plaques: A potential role in shaping plaque pathology? Alzheimers Dement., 2018, 14(8), 1022-1037.
[http://dx.doi.org/10.1016/j.jalz.2018.02.017] [PMID: 29630865]
[http://dx.doi.org/10.1016/j.jalz.2018.02.017] [PMID: 29630865]
[17]
Itagaki, S.; McGeer, P.L.; Akiyama, H. Presence of T-cytotoxic suppressor and leucocyte common antigen positive cells in Alzheimer’s disease brain tissue. Neurosci. Lett., 1988, 91(3), 259-264.
[http://dx.doi.org/10.1016/0304-3940(88)90690-8] [PMID: 2972943]
[http://dx.doi.org/10.1016/0304-3940(88)90690-8] [PMID: 2972943]
[18]
Yan, P.; Bero, A.W.; Cirrito, J.R.; Xiao, Q.; Hu, X.; Wang, Y.; Gonzales, E.; Holtzman, D.M.; Lee, J.M. Characterizing the appearance and growth of amyloid plaques in APP/PS1 mice. J. Neurosci., 2009, 29(34), 10706-10714.
[http://dx.doi.org/10.1523/JNEUROSCI.2637-09.2009] [PMID: 19710322]
[http://dx.doi.org/10.1523/JNEUROSCI.2637-09.2009] [PMID: 19710322]
[19]
Radde, R.; Bolmont, T.; Kaeser, S.A.; Coomaraswamy, J.; Lindau, D.; Stoltze, L.; Calhoun, M.E.; Jäggi, F.; Wolburg, H.; Gengler, S.; Haass, C.; Ghetti, B.; Czech, C.; Hölscher, C.; Mathews, P.M.; Jucker, M. Aβ42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep., 2006, 7(9), 940-946.
[http://dx.doi.org/10.1038/sj.embor.7400784] [PMID: 16906128]
[http://dx.doi.org/10.1038/sj.embor.7400784] [PMID: 16906128]
[20]
Ferretti, M.T.; Merlini, M.; Späni, C.; Gericke, C.; Schweizer, N.; Enzmann, G.; Engelhardt, B.; Kulic, L.; Suter, T.; Nitsch, R.M. T-cell brain infiltration and immature antigen-presenting cells in transgenic models of Alzheimer’s disease-like cerebral amyloidosis. Brain Behav. Immun., 2016, 54, 211-225.
[http://dx.doi.org/10.1016/j.bbi.2016.02.009] [PMID: 26872418]
[http://dx.doi.org/10.1016/j.bbi.2016.02.009] [PMID: 26872418]
[21]
Browne, T.C.; McQuillan, K.; McManus, R.M.; O’Reilly, J.A.; Mills, K.H.G.; Lynch, M.A. IFN-γ Production by amyloid β-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer’s disease. J. Immunol., 2013, 190(5), 2241-2251.
[http://dx.doi.org/10.4049/jimmunol.1200947] [PMID: 23365075]
[http://dx.doi.org/10.4049/jimmunol.1200947] [PMID: 23365075]
[22]
Chen, X.; Firulyova, M.; Manis, M.; Herz, J.; Smirnov, I.; Aladyeva, E.; Wang, C.; Bao, X.; Finn, M.B.; Hu, H.; Shchukina, I.; Kim, M.W.; Yuede, C.M.; Kipnis, J.; Artyomov, M.N.; Ulrich, J.D.; Holtzman, D.M. Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy. Nature, 2023, 615(7953), 668-677.
[http://dx.doi.org/10.1038/s41586-023-05788-0] [PMID: 36890231]
[http://dx.doi.org/10.1038/s41586-023-05788-0] [PMID: 36890231]
[23]
Thal, D.R.; Rüb, U.; Orantes, M.; Braak, H. Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology, 2002, 58(12), 1791-1800.
[http://dx.doi.org/10.1212/WNL.58.12.1791] [PMID: 12084879]
[http://dx.doi.org/10.1212/WNL.58.12.1791] [PMID: 12084879]
[24]
Braak, H.; Alafuzoff, I.; Arzberger, T.; Kretzschmar, H.; Del Tredici, K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol., 2006, 112(4), 389-404.
[http://dx.doi.org/10.1007/s00401-006-0127-z] [PMID: 16906426]
[http://dx.doi.org/10.1007/s00401-006-0127-z] [PMID: 16906426]
[25]
Urban, S.L.; Jensen, I.J.; Shan, Q.; Pewe, L.L.; Xue, H.H.; Badovinac, V.P.; Harty, J.T. Peripherally induced brain tissue–resident memory CD8+ T cells mediate protection against CNS infection. Nat. Immunol., 2020, 21(8), 938-949.
[http://dx.doi.org/10.1038/s41590-020-0711-8] [PMID: 32572242]
[http://dx.doi.org/10.1038/s41590-020-0711-8] [PMID: 32572242]
[26]
Smolders, J.; Heutinck, K.M.; Fransen, N.L.; Remmerswaal, E.B.M.; Hombrink, P.; ten Berge, I.J.M.; van Lier, R.A.W.; Huitinga, I.; Hamann, J. Tissue-resident memory T cells populate the human brain. Nat. Commun., 2018, 9(1), 4593.
[http://dx.doi.org/10.1038/s41467-018-07053-9] [PMID: 30389931]
[http://dx.doi.org/10.1038/s41467-018-07053-9] [PMID: 30389931]
[27]
Crary, J.F.; Trojanowski, J.Q.; Schneider, J.A.; Abisambra, J.F.; Abner, E.L.; Alafuzoff, I.; Arnold, S.E.; Attems, J.; Beach, T.G.; Bigio, E.H.; Cairns, N.J.; Dickson, D.W.; Gearing, M.; Grinberg, L.T.; Hof, P.R.; Hyman, B.T.; Jellinger, K.; Jicha, G.A.; Kovacs, G.G.; Knopman, D.S.; Kofler, J.; Kukull, W.A.; Mackenzie, I.R.; Masliah, E.; McKee, A.; Montine, T.J.; Murray, M.E.; Neltner, J.H.; Santa-Maria, I.; Seeley, W.W.; Serrano-Pozo, A.; Shelanski, M.L.; Stein, T.; Takao, M.; Thal, D.R.; Toledo, J.B.; Troncoso, J.C.; Vonsattel, J.P.; White, C.L., III; Wisniewski, T.; Woltjer, R.L.; Yamada, M.; Nelson, P.T. Primary age-related tauopathy (PART): A common pathology associated with human aging. Acta Neuropathol., 2014, 128(6), 755-766.
[http://dx.doi.org/10.1007/s00401-014-1349-0] [PMID: 25348064]
[http://dx.doi.org/10.1007/s00401-014-1349-0] [PMID: 25348064]
[28]
Gate, D.; Tapp, E.; Leventhal, O.; Shahid, M.; Nonninger, T.J.; Yang, A.C.; Strempfl, K.; Unger, M.S.; Fehlmann, T.; Oh, H.; Channappa, D.; Henderson, V.W.; Keller, A.; Aigner, L.; Galasko, D.R.; Davis, M.M.; Poston, K.L.; Wyss-Coray, T. CD4 + T cells contribute to neurodegeneration in Lewy body dementia. Science, 2021, 374(6569), 868-874.
[http://dx.doi.org/10.1126/science.abf7266] [PMID: 34648304]
[http://dx.doi.org/10.1126/science.abf7266] [PMID: 34648304]
[29]
Mihaescu, A.S.; Valli, M.; Uribe, C.; Diez-Cirarda, M.; Masellis, M.; Graff-Guerrero, A.; Strafella, A.P. Beta amyloid deposition and cognitive decline in Parkinson’s disease: A study of the PPMI cohort. Mol. Brain, 2022, 15(1), 79.
[http://dx.doi.org/10.1186/s13041-022-00964-1] [PMID: 36100909]
[http://dx.doi.org/10.1186/s13041-022-00964-1] [PMID: 36100909]
[30]
Dugger, B.N.; Serrano, G.E.; Sue, L.I.; Walker, D.G.; Adler, C.H.; Shill, H.A.; Sabbagh, M.N.; Caviness, J.N.; Hidalgo, J.; Saxon-LaBelle, M.; Chiarolanza, G.; Mariner, M.; Henry-Watson, J.; Beach, T.G. Presence of striatal amyloid plaques in Parkinson’s disease dementia predicts concomitant Alzheimer’s disease: Usefulness for amyloid imaging. J. Parkinsons Dis., 2012, 2(1), 57-65.
[http://dx.doi.org/10.3233/JPD-2012-11073] [PMID: 22924088]
[http://dx.doi.org/10.3233/JPD-2012-11073] [PMID: 22924088]
[31]
Sarasa, M.; Pesini, P. Natural non-trasgenic animal models for research in Alzheimer’s disease. Curr. Alzheimer Res., 2009, 6(2), 171-178.
[http://dx.doi.org/10.2174/156720509787602834] [PMID: 19355852]
[http://dx.doi.org/10.2174/156720509787602834] [PMID: 19355852]
[32]
Sparks, D.L.; Schreurs, B.G. Trace amounts of copper in water induce β-amyloid plaques and learning deficits in a rabbit model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2003, 100(19), 11065-11069.
[http://dx.doi.org/10.1073/pnas.1832769100] [PMID: 12920183]
[http://dx.doi.org/10.1073/pnas.1832769100] [PMID: 12920183]
[33]
Weiss, C.; Bertolino, N.; Procissi, D.; Aleppo, G.; Smith, Q.C.; Viola, K.L.; Bartley, S.C.; Klein, W.L.; Disterhoft, J.F. Diet-induced Alzheimer’s-like syndrome in the rabbit. Alzheimers Dement., 2022, 8(1), e12241.
[http://dx.doi.org/10.1002/trc2.12241] [PMID: 35128030]
[http://dx.doi.org/10.1002/trc2.12241] [PMID: 35128030]
[34]
Essayan-Perez, S.; Zhou, B.; Nabet, A.M.; Wernig, M.; Huang, Y.W.A. Modeling Alzheimer’s disease with human iPS cells: Advancements, lessons, and applications. Neurobiol. Dis., 2019, 130, 104503.
[http://dx.doi.org/10.1016/j.nbd.2019.104503] [PMID: 31202913]
[http://dx.doi.org/10.1016/j.nbd.2019.104503] [PMID: 31202913]
[35]
Altendorfer, B.; Unger, M.S.; Poupardin, R.; Hoog, A.; Asslaber, D.; Gratz, I.K.; Mrowetz, H.; Benedetti, A.; de Sousa, D.M.B.; Greil, R.; Egle, A.; Gate, D.; Wyss-Coray, T.; Aigner, L. Transcriptomic profiling identifies CD8+ T cells in the brain of aged and Alzheimer’s disease transgenic mice as tissue-resident memory T cells. J. Immunol., 2022, 209(7), 1272-1285.
[http://dx.doi.org/10.4049/jimmunol.2100737] [PMID: 36165202]
[http://dx.doi.org/10.4049/jimmunol.2100737] [PMID: 36165202]
[36]
Rodriques, S.G.; Stickels, R.R.; Goeva, A.; Martin, C.A.; Murray, E.; Vanderburg, C.R.; Welch, J.; Chen, L.M.; Chen, F.; Macosko, E.Z. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science, 2019, 363(6434), 1463-1467.
[http://dx.doi.org/10.1126/science.aaw1219] [PMID: 30923225]
[http://dx.doi.org/10.1126/science.aaw1219] [PMID: 30923225]
31
6