Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Body Fat Distribution Contributes to Defining the Relationship between Insulin Resistance and Obesity in Human Diseases

Author(s): María M. Adeva-Andany*, Alberto Domínguez-Montero, Lucía Adeva-Contreras, Carlos Fernández-Fernández, Natalia Carneiro-Freire and Manuel González-Lucán

Volume 20, Issue 5, 2024

Published on: 06 October, 2023

Article ID: e160823219824 Pages: 31

DOI: 10.2174/1573399820666230816111624

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

The risk for metabolic and cardiovascular complications of obesity is defined by body fat distribution rather than global adiposity. Unlike subcutaneous fat, visceral fat (including hepatic steatosis) reflects insulin resistance and predicts type 2 diabetes and cardiovascular disease. In humans, available evidence indicates that the ability to store triglycerides in the subcutaneous adipose tissue reflects enhanced insulin sensitivity. Prospective studies document an association between larger subcutaneous fat mass at baseline and reduced incidence of impaired glucose tolerance. Case-control studies reveal an association between genetic predisposition to insulin resistance and a lower amount of subcutaneous adipose tissue. Human peroxisome proliferator-activated receptorgamma (PPAR-γ) promotes subcutaneous adipocyte differentiation and subcutaneous fat deposition, improving insulin resistance and reducing visceral fat. Thiazolidinediones reproduce the effects of PPAR-γ activation and therefore increase the amount of subcutaneous fat while enhancing insulin sensitivity and reducing visceral fat. Partial or virtually complete lack of adipose tissue (lipodystrophy) is associated with insulin resistance and its clinical manifestations, including essential hypertension, hypertriglyceridemia, reduced HDL-c, type 2 diabetes, cardiovascular disease, and kidney disease. Patients with Prader Willi syndrome manifest severe subcutaneous obesity without insulin resistance. The impaired ability to accumulate fat in the subcutaneous adipose tissue may be due to deficient triglyceride synthesis, inadequate formation of lipid droplets, or defective adipocyte differentiation. Lean and obese humans develop insulin resistance when the capacity to store fat in the subcutaneous adipose tissue is exhausted and deposition of triglycerides is no longer attainable at that location. Existing adipocytes become large and reflect the presence of insulin resistance.

Keywords: Bardet Biedl syndrome, insulin sensitivity , lipodystrophy, cardiovascular disease, obesity, visceral fat.

[1]
Akazawa S, Sun F, Ito M, Kawasaki E, Eguchi K. Efficacy of troglitazone on body fat distribution in type 2 diabetes. Diabetes Care 2000; 23(8): 1067-71.
[http://dx.doi.org/10.2337/diacare.23.8.1067 ] [PMID: 10937499]
[2]
McLaughlin T, Lamendola C, Liu A, Abbasi F. Preferential fat deposition in subcutaneous versus visceral depots is associated with insulin sensitivity. J Clin Endocrinol Metab 2011; 96(11): E1756-60.
[http://dx.doi.org/10.1210/jc.2011-0615 ] [PMID: 21865361]
[3]
Lotta LA, Gulati P, Day FR, et al. Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nat Genet 2017; 49(1): 17-26.
[http://dx.doi.org/10.1038/ng.3714 ] [PMID: 27841877]
[4]
Mtintsilana A, Micklesfield LK, Chorell E, Olsson T, Goedecke JH. Fat redistribution and accumulation of visceral adipose tissue predicts type 2 diabetes risk in middle-aged black South African women: A 13-year longitudinal study. Nutr Diabetes 2019; 9(1): 12.
[http://dx.doi.org/10.1038/s41387-019-0079-8 ] [PMID: 30918247]
[5]
Barroso I, Gurnell M, Crowley VEF, et al. Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 1999; 402(6764): 880-3.
[http://dx.doi.org/10.1038/47254 ] [PMID: 10622252]
[6]
Agarwal AK, Garg A. A novel heterozygous mutation in peroxisome proliferator-activated receptor-gamma gene in a patient with familial partial lipodystrophy. J Clin Endocrinol Metab 2002; 87(1): 408-11.
[http://dx.doi.org/10.1210/jcem.87.1.8290 ] [PMID: 11788685]
[7]
Hegele RA, Cao H, Frankowski C, Mathews ST, Leff T. PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy. Diabetes 2002; 51(12): 3586-90.
[http://dx.doi.org/10.2337/diabetes.51.12.3586 ] [PMID: 12453919]
[8]
Savage DB, Tan GD, Acerini CL, et al. Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-gamma. Diabetes 2003; 52(4): 910-7.
[http://dx.doi.org/10.2337/diabetes.52.4.910 ] [PMID: 12663460]
[9]
Agostini M, Schoenmakers E, Mitchell C, et al. Non-DNA binding, dominant-negative, human PPARγ mutations cause lipodystrophic insulin resistance. Cell Metab 2006; 4(4): 303-11.
[http://dx.doi.org/10.1016/j.cmet.2006.09.003 ] [PMID: 17011503]
[10]
Campeau PM, Astapova O, Martins R, et al. Clinical and molecular characterization of a severe form of partial lipodystrophy expanding the phenotype of PPARγ deficiency. J Lipid Res 2012; 53(9): 1968-78.
[http://dx.doi.org/10.1194/jlr.P025437 ] [PMID: 22750678]
[11]
Mathieu-Costello O, Kong A, Ciaraldi TP, et al. Regulation of skeletal muscle morphology in type 2 diabetic subjects by troglitazone and metformin: Relationship to glucose disposal. Metabolism 2003; 52(5): 540-6.
[http://dx.doi.org/10.1053/meta.2002.50108 ] [PMID: 12759881]
[12]
Rasouli N, Raue U, Miles LM, et al. Pioglitazone improves insulin sensitivity through reduction in muscle lipid and redistribution of lipid into adipose tissue. Am J Physiol Endocrinol Metab 2005; 288(5): E930-4.
[http://dx.doi.org/10.1152/ajpendo.00522.2004 ] [PMID: 15632102]
[13]
Teranishi T, Ohara T, Maeda K, et al. Effects of pioglitazone and metformin on intracellular lipid content in liver and skeletal muscle of individuals with type 2 diabetes mellitus. Metabolism 2007; 56(10): 1418-24.
[http://dx.doi.org/10.1016/j.metabol.2007.06.005 ] [PMID: 17884455]
[14]
Bajaj M, Baig R, Suraamornkul S, et al. Effects of pioglitazone on intramyocellular fat metabolism in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2010; 95(4): 1916-23.
[http://dx.doi.org/10.1210/jc.2009-0911 ] [PMID: 20157197]
[15]
Kodama S, Kasuga M, Seki A, et al. Congenital generalized lipodystrophy with insulin-resistant diabetes. Eur J Pediatr 1978; 127(2): 111-9.
[http://dx.doi.org/10.1007/BF00445766 ] [PMID: 203464]
[16]
Tsukahara H, Kikuchi K, Kuzuya H, et al. Insulin resistance in a boy with congenital generalized lipodystrophy. Pediatr Res 1988; 24(6): 668-72.
[http://dx.doi.org/10.1203/00006450-198812000-00003 ] [PMID: 3060827]
[17]
Søvik O, Vestergaard H, Trygstad O, Pedersen O. Studies of insulin resistance in congenital generalized lipodystrophy. Acta Paediatr 1996; 85(s413): 29-38.
[http://dx.doi.org/10.1111/j.1651-2227.1996.tb14263.x ] [PMID: 8783770]
[18]
Garg A, Wilson R, Barnes R, et al. A gene for congenital generalized lipodystrophy maps to human chromosome 9q34. J Clin Endocrinol Metab 1999; 84(9): 3390-4.
[http://dx.doi.org/10.1210/jcem.84.9.6103 ] [PMID: 10487716]
[19]
Magré J, Delépine M, Khallouf E, et al. Identification of the gene altered in Berardinelli–Seip congenital lipodystrophy on chromosome 11q13. Nat Genet 2001; 28(4): 365-70.
[http://dx.doi.org/10.1038/ng585 ] [PMID: 11479539]
[20]
Agarwal AK, Arioglu E, de Almeida S, et al. AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet 2002; 31(1): 21-3.
[http://dx.doi.org/10.1038/ng880 ] [PMID: 11967537]
[21]
Petersen KF, Oral EA, Dufour S, et al. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J Clin Invest 2002; 109(10): 1345-50.
[http://dx.doi.org/10.1172/JCI0215001 ] [PMID: 12021250]
[22]
Javor ED, Moran SA, Young JR, et al. Proteinuric nephropathy in acquired and congenital generalized lipodystrophy: Baseline characteristics and course during recombinant leptin therapy. J Clin Endocrinol Metab 2004; 89(7): 3199-207.
[http://dx.doi.org/10.1210/jc.2003-032140 ] [PMID: 15240593]
[23]
Talebizadeh Z, Butler MG. Insulin resistance and obesity-related factors in Prader-Willi syndrome: Comparison with obese subjects. Clin Genet 2005; 67(3): 230-9.
[http://dx.doi.org/10.1111/j.1399-0004.2004.00392.x ] [PMID: 15691361]
[24]
Kennedy L, Bittel DC, Kibiryeva N, Kalra SP, Torto R, Butler MG. Circulating adiponectin levels, body composition and obesity-related variables in Prader–Willi syndrome: Comparison with obese subjects. Int J Obes 2006; 30(2): 382-7.
[http://dx.doi.org/10.1038/sj.ijo.0803115 ] [PMID: 16231029]
[25]
Krochik AG, Ozuna B, Torrado M, Chertkoff L, Mazza C. Characterization of alterations in carbohydrate metabolism in children with Prader-Willi syndrome. J Pediatr Endocrinol Metab 2006; 19(7): 911-8.
[http://dx.doi.org/10.1515/JPEM.2006.19.7.911 ] [PMID: 16995571]
[26]
Neeland IJ, Turer AT, Ayers CR, et al. Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults. JAMA 2012; 308(11): 1150-9.
[http://dx.doi.org/10.1001/2012.jama.11132 ] [PMID: 22990274]
[27]
Premanath M, Basavanagowdappa H, Mahesh M, Babu MS. Occurrence of diabetes mellitus in obese nondiabetic patients, with correlative analysis of visceral fat, fasting insulin, and insulin resistance: A 3-year follow-up study (mysore visceral adiposity in diabetes follow-up study). Indian J Endocrinol Metab 2017; 21(2): 308-15.
[http://dx.doi.org/10.4103/ijem.IJEM_418_16 ] [PMID: 28459031]
[28]
Wu J, Gong L, Li Q, et al. A novel visceral adiposity index for prediction of Type 2 diabetes and pre-diabetes in chinese adults: A 5-year prospective study. Sci Rep 2017; 7(1): 13784.
[http://dx.doi.org/10.1038/s41598-017-14251-w ] [PMID: 29062099]
[29]
Xia MF, Lin HD, Chen LY, et al. Association of visceral adiposity and its longitudinal increase with the risk of diabetes in Chinese adults: A prospective cohort study. Diabetes Metab Res Rev 2018; 34(7): e3048.
[http://dx.doi.org/10.1002/dmrr.3048 ] [PMID: 30035847]
[30]
Larsson B, Svärdsudd K, Welin L, Wilhelmsen L, Björntorp P, Tibblin G. Abdominal adipose tissue distribution, obesity, and risk of cardiovascular disease and death: 13 year follow up of participants in the study of men born in 1913. BMJ 1984; 288(6428): 1401-4.
[http://dx.doi.org/10.1136/bmj.288.6428.1401 ] [PMID: 6426576]
[31]
Lapidus L, Bengtsson C, Larsson B, Pennert K, Rybo E, Sjöström L. Distribution of adipose tissue and risk of cardiovascular disease and death: A 12 year follow up of participants in the population study of women in Gothenburg, Sweden. BMJ 1984; 289(6454): 1257-61.
[http://dx.doi.org/10.1136/bmj.289.6454.1257 ] [PMID: 6437507]
[32]
Ohlson LO, Larsson B, Svärdsudd K, et al. The influence of body fat distribution on the incidence of diabetes mellitus. 13.5 years of follow-up of the participants in the study of men born in 1913. Diabetes 1985; 34(10): 1055-8.
[http://dx.doi.org/10.2337/diab.34.10.1055 ] [PMID: 4043554]
[33]
Lundgren H, Bengtsson C, Blohme G, Lapidus L, Sjöström L. Adiposity and adipose tissue distribution in relation to incidence of diabetes in women: Results from a prospective population study in Gothenburg, Sweden. Int J Obes 1989; 13(4): 413-23.
[PMID: 2793297]
[34]
Olivo RE, Davenport CA, Diamantidis CJ, et al. Obesity and synergistic risk factors for chronic kidney disease in African American adults: The Jackson Heart Study. Nephrol Dial Transplant 2018; 33(6): 992-1001.
[http://dx.doi.org/10.1093/ndt/gfx230 ] [PMID: 28992354]
[35]
Weyer C, Foley JE, Bogardus C, Tataranni PA, Pratley RE. Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts Type II diabetes independent of insulin resistance. Diabetologia 2000; 43(12): 1498-506.
[http://dx.doi.org/10.1007/s001250051560 ] [PMID: 11151758]
[36]
Jansson PA, Pellmé F, Hammarstedt A, et al. A novel cellular marker of insulin resistance and early atherosclerosis in humans is related to impaired fat cell differentiation and low adiponectin. FASEB J 2003; 17(11): 1434-40.
[http://dx.doi.org/10.1096/fj.02-1132com ] [PMID: 12890697]
[37]
Hammarstedt A, Rotter Sopasakis V, Gogg S, Jansson PA, Smith U. Improved insulin sensitivity and adipose tissue dysregulation after short-term treatment with pioglitazone in non-diabetic, insulin-resistant subjects. Diabetologia 2005; 48(1): 96-104.
[http://dx.doi.org/10.1007/s00125-004-1612-3 ] [PMID: 15624096]
[38]
Lundgren M, Svensson M, Lindmark S, Renström F, Ruge T, Eriksson JW. Fat cell enlargement is an independent marker of insulin resistance and ‘hyperleptinaemia’. Diabetologia 2007; 50(3): 625-33.
[http://dx.doi.org/10.1007/s00125-006-0572-1 ] [PMID: 17216279]
[39]
Alligier M, Gabert L, Meugnier E, et al. Visceral fat accumulation during lipid overfeeding is related to subcutaneous adipose tissue characteristics in healthy men. J Clin Endocrinol Metab 2013; 98(2): 802-10.
[http://dx.doi.org/10.1210/jc.2012-3289 ] [PMID: 23284008]
[40]
McLaughlin T, Lamendola C, Coghlan N, et al. Subcutaneous adipose cell size and distribution: Relationship to insulin resistance and body fat. Obesity (Silver Spring) 2014; 22(3): 673-80.
[http://dx.doi.org/10.1002/oby.20209 ] [PMID: 23666871]
[41]
McLaughlin T, Craig C, Liu LF, et al. Adipose Cell Size and Regional Fat Deposition as Predictors of Metabolic Response to Overfeeding in Insulin-Resistant and Insulin-Sensitive Humans. Diabetes 2016; 65(5): 1245-54.
[http://dx.doi.org/10.2337/db15-1213 ] [PMID: 26884438]
[42]
Lönn M, Mehlig K, Bengtsson C, Lissner L. Adipocyte size predicts incidence of type 2 diabetes in women. FASEB J 2010; 24(1): 326-31.
[http://dx.doi.org/10.1096/fj.09-133058 ] [PMID: 19741173]
[43]
Chandalia M, Lin P, Seenivasan T, et al. Insulin resistance and body fat distribution in South Asian men compared to Caucasian men. PLoS One 2007; 2(8): e812.
[http://dx.doi.org/10.1371/journal.pone.0000812 ] [PMID: 17726542]
[44]
Geberhiwot T, Baig S, Obringer C, et al. Relative adipose tissue failure in alström syndrome drives obesity-induced insulin resistance. diabetes 2021; 70(2): 364-76.
[http://dx.doi.org/10.2337/db20-0647] [PMID: 32994277]
[45]
Vague J. The degree of masculine differentiation of obesities: A factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. Am J Clin Nutr 1956; 4(1): 20-34.
[http://dx.doi.org/10.1093/ajcn/4.1.20 ] [PMID: 13282851]
[46]
Kissebah AH, Vydelingum N, Murray R, et al. Relation of body fat distribution to metabolic complications of obesity. J Clin Endocrinol Metab 1982; 54(2): 254-60.
[http://dx.doi.org/10.1210/jcem-54-2-254 ] [PMID: 7033275]
[47]
Hartz A, Rupley DC Jr, Kalkhoff RD, Rimm AA. Relationship of obesity to diabetes: Influence of obesity level and body fat distribution. Prev Med 1983; 12(2): 351-7.
[http://dx.doi.org/10.1016/0091-7435(83)90244-X ] [PMID: 6878197]
[48]
Krotkiewski M, Björntorp P, Sjöström L, Smith U. Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J Clin Invest 1983; 72(3): 1150-62.
[http://dx.doi.org/10.1172/JCI111040 ] [PMID: 6350364]
[49]
Van Gaal LF, Vansant GA, De Leeuw IH. Upper body adiposity and the risk for atherosclerosis. J Am Coll Nutr 1989; 8(6): 504-14.
[http://dx.doi.org/10.1080/07315724.1989.10720320 ] [PMID: 2695550]
[50]
Fujioka S, Matsuzawa Y, Tokunaga K, et al. Improvement of glucose and lipid metabolism associated with selective reduction of intra-abdominal visceral fat in premenopausal women with visceral fat obesity. Int J Obes 1991; 15(12): 853-9.
[PMID: 1794928]
[51]
Matsuzawa Y, Shimomura I, Nakamura T, Keno Y, Kotani K, Tokunaga K. Pathophysiology and pathogenesis of visceral fat obesity. Obes Res 1995; 3(S2) (Suppl. 2): 187s-94s.
[http://dx.doi.org/10.1002/j.1550-8528.1995.tb00462.x ] [PMID: 8581775]
[52]
Yamashita S, Nakamura T, Shimomura L, et al. Insulin Resistance and Body Fat Distribution: Contribution of visceral fat accumulation to the development of insulin resistance and atherosclerosis. Diabetes Care 1996; 19(3): 287-91.
[http://dx.doi.org/10.2337/diacare.19.3.287 ] [PMID: 8742584]
[53]
Goldstone AP, Thomas EL, Brynes AE, et al. Visceral adipose tissue and metabolic complications of obesity are reduced in Prader-Willi syndrome female adults: Evidence for novel influences on body fat distribution. J Clin Endocrinol Metab 2001; 86(9): 4330-8.
[http://dx.doi.org/10.1210/jcem.86.9.7814 ] [PMID: 11549670]
[54]
Wajchenberg BL, Giannella-Neto D, da Silva ME, Santos RF. Depot-specific hormonal characteristics of subcutaneous and visceral adipose tissue and their relation to the metabolic syndrome. Horm Metab Res 2002; 34(11/12): 616-21.
[http://dx.doi.org/10.1055/s-2002-38256 ] [PMID: 12660870]
[55]
Nicklas BJ, Penninx BWJH, Ryan AS, Berman DM, Lynch NA, Dennis KE. Visceral adipose tissue cutoffs associated with metabolic risk factors for coronary heart disease in women. Diabetes Care 2003; 26(5): 1413-20.
[http://dx.doi.org/10.2337/diacare.26.5.1413 ] [PMID: 12716798]
[56]
Gastaldelli A, Cusi K, Pettiti M, et al. Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects. Gastroenterology 2007; 133(2): 496-506.
[http://dx.doi.org/10.1053/j.gastro.2007.04.068 ] [PMID: 17681171]
[57]
Umegaki H, Haimoto H, Ishikawa J, Kario K. Visceral fat contribution of insulin resistance in elderly people. J Am Geriatr Soc 2008; 56(7): 1373-5.
[http://dx.doi.org/10.1111/j.1532-5415.2008.01730.x ] [PMID: 18774980]
[58]
Usui C, Asaka M, Kawano H, et al. Visceral fat is a strong predictor of insulin resistance regardless of cardiorespiratory fitness in non-diabetic people. J Nutr Sci Vitaminol (Tokyo) 2010; 56(2): 109-16.
[http://dx.doi.org/10.3177/jnsv.56.109 ] [PMID: 20495292]
[59]
Philipsen A, Jørgensen ME, Vistisen D, et al. Associations between ultrasound measures of abdominal fat distribution and indices of glucose metabolism in a population at high risk of type 2 diabetes: The ADDITION-PRO study. PLoS One 2015; 10(4): e0123062.
[http://dx.doi.org/10.1371/journal.pone.0123062 ] [PMID: 25849815]
[60]
Jung SH, Ha KH, Kim DJ. Visceral Fat Mass Has Stronger Associations with Diabetes and Prediabetes than Other Anthropometric Obesity Indicators among Korean Adults. Yonsei Med J 2016; 57(3): 674-80.
[http://dx.doi.org/10.3349/ymj.2016.57.3.674 ] [PMID: 26996568]
[61]
Lee JJ, Pedley A, Hoffmann U, Massaro JM, Levy D, Long MT. Visceral and intrahepatic fat are associated with cardiometabolic risk factors above other ectopic fat depots: The Framingham Heart Study. Am J Med 2018; 131(6): 684-692.e12.
[http://dx.doi.org/10.1016/j.amjmed.2018.02.002 ] [PMID: 29518370]
[62]
Zhang M, Hu T, Zhang S, Zhou L. Associations of different adipose tissue depots with insulin resistance: A Systematic Review and Meta-analysis of Observational Studies. Sci Rep 2015; 5(1): 18495.
[http://dx.doi.org/10.1038/srep18495 ] [PMID: 26686961]
[63]
Gaal LV, Rillaerts E, Creten W, Leeuw ID. Relationship of body fat distribution pattern to atherogenic risk factors in NIDDM. Preliminary results. Diabetes Care 1988; 11(2): 103-6.
[http://dx.doi.org/10.2337/diacare.11.2.103 ] [PMID: 3383730]
[64]
Abate N, Garg A, Peshock RM, Stray-Gundersen J, Adams-Huet B, Grundy SM. Relationship of generalized and regional adiposity to insulin sensitivity in men with NIDDM. Diabetes 1996; 45(12): 1684-93.
[http://dx.doi.org/10.2337/diab.45.12.1684 ] [PMID: 8922352]
[65]
Banerji MA, Buckley MC, Chaiken RL, Gordon D, Lebovitz HE, Kral JG. Liver fat, serum triglycerides and visceral adipose tissue in insulin-sensitive and insulin-resistant black men with NIDDM. Int J Obes Relat Metab Disord 1995; 19(12): 846-50.
[PMID: 8963350]
[66]
Ryysy L, Häkkinen AM, Goto T, et al. Hepatic fat content and insulin action on free fatty acids and glucose metabolism rather than insulin absorption are associated with insulin requirements during insulin therapy in type 2 diabetic patients. Diabetes 2000; 49(5): 749-58.
[http://dx.doi.org/10.2337/diabetes.49.5.749 ] [PMID: 10905483]
[67]
Kotronen A, Juurinen L, Tiikkainen M, Vehkavaara S, Yki-Järvinen H. Increased liver fat, impaired insulin clearance, and hepatic and adipose tissue insulin resistance in type 2 diabetes. Gastroenterology 2008; 135(1): 122-30.
[http://dx.doi.org/10.1053/j.gastro.2008.03.021 ] [PMID: 18474251]
[68]
Goto T, Onuma T, Takebe K, Kral JG. The influence of fatty liver on insulin clearance and insulin resistance in non-diabetic Japanese subjects. Int J Obes Relat Metab Disord 1995; 19(12): 841-5.
[PMID: 8963349]
[69]
Sookoian S, Pirola CJ. Systematic review with meta-analysis: Risk factors for non-alcoholic fatty liver disease suggest a shared altered metabolic and cardiovascular profile between lean and obese patients. Aliment Pharmacol Ther 2017; 46(2): 85-95.
[http://dx.doi.org/10.1111/apt.14112 ] [PMID: 28464369]
[70]
Ballestri S, Zona S, Targher G, et al. Nonalcoholic fatty liver disease is associated with an almost twofold increased risk of incident type 2 diabetes and metabolic syndrome. Evidence from a systematic review and meta-analysis. J Gastroenterol Hepatol 2016; 31(5): 936-44.
[http://dx.doi.org/10.1111/jgh.13264 ] [PMID: 26667191]
[71]
Alexander M, Loomis AK, van der Lei J, et al. Non-alcoholic fatty liver disease and risk of incident acute myocardial infarction and stroke: Findings from matched cohort study of 18 million European adults. BMJ 2019; 367: l5367.
[http://dx.doi.org/10.1136/bmj.l5367 ] [PMID: 31594780]
[72]
Ma W, Wu W, Wen W, et al. Association of NAFLD with cardiovascular disease and all-cause mortality: A large-scale prospective cohort study based on UK Biobank. Ther Adv Chronic Dis 2022; 13
[http://dx.doi.org/10.1177/20406223221122478 ] [PMID: 36159632]
[73]
Heni M, Machann J, Staiger H, et al. Pancreatic fat is negatively associated with insulin secretion in individuals with impaired fasting glucose and/or impaired glucose tolerance: A nuclear magnetic resonance study. Diabetes Metab Res Rev 2010; 26(3): 200-5.
[http://dx.doi.org/10.1002/dmrr.1073 ] [PMID: 20225188]
[74]
Lu T, Wang Y, Dou T, Xue B, Tan Y, Yang J. Pancreatic fat content is associated with β-cell function and insulin resistance in Chinese type 2 diabetes subjects. Endocr J 2019; 66(3): 265-70.
[http://dx.doi.org/10.1507/endocrj.EJ18-0436 ] [PMID: 30700664]
[75]
Li YX, Sang YQ, Sun Y, et al. Pancreatic fat is not significantly correlated with β-cell dysfunction in patients with new-onset Type 2 diabetes mellitus using quantitative computed tomography. Int J Med Sci 2020; 17(12): 1673-82.
[http://dx.doi.org/10.7150/ijms.46395 ] [PMID: 32714070]
[76]
Staaf J, Labmayr V, Paulmichl K, et al. Pancreatic fat Is associated with metabolic syndrome and visceral fat but Not beta-cell function or body mass index in pediatric obesity. Pancreas 2017; 46(3): 358-65.
[http://dx.doi.org/10.1097/MPA.0000000000000771 ] [PMID: 27941426]
[77]
Miljkovic I, Kuipers AL, Cvejkus R, et al. Myosteatosis increases with aging and is associated with incident diabetes in African ancestry men. Obesity (Silver Spring) 2016; 24(2): 476-82.
[http://dx.doi.org/10.1002/oby.21328 ] [PMID: 26694517]
[78]
Stellingwerff T, Boon H, Jonkers RAM, et al. Significant intramyocellular lipid use during prolonged cycling in endurance-trained males as assessed by three different methodologies. Am J Physiol Endocrinol Metab 2007; 292(6): E1715-23.
[http://dx.doi.org/10.1152/ajpendo.00678.2006 ] [PMID: 17299080]
[79]
Smith SR, Lovejoy JC, Greenway F, et al. Contributions of total body fat, abdominal subcutaneous adipose tissue compartments, and visceral adipose tissue to the metabolic complications of obesity. Metabolism 2001; 50(4): 425-35.
[http://dx.doi.org/10.1053/meta.2001.21693 ] [PMID: 11288037]
[80]
Kelley DE, Thaete FL, Troost F, Huwe T, Goodpaster BH. Subdivisions of subcutaneous abdominal adipose tissue and insulin resistance. Am J Physiol Endocrinol Metab 2000; 278(5): E941-8.
[http://dx.doi.org/10.1152/ajpendo.2000.278.5.E941 ] [PMID: 10780952]
[81]
Yang M, Lin J, Ma X, et al. Truncal and leg fat associations with metabolic risk factors among Chinese adults. Asia Pac J Clin Nutr 2016; 25(4): 798-809.
[http://dx.doi.org/10.6133/apjcn.092015.35 ] [PMID: 27702723]
[82]
Misra A, Vikram NK, Arya S, et al. High prevalence of insulin resistance in postpubertal Asian Indian children is associated with adverse truncal body fat patterning, abdominal adiposity and excess body fat. Int J Obes 2004; 28(10): 1217-26.
[http://dx.doi.org/10.1038/sj.ijo.0802704 ] [PMID: 15314636]
[83]
Albu JB, Kovera AJ, Johnson JA. Fat distribution and health in obesity. Ann N Y Acad Sci 2000; 904(1): 491-501.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06505.x ] [PMID: 10865794]
[84]
Marcus MA, Murphy L, Pi-Sunyer FX, Albu JB. Insulin sensitivity and serum triglyceride level in obese white and black women: Relationship to visceral and truncal subcutaneous fat. Metabolism 1999; 48(2): 194-9.
[http://dx.doi.org/10.1016/S0026-0495(99)90033-1 ] [PMID: 10024081]
[85]
Wu C-H, Heshka S, Wang J, et al. Truncal fat in relation to total body fat: Influences of age, sex, ethnicity and fatness. Int J Obes 2007; 31(9): 1384-91.
[http://dx.doi.org/10.1038/sj.ijo.0803624 ] [PMID: 17452992]
[86]
Numao S, Katayama Y, Nakata Y, Matsuo T, Nakagaichi M, Tanaka K. Association of abdominal fat with metabolic syndrome components in overweight women: Effect of menopausal status. J Physiol Anthropol 2020; 39(1): 12.
[http://dx.doi.org/10.1186/s40101-020-00222-0 ] [PMID: 32307016]
[87]
Lambe KG, Tugwood JD. A human peroxisome-proliferator-activated receptor-gamma is activated by inducers of adipogenesis, including thiazolidinedione drugs. Eur J Biochem 1996; 239(1): 1-7.
[http://dx.doi.org/10.1111/j.1432-1033.1996.0001u.x ] [PMID: 8706692]
[88]
Fajas L, Auboeuf D, Raspé E, et al. The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem 1997; 272(30): 18779-89.
[http://dx.doi.org/10.1074/jbc.272.30.18779 ] [PMID: 9228052]
[89]
Vidal-Puig AJ, Considine RV, Jimenez-Liñan M, et al. Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids. J Clin Invest 1997; 99(10): 2416-22.
[http://dx.doi.org/10.1172/JCI119424 ] [PMID: 9153284]
[90]
Yanase T, Yashiro T, Takitani K, et al. Differential expression of PPAR gamma1 and gamma2 isoforms in human adipose tissue. Biochem Biophys Res Commun 1997; 233(2): 320-4.
[http://dx.doi.org/10.1006/bbrc.1997.6446 ] [PMID: 9144532]
[91]
Adams M, Montague CT, Prins JB, et al. Activators of peroxisome proliferator-activated receptor gamma have depot-specific effects on human preadipocyte differentiation. J Clin Invest 1997; 100(12): 3149-53.
[http://dx.doi.org/10.1172/JCI119870 ] [PMID: 9399962]
[92]
Fajas L, Fruchart JC, Auwerx J. PPARγ3 mRNA: A distinct PPARγ mRNA subtype transcribed from an independent promoter. FEBS Lett 1998; 438(1-2): 55-60.
[http://dx.doi.org/10.1016/S0014-5793(98)01273-3 ] [PMID: 9821958]
[93]
Auboeuf D, Rieusset J, Fajas L, et al. Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-alpha in humans: No alteration in adipose tissue of obese and NIDDM patients. Diabetes 1997; 46(8): 1319-27.
[http://dx.doi.org/10.2337/diab.46.8.1319 ] [PMID: 9231657]
[94]
Lefebvre AM, Laville M, Vega N, et al. Depot-specific differences in adipose tissue gene expression in lean and obese subjects. Diabetes 1998; 47(1): 98-103.
[http://dx.doi.org/10.2337/diab.47.1.98 ] [PMID: 9421381]
[95]
Dubois M, Pattou F, Kerr-Conte J, et al. Expression of peroxisome proliferator-activated receptor γ (PPARγ) in normal human pancreatic islet cells. Diabetologia 2000; 43(9): 1165-9.
[http://dx.doi.org/10.1007/s001250051508 ] [PMID: 11043863]
[96]
McLaughlin T, Sherman A, Tsao P, et al. Enhanced proportion of small adipose cells in insulin-resistant vs. insulin-sensitive obese individuals implicates impaired adipogenesis. Diabetologia 2007; 50(8): 1707-15.
[http://dx.doi.org/10.1007/s00125-007-0708-y ] [PMID: 17549449]
[97]
Dyment DA, Gibson WT, Huang L, Bassyouni H, Hegele RA, Innes AM. Biallelic mutations at PPARG cause a congenital, generalized lipodystrophy similar to the Berardinelli–Seip syndrome. Eur J Med Genet 2014; 57(9): 524-6.
[http://dx.doi.org/10.1016/j.ejmg.2014.06.006 ] [PMID: 24980513]
[98]
Francis GA, Li G, Casey R, et al. Peroxisomal proliferator activated receptor-γ deficiency in a Canadian kindred with familial partial lipodystrophy type 3 (FPLD3). BMC Med Genet 2006; 7(1): 3.
[http://dx.doi.org/10.1186/1471-2350-7-3 ] [PMID: 16412238]
[99]
Rutkowska L, Salachna D, Lewandowski K. Lewiński A, Gach A. Familial partial lipodystrophy-literature review and report of a novel variant in PPARG expanding the spectrum of disease-causing alterations in FPLD3. Diagnostics 2022; 12(5): 1122.
[http://dx.doi.org/10.3390/diagnostics12051122]
[100]
Lambadiari V, Kountouri A, Maratou E, Liatis S, Dimitriadis GD, Karpe F. Case report: metreleptin treatment in a patient with a novel mutation for familial partial lipodystrophy Type 3, presenting with uncontrolled diabetes and insulin resistance. front endocrinol (lausanne) 2021; 12: 684182.
[http://dx.doi.org/10.3389/fendo.2021.684182] [PMID: 34168618]
[101]
Majithia AR, Flannick J, Shahinian P, et al. Rare variants in PPARG with decreased activity in adipocyte differentiation are associated with increased risk of type 2 diabetes. Proc Natl Acad Sci USA 2014; 111(36): 13127-32.
[http://dx.doi.org/10.1073/pnas.1410428111 ] [PMID: 25157153]
[102]
Sarhangi N, Sharifi F, Hashemian L, et al. PPARG (Pro12Ala) genetic variant and risk of T2DM: A systematic review and meta-analysis. Sci Rep 2020; 10(1): 12764.
[http://dx.doi.org/10.1038/s41598-020-69363-7 ] [PMID: 32728045]
[103]
Kelly IE, Han TS, Walsh K, Lean ME. Effects of a thiazolidinedione compound on body fat and fat distribution of patients with type 2 diabetes. Diabetes Care 1999; 22(2): 288-93.
[http://dx.doi.org/10.2337/diacare.22.2.288 ] [PMID: 10333947]
[104]
Mori Y, Murakawa Y, Okada K, et al. Effect of troglitazone on body fat distribution in type 2 diabetic patients. Diabetes Care 1999; 22(6): 908-12.
[http://dx.doi.org/10.2337/diacare.22.6.908 ] [PMID: 10372240]
[105]
Kawai T, Takei I, Oguma Y, et al. Effects of troglitazone on fat distribution in the treatment of male type 2 diabetes. Metabolism 1999; 48(9): 1102-7.
[http://dx.doi.org/10.1016/S0026-0495(99)90122-1 ] [PMID: 10484048]
[106]
Arioglu E, Duncan-Morin J, Sebring N, et al. Efficacy and safety of troglitazone in the treatment of lipodystrophy syndromes. Ann Intern Med 2000; 133(4): 263-74.
[http://dx.doi.org/10.7326/0003-4819-133-4-200008150-00009 ] [PMID: 10929166]
[107]
Katoh S, Hata S, Matsushima M, et al. Troglitazone prevents the rise in visceral adiposity and improves fatty liver associated with sulfonylurea therapy—A randomized controlled trial. Metabolism 2001; 50(4): 414-7.
[http://dx.doi.org/10.1053/meta.2001.21691 ] [PMID: 11288035]
[108]
Ciaraldi TP, Kong APS, Chu NV, et al. Regulation of glucose transport and insulin signaling by troglitazone or metformin in adipose tissue of type 2 diabetic subjects. Diabetes 2002; 51(1): 30-6.
[http://dx.doi.org/10.2337/diabetes.51.1.30 ] [PMID: 11756319]
[109]
Miyazaki Y, Mahankali A, Matsuda M, et al. Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab 2002; 87(6): 2784-91.
[http://dx.doi.org/10.1210/jcem.87.6.8567 ] [PMID: 12050251]
[110]
Bajaj M, Suraamornkul S, Pratipanawatr T, et al. Pioglitazone reduces hepatic fat content and augments splanchnic glucose uptake in patients with type 2 diabetes. Diabetes 2003; 52(6): 1364-70.
[http://dx.doi.org/10.2337/diabetes.52.6.1364 ] [PMID: 12765945]
[111]
Schernthaner G, Matthews DR, Charbonnel B, Hanefeld M, Brunetti P. Efficacy and safety of pioglitazone versus metformin in patients with type 2 diabetes mellitus: A double-blind, randomized trial. J Clin Endocrinol Metab 2004; 89(12): 6068-76.
[http://dx.doi.org/10.1210/jc.2003-030861 ] [PMID: 15579760]
[112]
Smith SR, de Jonge L, Volaufova J, Li Y, Xie H, Bray GA. Effect of pioglitazone on body composition and energy expenditure: A randomized controlled trial. Metabolism 2005; 54(1): 24-32.
[http://dx.doi.org/10.1016/j.metabol.2004.07.008 ] [PMID: 15562376]
[113]
Kodama N, Tahara N, Tahara A, et al. Effects of pioglitazone on visceral fat metabolic activity in impaired glucose tolerance or type 2 diabetes mellitus. J Clin Endocrinol Metab 2013; 98(11): 4438-45.
[http://dx.doi.org/10.1210/jc.2013-2920 ] [PMID: 24030946]
[114]
Filipova E, Uzunova K, Kalinov K, Vekov T. Effects of pioglitazone therapy on blood parameters, weight and BMI: A meta-analysis. Diabetol Metab Syndr 2017; 9(1): 90.
[http://dx.doi.org/10.1186/s13098-017-0290-5 ] [PMID: 29163673]
[115]
Nakamura T, Funahashi T, Yamashita S, et al. Thiazolidinedione derivative improves fat distribution and multiple risk factors in subjects with visceral fat accumulation—double-blind placebo-controlled trial. Diabetes Res Clin Pract 2001; 54(3): 181-90.
[http://dx.doi.org/10.1016/S0168-8227(01)00319-9 ] [PMID: 11689273]
[116]
Bray GA, Smith SR, Banerji MA, et al. Effect of pioglitazone on body composition and bone density in subjects with prediabetes in the ACT NOW trial. Diabetes Obes Metab 2013; 15(10): 931-7.
[http://dx.doi.org/10.1111/dom.12099 ] [PMID: 23551856]
[117]
Nolan JJ, Ludvik B, Beerdsen P, Joyce M, Olefsky J. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N Engl J Med 1994; 331(18): 1188-93.
[http://dx.doi.org/10.1056/NEJM199411033311803 ] [PMID: 7935656]
[118]
Suter SL, Nolan JJ, Wallace P, Gumbiner B, Olefsky JM. Metabolic effects of new oral hypoglycemic agent CS-045 in NIDDM subjects. Diabetes Care 1992; 15(2): 193-203.
[http://dx.doi.org/10.2337/diacare.15.2.193 ] [PMID: 1547676]
[119]
Inzucchi SE, Maggs DG, Spollett GR, et al. Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N Engl J Med 1998; 338(13): 867-73.
[http://dx.doi.org/10.1056/NEJM199803263381303 ] [PMID: 9516221]
[120]
Maggs DG, Buchanan TA, Burant CF, et al. Metabolic effects of troglitazone monotherapy in type 2 diabetes mellitus. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 1998; 128(3): 176-85.
[http://dx.doi.org/10.7326/0003-4819-128-3-199802010-00002 ] [PMID: 9454525]
[121]
Koivisto VA, Pelkonen R, Cantell K. Effect of interferon on glucose tolerance and insulin sensitivity. Diabetes 1989; 38(5): 641-7.
[http://dx.doi.org/10.2337/diab.38.5.641 ] [PMID: 2653935]
[122]
Shiba T, Higashi N, Nishimura Y. Hyperglycaemia due to insulin resistance caused by interferon-γ. Diabet Med 1998; 15(5): 435-6.
[http://dx.doi.org/10.1002/(SICI)1096-9136(199805)15:5<435:AID-DIA566>3.0.CO;2-N ] [PMID: 9609368]
[123]
Ghosh AR, Bhattacharya R, Bhattacharya S, et al. Adipose recruitment and activation of plasmacytoid dendritic cells fuel metaflammation. Diabetes 2016; 65(11): 3440-52.
[http://dx.doi.org/10.2337/db16-0331 ] [PMID: 27561727]
[124]
Faber DR, van der Graaf Y, Westerink J, Kanhai DA, Monajemi H, Visseren FLJ. Hepatocyte growth factor and interferon-γ inducible protein-10 are related to visceral adiposity. Eur J Clin Invest 2013; 43(4): 369-78.
[http://dx.doi.org/10.1111/eci.12054 ] [PMID: 23398210]
[125]
O’Rourke RW, Metcalf MD, White AE, et al. Depot-specific differences in inflammatory mediators and a role for NK cells and IFN-γ in inflammation in human adipose tissue. Int J Obes 2009; 33(9): 978-90.
[http://dx.doi.org/10.1038/ijo.2009.133 ] [PMID: 19564875]
[126]
Bradley D, Smith AJ, Blaszczak A, et al. Interferon gamma mediates the reduction of adipose tissue regulatory T cells in human obesity. Nat Commun 2022; 13(1): 5606.
[http://dx.doi.org/10.1038/s41467-022-33067-5 ] [PMID: 36153324]
[127]
McGillicuddy FC, Chiquoine EH, Hinkle CC, et al. Interferon gamma attenuates insulin signaling, lipid storage, and differentiation in human adipocytes via activation of the JAK/STAT pathway. J Biol Chem 2009; 284(46): 31936-44.
[http://dx.doi.org/10.1074/jbc.M109.061655 ] [PMID: 19776010]
[128]
Wentworth JM, Zhang J-G, Bandala-Sanchez E, et al. Interferon-gamma released from omental adipose tissue of insulin-resistant humans alters adipocyte phenotype and impairs response to insulin and adiponectin release. Int J Obes 2017; 41(12): 1782-9.
[http://dx.doi.org/10.1038/ijo.2017.180 ] [PMID: 28769120]
[129]
Vandorpe DH, Heneghan JF, Waitzman JS, et al. Apolipoprotein L1 (APOL1) cation current in HEK-293 cells and in human podocytes. Pflugers Arch 2023; 475(3): 323-41.
[http://dx.doi.org/10.1007/s00424-022-02767-8 ] [PMID: 36449077]
[130]
Davis SE, Khatua AK, Popik W. Nucleosomal dsDNA stimulates APOL1 expression in human cultured podocytes by activating the cGAS/IFI16-STING signaling pathway. Sci Rep 2019; 9(1): 15485.
[http://dx.doi.org/10.1038/s41598-019-51998-w ] [PMID: 31664093]
[131]
Kumar V, Vashistha H, Lan X, et al. Role of Apolipoprotein L1 in Human Parietal Epithelial Cell Transition. Am J Pathol 2018; 188(11): 2508-28.
[http://dx.doi.org/10.1016/j.ajpath.2018.07.025 ] [PMID: 30201495]
[132]
Nichols B, Jog P, Lee JH, et al. Innate immunity pathways regulate the nephropathy gene Apolipoprotein L1. Kidney Int 2015; 87(2): 332-42.
[http://dx.doi.org/10.1038/ki.2014.270 ] [PMID: 25100047]
[133]
Taylor HE, Khatua AK, Popik W. The innate immune factor apolipoprotein L1 restricts HIV-1 infection. J Virol 2014; 88(1): 592-603.
[http://dx.doi.org/10.1128/JVI.02828-13 ] [PMID: 24173214]
[134]
Zhaorigetu S, Wan G, Kaini R, Wan G, Jiang Z, Hu CA. ApoL1, a BH3-only lipid-binding protein, induces autophagic cell death. Autophagy 2008; 4(8): 1079-82.
[http://dx.doi.org/10.4161/auto.7066 ] [PMID: 18927493]
[135]
Genovese G, Friedman DJ, Ross MD, et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 2010; 329(5993): 841-5.
[http://dx.doi.org/10.1126/science.1193032 ] [PMID: 20647424]
[136]
Tzur S, Rosset S, Shemer R, et al. Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene. Hum Genet 2010; 128(3): 345-50.
[http://dx.doi.org/10.1007/s00439-010-0861-0 ] [PMID: 20635188]
[137]
Chun J, Zhang JY, Wilkins MS, et al. Recruitment of APOL1 kidney disease risk variants to lipid droplets attenuates cell toxicity. Proc Natl Acad Sci USA 2019; 116(9): 3712-21.
[http://dx.doi.org/10.1073/pnas.1820414116 ] [PMID: 30733285]
[138]
Chun J, Riella CV, Chung H, et al. DGAT2 inhibition potentiates lipid droplet formation to reduce cytotoxicity in APOL1 kidney risk variants. J Am Soc Nephrol 2022; 33(5): 889-907.
[http://dx.doi.org/10.1681/ASN.2021050723 ] [PMID: 35232775]
[139]
Nadkarni GN, Galarneau G, Ellis SB, et al. Apolipoprotein L1 variants and blood pressure traits in african americans. J Am Coll Cardiol 2017; 69(12): 1564-74.
[http://dx.doi.org/10.1016/j.jacc.2017.01.040 ] [PMID: 28335839]
[140]
Nadkarni GN, Fei K, Galarneau G, et al. APOL1 renal risk variants are associated with obesity and body composition in African ancestry adults. Medicine (Baltimore) 2021; 100(45): e27785.
[http://dx.doi.org/10.1097/MD.0000000000027785 ] [PMID: 34766590]
[141]
Friedman DJ, Kozlitina J, Genovese G, Jog P, Pollak MR. Population-based risk assessment of APOL1 on renal disease. J Am Soc Nephrol 2011; 22(11): 2098-105.
[http://dx.doi.org/10.1681/ASN.2011050519 ] [PMID: 21997396]
[142]
Parsa A, Kao WHL, Xie D, et al. APOL1 risk variants, race, and progression of chronic kidney disease. N Engl J Med 2013; 369(23): 2183-96.
[http://dx.doi.org/10.1056/NEJMoa1310345 ] [PMID: 24206458]
[143]
Freedman BI, Rocco MV, Bates JT, et al. APOL1 renal-risk variants do not associate with incident cardiovascular disease or mortality in the Systolic Blood Pressure Intervention Trial. Kidney Int Rep 2017; 2(4): 713-20.
[http://dx.doi.org/10.1016/j.ekir.2017.03.008 ] [PMID: 28758155]
[144]
Chen TK, Katz R, Estrella MM, et al. Association Between APOL1 Genotypes and Risk of Cardiovascular Disease in MESA (Multi‐Ethnic Study of Atherosclerosis). J Am Heart Assoc 2017; 6(12): e007199.
[http://dx.doi.org/10.1161/JAHA.117.007199 ] [PMID: 29269352]
[145]
Bick AG, Akwo E, Robinson-Cohen C, et al. Association of APOL1 risk alleles with cardiovascular disease in blacks in the million veteran program. Circulation 2019; 140(12): 1031-40.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.036589 ] [PMID: 31337231]
[146]
Hoy WE, Hughson MD, Kopp JB, Mott SA, Bertram JF, Winkler CA. APOL1 Risk Alleles Are Associated with Exaggerated Age-Related Changes in Glomerular Number and Volume in African-American Adults. J Am Soc Nephrol 2015; 26(12): 3179-89.
[http://dx.doi.org/10.1681/ASN.2014080768 ] [PMID: 26038529]
[147]
Hughson MD, Hoy WE, Mott SA, et al. APOL1 risk alleles are associated with more severe arteriosclerosis in renal resistance vessels with aging and hypertension. Kidney Int Rep 2016; 1(1): 10-23.
[http://dx.doi.org/10.1016/j.ekir.2016.03.002 ] [PMID: 27610422]
[148]
Valdez Imbert R, Hti Lar Seng NS, Stokes MB, Jim B. Obesity-related glomerulopathy in the presence of APOL1 risk alleles. BMJ Case Rep 2022; 15(8): e249624.
[http://dx.doi.org/10.1136/bcr-2022-249624 ] [PMID: 35985743]
[149]
Eiholzer U, Blum WF, Molinari L. Body fat determined by skinfold measurements is elevated despite underweight in infants with Prader-Labhart-Willi syndrome. J Pediatr 1999; 134(2): 222-5.
[http://dx.doi.org/10.1016/S0022-3476(99)70419-1 ] [PMID: 9931533]
[150]
Bekx MT, Carrel AL, Shriver TC, Li Z, Allen DB. Decreased energy expenditure is caused by abnormal body composition in infants with Prader-Willi Syndrome. J Pediatr 2003; 143(3): 372-6.
[http://dx.doi.org/10.1067/S0022-3476(03)00386-X ] [PMID: 14517523]
[151]
Olarescu NC, Jørgensen AP, Godang K, Jurik AG, Frøslie KF, Bollerslev J. Dual-energy X-ray absorptiometry is a valid method to estimate visceral adipose tissue in adult patients with Prader-Willi syndrome during treatment with growth hormone. J Clin Endocrinol Metab 2014; 99(9): E1727-31.
[http://dx.doi.org/10.1210/jc.2014-2059 ] [PMID: 24955611]
[152]
van Nieuwpoort IC, Twisk JWR, Curfs LMG, Lips P, Drent ML. Body composition, adipokines, bone mineral density and bone remodeling markers in relation to IGF-1 levels in adults with Prader-Willi syndrome. Int J Pediatr Endocrinol 2018; 2018(1): 1.
[http://dx.doi.org/10.1186/s13633-018-0055-4 ] [PMID: 29371863]
[153]
Mai S, Fintini D, Mele C, et al. Circulating irisin in children and Adolescents With Prader-willi syndrome: relation with glucose metabolism. front endocrinol (lausanne) 2022; 13: 918467.
[http://dx.doi.org/10.3389/fendo.2022.918467] [PMID: 35774143]
[154]
Brambilla P, Bosio L, Manzoni P, Pietrobelli A, Beccaria L, Chiumello G. Peculiar body composition in patients with Prader-Labhart-Willi syndrome. Am J Clin Nutr 1997; 65(5): 1369-74.
[http://dx.doi.org/10.1093/ajcn/65.5.1369 ] [PMID: 9129464]
[155]
Theodoro MF, Talebizadeh Z, Butler MG. Body composition and fatness patterns in Prader-Willi syndrome: Comparison with simple obesity. Obesity (Silver Spring) 2006; 14(10): 1685-90.
[http://dx.doi.org/10.1038/oby.2006.193 ] [PMID: 17062796]
[156]
Sode-Carlsen R, Farholt S, Rabben KF, et al. Body composition, endocrine and metabolic profiles in adults with Prader-Willi syndrome. Growth Horm IGF Res 2010; 20(3): 179-84.
[http://dx.doi.org/10.1016/j.ghir.2009.12.004 ] [PMID: 20199883]
[157]
Tanaka Y, Abe Y, Oto Y, et al. Characterization of fat distribution in Prader-Willi syndrome: Relationships with adipocytokines and influence of growth hormone treatment. Am J Med Genet A 2013; 161(1): 27-33.
[http://dx.doi.org/10.1002/ajmg.a.35653 ] [PMID: 23239671]
[158]
l’Allemand D, Eiholzer U, Schlumpf M, Torresani T, Girard J. Carbohydrate metabolism is not impaired after 3 years of growth hormone therapy in children with Prader-Willi syndrome. Horm Res Paediatr 2003; 59(5): 239-48.
[http://dx.doi.org/10.1159/000070224 ] [PMID: 12714788]
[159]
Rosenberg AGW, Passone CGB, Pellikaan K, et al. Growth hormone treatment for adults with prader-willi syndrome: a meta-analysis. J Clin Endocrinol Metab 2021; 106(10): 3068-91.
[http://dx.doi.org/10.1210/clinem/dgab406 ] [PMID: 34105729]
[160]
Haqq AM, Muehlbauer MJ, Newgard CB, Grambow S, Freemark M. The metabolic phenotype of Prader-Willi syndrome (PWS) in childhood: Heightened insulin sensitivity relative to body mass index. J Clin Endocrinol Metab 2011; 96(1): E225-32.
[http://dx.doi.org/10.1210/jc.2010-1733 ] [PMID: 20962018]
[161]
Cadoudal T, Buléon M, Sengenès C, et al. Impairment of adipose tissue in Prader–Willi syndrome rescued by growth hormone treatment. Int J Obes 2014; 38(9): 1234-40.
[http://dx.doi.org/10.1038/ijo.2014.3 ] [PMID: 24406482]
[162]
Lacroix D, Moutel S, Coupaye M, et al. Metabolic and adipose tissue signatures in adults with Prader-Willi syndrome: A model of extreme adiposity. J Clin Endocrinol Metab 2015; 100(3): 850-9.
[http://dx.doi.org/10.1210/jc.2014-3127 ] [PMID: 25478934]
[163]
Fintini D, Grugni G, Bocchini S, et al. Disorders of glucose metabolism in Prader–Willi syndrome: Results of a multicenter Italian cohort study. Nutr Metab Cardiovasc Dis 2016; 26(9): 842-7.
[http://dx.doi.org/10.1016/j.numecd.2016.05.010 ] [PMID: 27381990]
[164]
Yang A, Kim J, Cho SY, Jin DK. Prevalence and risk factors for type 2 diabetes mellitus with Prader–Willi syndrome: A single center experience. Orphanet J Rare Dis 2017; 12(1): 146.
[http://dx.doi.org/10.1186/s13023-017-0702-5 ] [PMID: 28854950]
[165]
Schuster DP, Osei K, Zipf WB. Characterization of alterations in glucose and insulin metabolism in Prader-Willi subjects. Metabolism 1996; 45(12): 1514-20.
[http://dx.doi.org/10.1016/S0026-0495(96)90181-X ] [PMID: 8969285]
[166]
Eiholzer U, Stutz K, Weinmann C, Torresani T, Molinari L, Prader A. Low insulin, IGF-I and IGFBP-3 levels in children with Prader-Labhart-Willi syndrome. Eur J Pediatr 1998; 157(11): 890-3.
[http://dx.doi.org/10.1007/s004310050961 ] [PMID: 9835431]
[167]
Oliveira CRP, Salvatori R, Barreto-Filho JAS, et al. Insulin sensitivity and β-cell function in adults with lifetime, untreated isolated growth hormone deficiency. J Clin Endocrinol Metab 2012; 97(3): 1013-9.
[http://dx.doi.org/10.1210/jc.2011-2590 ] [PMID: 22170707]
[168]
Vicente TAR, Rocha ÍES, Salvatori R, et al. Lifetime congenital isolated GH deficiency does not protect from the development of diabetes. Endocr Connect 2013; 2(2): 112-7.
[http://dx.doi.org/10.1530/EC-13-0014 ] [PMID: 23795286]
[169]
Hedgeman E, Ulrichsen SP, Carter S, et al. Long-term health outcomes in patients with Prader–Willi Syndrome: A nationwide cohort study in Denmark. Int J Obes 2017; 41(10): 1531-8.
[http://dx.doi.org/10.1038/ijo.2017.139 ] [PMID: 28634363]
[170]
Manzardo AM, Loker J, Heinemann J, Loker C, Butler MG. Survival trends from the Prader–Willi Syndrome Association (USA) 40-year mortality survey. Genet Med 2018; 20(1): 24-30.
[http://dx.doi.org/10.1038/gim.2017.92 ] [PMID: 28682308]
[171]
Pacoricona Alfaro DL, Lemoine P, Ehlinger V, et al. Causes of death in Prader-Willi syndrome: Lessons from 11 years’ experience of a national reference center. Orphanet J Rare Dis 2019; 14(1): 238.
[http://dx.doi.org/10.1186/s13023-019-1214-2 ] [PMID: 31684997]
[172]
Oral EA, Simha V, Ruiz E, et al. Leptin-replacement therapy for lipodystrophy. N Engl J Med 2002; 346(8): 570-8.
[http://dx.doi.org/10.1056/NEJMoa012437 ] [PMID: 11856796]
[173]
Beltrand J, Beregszaszi M, Chevenne D, et al. Metabolic correction induced by leptin replacement treatment in young children with Berardinelli-Seip congenital lipoatrophy. Pediatrics 2007; 120(2): e291-6.
[http://dx.doi.org/10.1542/peds.2006-3165 ] [PMID: 17671040]
[174]
Chan JL, Lutz K, Cochran E, et al. Clinical effects of long-term metreleptin treatment in patients with lipodystrophy. Endocr Pract 2011; 17(6): 922-32.
[http://dx.doi.org/10.4158/EP11229.OR ] [PMID: 22068254]
[175]
Diker-Cohen T, Cochran E, Gorden P, Brown RJ. Partial and generalized lipodystrophy: Comparison of baseline characteristics and response to metreleptin. J Clin Endocrinol Metab 2015; 100(5): 1802-10.
[http://dx.doi.org/10.1210/jc.2014-4491 ] [PMID: 25734254]
[176]
Brown RJ, Meehan CA, Cochran E, et al. Effects of metreleptin in pediatric patients with lipodystrophy. J Clin Endocrinol Metab 2017; 102(5): 1511-9.
[http://dx.doi.org/10.1210/jc.2016-3628 ] [PMID: 28324110]
[177]
Sekizkardes H, Cochran E, Malandrino N, Garg A, Brown RJ. Efficacy of metreleptin treatment in familial partial lipodystrophy due to PPARG vs. LMNA pathogenic variants. J Clin Endocrinol Metab 2019; 104(8): 3068-76.
[http://dx.doi.org/10.1210/jc.2018-02787 ] [PMID: 31194872]
[178]
Nguyen ML, Sachdev V, Burklow TR, et al. Leptin attenuates cardiac hypertrophy in patients with generalized lipodystrophy. J Clin Endocrinol Metab 2021; 106(11): e4327-39.
[http://dx.doi.org/10.1210/clinem/dgab499 ] [PMID: 34223895]
[179]
Mosbah H, Vantyghem MC, Nobécourt E, et al. Therapeutic indications and metabolic effects of metreleptin in patients with lipodystrophy syndromes: Real‐life experience from a national reference network. Diabetes Obes Metab 2022; 24(8): 1565-77.
[http://dx.doi.org/10.1111/dom.14726 ] [PMID: 35445532]
[180]
Lima JG, Nobrega LHC, Lima NN, et al. Causes of death in patients with Berardinelli-Seip congenital generalized lipodystrophy. PLoS One 2018; 13(6): e0199052.
[http://dx.doi.org/10.1371/journal.pone.0199052 ] [PMID: 29883474]
[181]
Montenegro Junior RM, Lima GECP, Fernandes VO, et al. Leu124Serfs*26, a novel AGPAT2 mutation in congenital generalized lipodystrophy with early cardiovascular complications. Diabetol Metab Syndr 2020; 12(1): 28.
[http://dx.doi.org/10.1186/s13098-020-00538-y ] [PMID: 32280377]
[182]
Simha V, Garg A. Phenotypic heterogeneity in body fat distribution in patients with congenital generalized lipodystrophy caused by mutations in the AGPAT2 or seipin genes. J Clin Endocrinol Metab 2003; 88(11): 5433-7.
[http://dx.doi.org/10.1210/jc.2003-030835 ] [PMID: 14602785]
[183]
Agarwal AK, Simha V, Oral EA, et al. Phenotypic and genetic heterogeneity in congenital generalized lipodystrophy. J Clin Endocrinol Metab 2003; 88(10): 4840-7.
[http://dx.doi.org/10.1210/jc.2003-030855 ] [PMID: 14557463]
[184]
Yamamoto A, Kusakabe T, Sato K, Tokizaki T, Sakurai K, Abe S. Seipin-linked congenital generalized lipodystrophy type 2: A rare case with multiple lytic and pseudo-osteopoikilosis lesions. Acta Radiol Open 2019; 8(12): 2058460119892407.
[185]
Kim CA, Delépine M, Boutet E, et al. Association of a homozygous nonsense caveolin-1 mutation with Berardinelli-Seip congenital lipodystrophy. J Clin Endocrinol Metab 2008; 93(4): 1129-34.
[http://dx.doi.org/10.1210/jc.2007-1328 ] [PMID: 18211975]
[186]
Schrauwen I, Szelinger S, Siniard AL, et al. A Frame-Shift Mutation in CAV1 Is Associated with a Severe Neonatal Progeroid and Lipodystrophy Syndrome. PLoS One 2015; 10(7): e0131797.
[http://dx.doi.org/10.1371/journal.pone.0131797 ] [PMID: 26176221]
[187]
Karhan AN, Zammouri J, Auclair M, et al. Biallelic CAV1 null variants induce congenital generalized lipodystrophy with achalasia. Eur J Endocrinol 2021; 185(6): 841-54.
[http://dx.doi.org/10.1530/EJE-21-0915 ] [PMID: 34643546]
[188]
Cao H, Alston L, Ruschman J, Hegele RA. Heterozygous CAV1 frameshift mutations (MIM 601047) in patients with atypical partial lipodystrophy and hypertriglyceridemia. Lipids Health Dis 2008; 7(1): 3.
[http://dx.doi.org/10.1186/1476-511X-7-3 ] [PMID: 18237401]
[189]
Hayashi YK, Matsuda C, Ogawa M, et al. Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J Clin Invest 2009; 119(9): 2623-33.
[http://dx.doi.org/10.1172/JCI38660 ] [PMID: 19726876]
[190]
Rajab A, Straub V, McCann LJ, et al. Fatal cardiac arrhythmia and long-QT syndrome in a new form of congenital generalized lipodystrophy with muscle rippling (CGL4) due to PTRF-CAVIN mutations. PLoS Genet 2010; 6(3): e1000874.
[http://dx.doi.org/10.1371/journal.pgen.1000874 ] [PMID: 20300641]
[191]
Nilay Güneş, Kutlu T, Tekant GT. et al.Congenital generalized lipodystrophy: The evaluation of clinical follow-up findings in a series of five patients with type 1 and two patients with type 4. Eur J Med Genet 2020; 63(4): 103819.
[http://dx.doi.org/10.1016/j.ejmg.2019.103819 ] [PMID: 31778856]
[192]
Adiyaman SC. Congenital generalized lipodystrophy type 4 due to a novel PTRF/CAVIN1 pathogenic variant in a child: Effects of metreleptin substitution. J Pediatr Endocrinol Metab 2022; 35(7): 946-52.
[193]
Patni N, Vuitch F, Garg A. Postmortem Findings in a Young Man With Congenital Generalized Lipodystrophy, Type 4 Due to CAVIN1 Mutations. J Clin Endocrinol Metab 2019; 104(3): 957-60.
[http://dx.doi.org/10.1210/jc.2018-01331 ] [PMID: 30476128]
[194]
Knebel B, Kotzka J, Lehr S, et al. A mutation in the c-Fos gene associated with congenital generalized lipodystrophy. Orphanet J Rare Dis 2013; 8(1): 119.
[http://dx.doi.org/10.1186/1750-1172-8-119 ] [PMID: 23919306]
[195]
Treiber G, Flaus Furmaniuk A, Guilleux A, et al. A recurrent familial partial lipodystrophy due to a monoallelic or biallelic LMNA founder variant highlights the multifaceted cardiac manifestations of metabolic laminopathies. Eur J Endocrinol 2021; 185(4): 453-62.
[http://dx.doi.org/10.1530/EJE-21-0282 ] [PMID: 34292171]
[196]
Kadowaki T, Kadowaki H, Rechler MM, et al. Five mutant alleles of the insulin receptor gene in patients with genetic forms of insulin resistance. J Clin Invest 1990; 86(1): 254-64.
[http://dx.doi.org/10.1172/JCI114693 ] [PMID: 2365819]
[197]
Musso C, Cochran E, Moran SA, et al. Clinical course of genetic diseases of the insulin receptor (type A and Rabson-Mendenhall syndromes): A 30-year prospective. Medicine (Baltimore) 2004; 83(4): 209-22.
[http://dx.doi.org/10.1097/01.md.0000133625.73570.54 ] [PMID: 15232309]
[198]
Semple RK, Sleigh A, Murgatroyd PR, et al. Postreceptor insulin resistance contributes to human dyslipidemia and hepatic steatosis. J Clin Invest 2009; 119(2): 315-22.
[http://dx.doi.org/10.1172/JCI37432 ] [PMID: 19164855]
[199]
Iwanishi M, Kusakabe T, Azuma C, et al. Clinical characteristics in two patients with partial lipodystrophy and Type A insulin resistance syndrome due to a novel heterozygous missense mutation in the insulin receptor gene. Diabetes Res Clin Pract 2019; 152: 79-87.
[http://dx.doi.org/10.1016/j.diabres.2019.04.034 ] [PMID: 31102683]
[200]
Al-Hussaini AA, Sulaiman NM, AlZahrani MD, Alenizi AS, Khan M. Prevalence of hepatopathy in type 1 diabetic children. BMC Pediatr 2012; 12(1): 160.
[http://dx.doi.org/10.1186/1471-2431-12-160 ] [PMID: 23039762]
[201]
El-Karaksy HM, Anwar G, Esmat G, et al. Prevalence of hepatic abnormalities in a cohort of Egyptian children with type 1 diabetes mellitus. Pediatr Diabetes 2010; 11(7): 462-70.
[http://dx.doi.org/10.1111/j.1399-5448.2009.00627.x ] [PMID: 20042012]
[202]
Ogilvy-Stuart AL, Soos MA, Hands SJ, Anthony MY, Dunger DB, O’Rahilly S. Hypoglycemia and resistance to ketoacidosis in a subject without functional insulin receptors. J Clin Endocrinol Metab 2001; 86(7): 3319-26.
[http://dx.doi.org/10.1210/jcem.86.7.7631 ] [PMID: 11443207]
[203]
Brown RJ, Cochran E, Gorden P. Metreleptin improves blood glucose in patients with insulin receptor mutations. J Clin Endocrinol Metab 2013; 98(11): E1749-56.
[http://dx.doi.org/10.1210/jc.2013-2317 ] [PMID: 23969187]
[204]
Tuhan H, Ceylaner S, Nalbantoğlu Ö. et al.A Mutation in INSR in a child presenting with severe acanthosis nigricans. J Clin Res Pediatr Endocrinol 2017; 9(4): 371-4.
[http://dx.doi.org/10.4274/jcrpe.4577 ] [PMID: 28663160]
[205]
Güemes M, Rahman SA, Shah P, Hussain K. Enteroinsular hormones in two siblings with donohue syndrome and complete leptin deficiency. Pediatr Diabetes 2018; 19(4): 675-9.
[http://dx.doi.org/10.1111/pedi.12619 ] [PMID: 29226618]
[206]
Rojek A, Wikiera B, Noczynska A, Niedziela M. Syndrome of congenital insulin resistance caused by a novel INSR gene mutation. J Clin Res Pediatr Endocrinol 2021; 0(0): 0.
[http://dx.doi.org/10.4274/jcrpe.galenos.2021.2021.0256] [PMID: 34965699]
[207]
Longo N, Singh R, Griffin LD, Langley SD, Parks JS, Elsas LJ. Impaired growth in Rabson-Mendenhall syndrome: Lack of effect of growth hormone and insulin-like growth factor-I. J Clin Endocrinol Metab 1994; 79(3): 799-805.
[http://dx.doi.org/10.1210/jcem.79.3.8077364 ] [PMID: 8077364]
[208]
Kirel B. Bozdağ O, Köşger P, Aydoğdu SD, Alincak E, Tekin N. A case of Donohue syndrome “Leprechaunism” with a novel mutation in the insulin receptor gene. Turk Pediatri Ars 2018; 52(4): 226-30.
[http://dx.doi.org/10.5152/TurkPediatriArs.2017.3193 ] [PMID: 29483803]
[209]
Takasawa K, Tsuji-Hosokawa A, Takishima S, et al. Clinical characteristics of adolescent cases with Type A insulin resistance syndrome caused by heterozygous mutations in the β-subunit of the insulin receptor (INSR) gene. J Diabetes 2019; 11(1): 46-54.
[http://dx.doi.org/10.1111/1753-0407.12797 ] [PMID: 29877041]
[210]
Verdecchia F, Akcan N, Dastamani A, Morgan K, Semple RK, Shah P. Unusual glycemic presentations in a child with a novel heterozygous intragenic INSR deletion. Horm Res Paediatr 2020; 93(6): 396-401.
[http://dx.doi.org/10.1159/000510462 ] [PMID: 33040071]
[211]
Kapeller R, Chakrabarti R, Cantley L, Fay F, Corvera S. Internalization of activated platelet-derived growth factor receptor-phosphatidylinositol-3′ kinase complexes: Potential interactions with the microtubule cytoskeleton. Mol Cell Biol 1993; 13(10): 6052-63.
[http://dx.doi.org/10.1128/mcb.13.10.6052-6063.1993 ] [PMID: 8413207]
[212]
Schwingshandl J, Mache CJ, Rath K, Borkenstein MH. SHORT syndrome and insulin resistance. Am J Med Genet 1993; 47(6): 907-9.
[http://dx.doi.org/10.1002/ajmg.1320470619 ] [PMID: 8279490]
[213]
Dyment DA, Smith AC, Alcantara D, et al. Mutations in PIK3R1 cause SHORT syndrome. Am J Hum Genet 2013; 93(1): 158-66.
[http://dx.doi.org/10.1016/j.ajhg.2013.06.005 ] [PMID: 23810382]
[214]
Chudasama KK, Winnay J, Johansson S, et al. SHORT syndrome with partial lipodystrophy due to impaired phosphatidylinositol 3 kinase signaling. Am J Hum Genet 2013; 93(1): 150-7.
[http://dx.doi.org/10.1016/j.ajhg.2013.05.023 ] [PMID: 23810379]
[215]
Thauvin-Robinet C, Auclair M, Duplomb L, et al. PIK3R1 mutations cause syndromic insulin resistance with lipoatrophy. Am J Hum Genet 2013; 93(1): 141-9.
[http://dx.doi.org/10.1016/j.ajhg.2013.05.019 ] [PMID: 23810378]
[216]
Schroeder C, Riess A, Bonin M, et al. PIK3R1 mutations in SHORT syndrome. Clin Genet 2014; 86(3): 292-4.
[http://dx.doi.org/10.1111/cge.12263 ] [PMID: 23980586]
[217]
George S, Rochford JJ, Wolfrum C, et al. A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science 2004; 304(5675): 1325-8.
[http://dx.doi.org/10.1126/science.1096706 ] [PMID: 15166380]
[218]
Tan K, Kimber WA, Luan J, et al. Analysis of genetic variation in Akt2/PKB-beta in severe insulin resistance, lipodystrophy, type 2 diabetes, and related metabolic phenotypes. Diabetes 2007; 56(3): 714-9.
[http://dx.doi.org/10.2337/db06-0921 ] [PMID: 17327441]
[219]
Sun XQ, Luo YY, An LW, et al. Contribution of the Akt2 gene to type 2 diabetes in the Chinese Han population. Chin Med J (Engl) 2011; 124(5): 725-8.
[PMID: 21518566]
[220]
Murdocca M, Spitalieri P, De Masi C, et al. Functional analysis of POLD1 p.ser605del variant: The aging phenotype of MDPL syndrome is associated with an impaired DNA repair capacity. Aging (Albany NY) 2021; 13(4): 4926-45.
[http://dx.doi.org/10.18632/aging.202680 ] [PMID: 33618333]
[221]
Speckman RA, Garg A, Du F, et al. Mutational and haplotype analyses of families with familial partial lipodystrophy (Dunnigan variety) reveal recurrent missense mutations in the globular C-terminal domain of lamin A/C. Am J Hum Genet 2000; 66(4): 1192-8.
[http://dx.doi.org/10.1086/302836 ] [PMID: 10739751]
[222]
Cao H, Hegele RA. Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum Mol Genet 2000; 9(1): 109-12.
[http://dx.doi.org/10.1093/hmg/9.1.109 ] [PMID: 10587585]
[223]
Vantyghem MC, Pigny P, Maurage CA, et al. Patients with familial partial lipodystrophy of the Dunnigan type due to a LMNA R482W mutation show muscular and cardiac abnormalities. J Clin Endocrinol Metab 2004; 89(11): 5337-46.
[http://dx.doi.org/10.1210/jc.2003-031658 ] [PMID: 15531479]
[224]
Pandey SN, Pungavkar SA, Vaidya RA, et al. An imaging study of body composition including lipodeposition pattern in a patient of familial partial lipodystrophy (Dunnigan type). J Assoc Physicians India 2005; 53: 897-900.
[PMID: 16459536]
[225]
Monteiro L, Foss-Freitas M, Montenegro RM, Foss M. Body fat distribution in women with familial partial lipodystrophy caused by mutation in the lamin A/C gene. Indian J Endocrinol Metab 2012; 16(1): 136-8.
[http://dx.doi.org/10.4103/2230-8210.91209 ] [PMID: 22276265]
[226]
Wong SPY, Huda M, English P, et al. Adipokines and the insulin resistance syndrome in familial partial lipodystrophy caused by a mutation in lamin A/C. Diabetologia 2005; 48(12): 2641-9.
[http://dx.doi.org/10.1007/s00125-005-0038-x ] [PMID: 16320084]
[227]
Haque WA, Vuitch F, Garg A. Post-mortem findings in familial partial lipodystrophy, Dunnigan variety. Diabet Med 2002; 19(12): 1022-5.
[http://dx.doi.org/10.1046/j.1464-5491.2002.00796.x ] [PMID: 12647844]
[228]
Lüdtke A, Roos GM, van Hettinga M, Horst BAJ, Worman HJ, Schmidt HHJ. Post-mortem findings in Dunnigan-type familial partial lipodystrophy. Diabet Med 2010; 27(2): 245-6.
[http://dx.doi.org/10.1111/j.1464-5491.2009.02909.x ] [PMID: 20546275]
[229]
Subramanyam L, Simha V, Garg A. Overlapping syndrome with familial partial lipodystrophy, Dunnigan variety and cardiomyopathy due to amino-terminal heterozygous missense lamin A/C mutations. Clin Genet 2010; 78(1): 66-73.
[http://dx.doi.org/10.1111/j.1399-0004.2009.01350.x ] [PMID: 20041886]
[230]
Owen KR, Donohoe M, Ellard S, et al. Mesangiocapillary glomerulonephritis type 2 associated with familial partial lipodystrophy (Dunnigan-Kobberling syndrome). Nephron Clin Pract 2004; 96(2): c35-8.
[http://dx.doi.org/10.1159/000076396 ] [PMID: 14988595]
[231]
Imachi H, Murao K, Ohtsuka S, et al. A case of Dunnigan-type familial partial lipodystrophy (FPLD) due to lamin A/C (LMNA) mutations complicated by end-stage renal disease. Endocrine 2009; 35(1): 18-21.
[http://dx.doi.org/10.1007/s12020-008-9127-1 ] [PMID: 19011997]
[232]
Thong KM, Xu Y, Cook J, et al. Cosegregation of focal segmental glomerulosclerosis in a family with familial partial lipodystrophy due to a mutation in LMNA. Nephron Clin Pract 2013; 124(1-2): 31-7.
[http://dx.doi.org/10.1159/000354716 ] [PMID: 24080738]
[233]
Fountas A, Giotaki Z, Dounousi E, et al. Familial partial lipodystrophy and proteinuric renal disease due to a missense c.1045C > T LMNA mutation. Endocrinol Diabetes Metab Case Rep 2017; 2017: 0049.
[http://dx.doi.org/10.1530/EDM-17-0049] [PMID: 28620495]
[234]
Soyaltin UE, Simsir IY, Akinci B, et al. Homozygous LMNA p.R582H pathogenic variant reveals increasing effect on the severity of fat loss in lipodystrophy. Clin Diabetes Endocrinol 2020; 6: 13.
[235]
Agarwal AK, Fryns JP, Auchus RJ, Garg A. Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum Mol Genet 2003; 12(16): 1995-2001.
[http://dx.doi.org/10.1093/hmg/ddg213 ] [PMID: 12913070]
[236]
Hitzert MM, van der Crabben SN, Baldewsingh G, et al. Mandibuloacral dysplasia type B (MADB): A cohort of eight patients from Suriname with a homozygous founder mutation in ZMPSTE24 (FACE1), clinical diagnostic criteria and management guidelines. Orphanet J Rare Dis 2019; 14(1): 294.
[http://dx.doi.org/10.1186/s13023-019-1269-0 ] [PMID: 31856865]
[237]
Freidenberg GR, Cutler DL, Jones MC, et al. Severe insulin resistance and diabetes mellitus in mandibuloacral dysplasia. Arch Pediatr Adolesc Med 1992; 146(1): 93-9.
[http://dx.doi.org/10.1001/archpedi.1992.02160130095028 ] [PMID: 1736653]
[238]
Epstkin CJ, Martin GM, Schultz AL, Motulskys AG. Werner’s syndrome a review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Medicine (Baltimore) 1966; 45(3): 177-221.
[http://dx.doi.org/10.1097/00005792-196605000-00001 ] [PMID: 5327241]
[239]
Peng H, Wang J, Liu Y, et al. Case Report: A novel WRN mutation in Werner syndrome patient with diabetic foot disease and myelodysplastic syndrome. Front Endocrinol (Lausanne) 2022; 13: 918979.
[http://dx.doi.org/10.3389/fendo.2022.918979 ] [PMID: 35909544]
[240]
Lauper JM, Krause A, Vaughan TL, Monnat RJ Jr. Spectrum and risk of neoplasia in Werner syndrome: A systematic review. PLoS One 2013; 8(4): e59709.
[http://dx.doi.org/10.1371/journal.pone.0059709 ] [PMID: 23573208]
[241]
Smith U, Digirolamo M, Blohmé G, Kral JG, Tisell LE. Possible systemic metabolic effects of regional adiposity in a patient with Werner’s syndrome. Int J Obes 1980; 4(2): 153-63.
[PMID: 6995362]
[242]
Mori S, Murano S, Yokote K, et al. Enhanced intra-abdominal visceral fat accumulation in patients with Werner’s syndrome. Int J Obes 2001; 25(2): 292-5.
[http://dx.doi.org/10.1038/sj.ijo.0801529 ] [PMID: 11410834]
[243]
Yokote K, Honjo S, Kobayashi K, et al. Metabolic improvement and abdominal fat redistribution in Werner syndrome by pioglitazone. J Am Geriatr Soc 2004; 52(9): 1582-3.
[http://dx.doi.org/10.1111/j.1532-5415.2004.52430_4.x ] [PMID: 15341572]
[244]
Honjo S, Yokote K, Fujishiro T, et al. Early amelioration of insulin resistance and reduction of interleukin-6 in Werner syndrome using pioglitazone. J Am Geriatr Soc 2008; 56(1): 173-4.
[http://dx.doi.org/10.1111/j.1532-5415.2007.01484.x ] [PMID: 18184212]
[245]
Blohmé G, Smith U. Metabolic studies in a case of Werner’s syndrome. Diabete Metab 1979; 5(2): 119-24.
[PMID: 478081]
[246]
Yamada K, Ikegami H, Yoneda H, Miki T, Ogihara T. All patients with Werner’s syndrome are insulin resistant, but only those who also have impaired insulin secretion develop overt diabetes. Diabetes Care 1999; 22(12): 2094-5.
[http://dx.doi.org/10.2337/diacare.22.12.2094 ] [PMID: 10587857]
[247]
Abe T, Yamaguchi Y, Izumino K, et al. Evaluation of insulin response in glucose tolerance test in a patient with Werner’s syndrome: A 16-year follow-up study. Diabetes Nutr Metab 2000; 13(2): 113-8.
[PMID: 10898130]
[248]
Okabe E, Takemoto M, Onishi S, et al. Incidence and characteristics of metabolic disorders and vascular complications in individuals with Werner syndrome in Japan. J Am Geriatr Soc 2012; 60(5): 997-8.
[http://dx.doi.org/10.1111/j.1532-5415.2012.03944.x ] [PMID: 22587870]
[249]
Takemoto M, Kubota Y, Taniguchi T, et al. Management guideline for Werner syndrome. Diabetes associated with Werner syndrome. Geriatr Gerontol Int 2021; 21(2): 142-5.
[http://dx.doi.org/10.1111/ggi.14083 ] [PMID: 33169495]
[250]
Atallah I, McCormick D, Good JM, et al. Partial lipodystrophy, severe dyslipidaemia and insulin resistant diabetes as early signs of Werner syndrome. J Clin Lipidol 2022; 16(5): 583-90.
[http://dx.doi.org/10.1016/j.jacl.2022.06.004 ] [PMID: 35780059]
[251]
Wang X, Liu S, Qin F, Liu Q, Wang Q. Werner syndrome presenting as early-onset diabetes: A case report. J Diabetes Investig 2022; 13(3): 592-8.
[http://dx.doi.org/10.1111/jdi.13682]
[252]
Watanabe K, Kobayashi K, Takemoto M, et al. Sitagliptin improves postprandial hyperglycemia by inhibiting glucagon secretion in Werner syndrome with diabetes. Diabetes Care 2013; 36(8): e119.
[http://dx.doi.org/10.2337/dc13-0709 ] [PMID: 23881973]
[253]
Yamaga M, Takemoto M, Shoji M, et al. Werner syndrome: A model for sarcopenia due to accelerated aging. Aging 2017; 9(7): 1738-44.
[http://dx.doi.org/10.18632/aging.101265 ] [PMID: 28738022]
[254]
Tanaka F, Kuzuya M. Examination of the body composition of patients with Werner syndrome using bioelectrical impedance analysis. Geriatr Gerontol Int 2022; 22(1): 75-80.
[http://dx.doi.org/10.1111/ggi.14310 ] [PMID: 34841636]
[255]
Weedon MN, Ellard S, Prindle MJ, et al. An in-frame deletion at the polymerase active site of POLD1 causes a multisystem disorder with lipodystrophy. Nat Genet 2013; 45(8): 947-50.
[http://dx.doi.org/10.1038/ng.2670 ] [PMID: 23770608]
[256]
Gladys B, René W, Anabelle D, et al. Child to adulthood clinical description of MDPL syndrome due to a novel variant in POLD1. Eur J Med Genet 2021; 64(12): 104333.
[http://dx.doi.org/10.1016/j.ejmg.2021.104333 ] [PMID: 34517090]
[257]
Bappy MNI, Roy A, Rabbi MGR, et al. Scrutinizing Deleterious Nonsynonymous SNPs and Their Effect on Human POLD1 Gene. Genet Res 2022; 2022: 1-12.
[http://dx.doi.org/10.1155/2022/1740768 ] [PMID: 35620275]
[258]
Kamath-Loeb AS, Johansson E, Burgers PMJ, Loeb LA. Functional interaction between the Werner Syndrome protein and DNA polymerase δ. Proc Natl Acad Sci USA 2000; 97(9): 4603-8.
[http://dx.doi.org/10.1073/pnas.97.9.4603 ] [PMID: 10781066]
[259]
Kamath-Loeb AS, Shen JC, Schmitt MW, Loeb LA. The Werner syndrome exonuclease facilitates DNA degradation and high fidelity DNA polymerization by human DNA polymerase δ J Biol Chem 2012; 287(15): 12480-90.
[http://dx.doi.org/10.1074/jbc.M111.332577 ] [PMID: 22351772]
[260]
Chen T, Li M, Wu H, et al. Short stature as the first manifestation of mandibular hypoplasia, deafness, progeroid feature and lipodystrophy (MDPL) syndrome. Int J Clin Exp Med 2017; 10(2): 3876-83.
[261]
Elouej S, Beleza-Meireles A, Caswell R, et al. Exome sequencing reveals a de novo POLD1 mutation causing phenotypic variability in mandibular hypoplasia, deafness, progeroid features, and lipodystrophy syndrome (MDPL). Metabolism 2017; 71: 213-25.
[http://dx.doi.org/10.1016/j.metabol.2017.03.011 ] [PMID: 28521875]
[262]
Shastry S, Simha V, Godbole K, et al. A novel syndrome of mandibular hypoplasia, deafness, and progeroid features associated with lipodystrophy, undescended testes, and male hypogonadism. J Clin Endocrinol Metab 2010; 95(10): E192-7.
[http://dx.doi.org/10.1210/jc.2010-0419 ] [PMID: 20631028]
[263]
Sasaki H, Yanagi K, Ugi S, et al. Definitive diagnosis of mandibular hypoplasia, deafness, progeroid features and lipodystrophy (MDPL) syndrome caused by a recurrent <i>de novo</i> mutation in the <i>POLD1</i> gene. Endocr J 2018; 65(2): 227-38.
[http://dx.doi.org/10.1507/endocrj.EJ17-0287 ] [PMID: 29199204]
[264]
German J, Sanz MM, Ciocci S, Ye TZ, Ellis NA. Syndrome-causing mutations of the BLM gene in persons in the Bloom’s Syndrome Registry. Hum Mutat 2007; 28(8): 743-53.
[http://dx.doi.org/10.1002/humu.20501 ] [PMID: 17407155]
[265]
Gönenc II, Elcioglu NH, Martinez Grijalva C, et al. Phenotypic spectrum ofBLM ‐ andRMI1 ‐related Bloom syndrome. Clin Genet 2022; 101(5-6): 559-64.
[http://dx.doi.org/10.1111/cge.14125 ] [PMID: 35218564]
[266]
Bloom D. Congenital telangiectatic erythema resembling lupus erythematosus in dwarfs; probably a syndrome entity. AMA Am J Dis Child 1954; 88(6): 754-8.
[http://dx.doi.org/10.1001/archpedi.1954.02050100756008 ] [PMID: 13206391]
[267]
Diaz A, Vogiatzi MG, Sanz MM, German J. Evaluation of short stature, carbohydrate metabolism and other endocrinopathies in Bloom’s syndrome. Horm Res Paediatr 2006; 66(3): 111-7.
[http://dx.doi.org/10.1159/000093826 ] [PMID: 16763388]
[268]
Farhan SMK, Robinson JF, McIntyre AD, et al. A novel LIPE nonsense mutation found using exome sequencing in siblings with late-onset familial partial lipodystrophy. Can J Cardiol 2014; 30(12): 1649-54.
[http://dx.doi.org/10.1016/j.cjca.2014.09.007 ] [PMID: 25475467]
[269]
Garg A, Sankella S, Xing C, Agarwal AK. Whole-exome sequencing identifies ADRA2A mutation in atypical familial partial lipodystrophy. JCI Insight 2016; 1(9): e86870.
[http://dx.doi.org/10.1172/jci.insight.86870 ] [PMID: 27376152]
[270]
Rubio-Cabezas O, Puri V, Murano I, et al. Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC. EMBO Mol Med 2009; 1(5): 280-7.
[http://dx.doi.org/10.1002/emmm.200900037 ] [PMID: 20049731]
[271]
Ito M, Nagasawa M, Hara T, Ide T, Murakami K. Differential roles of CIDEA and CIDEC in insulin-induced anti-apoptosis and lipid droplet formation in human adipocytes. J Lipid Res 2010; 51(7): 1676-84.
[http://dx.doi.org/10.1194/jlr.M002147 ] [PMID: 20154362]
[272]
Ito M, Nagasawa M, Omae N, Ide T, Akasaka Y, Murakami K. Differential regulation of CIDEA and CIDEC expression by insulin via Akt1/2- and JNK2-dependent pathways in human adipocytes. J Lipid Res 2011; 52(8): 1450-60.
[http://dx.doi.org/10.1194/jlr.M012427 ] [PMID: 21636835]
[273]
Gandotra S, Le Dour C, Bottomley W, et al. Perilipin deficiency and autosomal dominant partial lipodystrophy. N Engl J Med 2011; 364(8): 740-8.
[http://dx.doi.org/10.1056/NEJMoa1007487 ] [PMID: 21345103]
[274]
Kozusko K, Tsang VHM, Bottomley W, et al. Clinical and molecular characterization of a novel PLIN1 frameshift mutation identified in patients with familial partial lipodystrophy. Diabetes 2015; 64(1): 299-310.
[http://dx.doi.org/10.2337/db14-0104 ] [PMID: 25114292]
[275]
Laver TW, Patel KA, Colclough K, et al. PLIN1 haploinsufficiency is not associated with lipodystrophy. J Clin Endocrinol Metab 2018; 103(9): 3225-30.
[http://dx.doi.org/10.1210/jc.2017-02662 ] [PMID: 30020498]
[276]
Patel KA, Burman S, Laver TW, Hattersley AT, Frayling TM, Weedon MN. PLIN1 haploinsufficiency causes a favorable metabolic profile. J Clin Endocrinol Metab 2022; 107(6): e2318-23.
[http://dx.doi.org/10.1210/clinem/dgac104 ] [PMID: 35235652]
[277]
Graul-Neumann LM, Kienitz T, Robinson PN, et al. Marfan syndrome with neonatal progeroid syndrome-like lipodystrophy associated with a novel frameshift mutation at the 3′ terminus of the FBN1-gene. Am J Med Genet A 2010; 152A(11): 2749-55.
[http://dx.doi.org/10.1002/ajmg.a.33690 ] [PMID: 20979188]
[278]
Horn D, Robinson PN. Progeroid facial features and lipodystrophy associated with a novel splice site mutation in the final intron of the FBN1 gene. Am J Med Genet A 2011; 155(4): 721-4.
[http://dx.doi.org/10.1002/ajmg.a.33905 ] [PMID: 21594993]
[279]
Goldblatt J, Hyatt J, Edwards C, Walpole I. Further evidence for a marfanoid syndrome with neonatal progeroid features and severe generalized lipodystrophy due to frameshift mutations near the 3′ end of the FBN1 gene. Am J Med Genet A 2011; 155(4): 717-20.
[http://dx.doi.org/10.1002/ajmg.a.33906 ] [PMID: 21594992]
[280]
Takenouchi T, Hida M, Sakamoto Y, et al. Severe congenital lipodystrophy and a progeroid appearance: Mutation in the penultimate exon of FBN1 causing a recognizable phenotype. Am J Med Genet A 2013; 161(12): 3057-62.
[http://dx.doi.org/10.1002/ajmg.a.36157 ] [PMID: 24039054]
[281]
Garg A, Xing C. De novo heterozygous FBN1 mutations in the extreme C-terminal region cause progeroid fibrillinopathy. Am J Med Genet A 2014; 164(5): 1341-5.
[http://dx.doi.org/10.1002/ajmg.a.36449 ] [PMID: 24665001]
[282]
Passarge E, Robinson PN, Graul-Neumann LM. Marfanoid–progeroid–lipodystrophy syndrome: A newly recognized fibrillinopathy. Eur J Hum Genet 2016; 24(9): 1244-7.
[http://dx.doi.org/10.1038/ejhg.2016.6 ] [PMID: 26860060]
[283]
Boden G, Chen X, Mozzoli M, Ryan I. Effect of fasting on serum leptin in normal human subjects. J Clin Endocrinol Metab 1996; 81(9): 3419-23.
[http://dx.doi.org/10.1210/jcem.81.9.8784108 ] [PMID: 8784108]
[284]
Considine RV, Sinha MK, Heiman ML, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 1996; 334(5): 292-5.
[http://dx.doi.org/10.1056/NEJM199602013340503 ] [PMID: 8532024]
[285]
Larsson H, Elmståhl S, Ahrén B. Plasma leptin levels correlate to islet function independently of body fat in postmenopausal women. Diabetes 1996; 45(11): 1580-4.
[http://dx.doi.org/10.2337/diab.45.11.1580 ] [PMID: 8866564]
[286]
Al-Shoumer KAS, Anyaoku V, Richmond W, Johnston DG. Elevated leptin concentrations in growth hormone-deficient hypopituitary adults. Clin Endocrinol (Oxf) 1997; 47(2): 153-9.
[http://dx.doi.org/10.1046/j.1365-2265.1997.2131054.x ] [PMID: 9302387]
[287]
Kolaczynski JW, Considine RV, Ohannesian J, et al. Responses of leptin to short-term fasting and refeeding in humans: A link with ketogenesis but not ketones themselves. Diabetes 1996; 45(11): 1511-5.
[http://dx.doi.org/10.2337/diab.45.11.1511 ] [PMID: 8866554]
[288]
Sinha MK, Opentanova I, Ohannesian JP, et al. Evidence of free and bound leptin in human circulation. Studies in lean and obese subjects and during short-term fasting. J Clin Invest 1996; 98(6): 1277-82.
[http://dx.doi.org/10.1172/JCI118913 ] [PMID: 8823291]
[289]
Hernández C, Simó R, Chacón P, et al. Influence of surgical stress and parenteral nutrition on serum leptin concentration. Clin Nutr 2000; 19(1): 61-4.
[http://dx.doi.org/10.1054/clnu.1999.0075 ] [PMID: 10700536]
[290]
Dubuc GR, Phinney SD, Stern JS, Havel PJ. Changes of serum leptin and endocrine and metabolic parameters after 7 days of energy restriction in men and women. Metabolism 1998; 47(4): 429-34.
[http://dx.doi.org/10.1016/S0026-0495(98)90055-5 ] [PMID: 9550541]
[291]
Kolaczynski JW, Ohannesian JP, Considine RV, Marco CC, Caro JF. Response of leptin to short-term and prolonged overfeeding in humans. J Clin Endocrinol Metab 1996; 81(11): 4162-5.
[http://dx.doi.org/10.1210/jcem.81.11.8923877 ] [PMID: 8923877]
[292]
Montague CT, Farooqi IS, Whitehead JP, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997; 387(6636): 903-8.
[http://dx.doi.org/10.1038/43185 ] [PMID: 9202122]
[293]
Strobel A, Issad T, Camoin L, Ozata M, Strosberg AD. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet 1998; 18(3): 213-5.
[http://dx.doi.org/10.1038/ng0398-213 ] [PMID: 9500540]
[294]
Gibson WT, Farooqi IS, Moreau M, et al. Congenital leptin deficiency due to homozygosity for the Delta133G mutation: Report of another case and evaluation of response to four years of leptin therapy. J Clin Endocrinol Metab 2004; 89(10): 4821-6.
[http://dx.doi.org/10.1210/jc.2004-0376 ] [PMID: 15472169]
[295]
Mazen I, Amr K, Tantawy S, Farooqi IS, El Gammal M. A novel mutation in the leptin gene (W121X) in an Egyptian family. Mol Genet Metab Rep 2014; 1: 474-6.
[http://dx.doi.org/10.1016/j.ymgmr.2014.10.002 ] [PMID: 27896126]
[296]
Ozsu E, Ceylaner S, Onay H. Early-onset severe obesity due to complete deletion of the leptin gene in a boy. J Pediatr Endocrinol Metab 2017; 30(11): 1227-30.
[http://dx.doi.org/10.1515/jpem-2017-0063 ] [PMID: 29040067]
[297]
Yupanqui-Lozno H, Bastarrachea RA, Yupanqui-Velazco ME, et al. Congenital leptin deficiency and leptin gene missense mutation found in two colombian sisters with severe obesity. Genes (Basel) 2019; 10(5): 342.
[http://dx.doi.org/10.3390/genes10050342 ] [PMID: 31067764]
[298]
Fırat SN, Onay H. Early-onset severe obesity due to homozygous p.R105W (c313C> T) mutation in leptin gene in Turkish siblings: Two cases reports. Obes Res Clin Pract 2021; 15(6): 600-3.
[http://dx.doi.org/10.1016/j.orcp.2021.11.001 ] [PMID: 34802983]
[299]
Wabitsch M, Funcke JB, Lennerz B, et al. Biologically inactive leptin and early-onset extreme obesity. N Engl J Med 2015; 372(1): 48-54.
[http://dx.doi.org/10.1056/NEJMoa1406653 ] [PMID: 25551525]
[300]
Heymsfield SB, Fong TM, Gantz I, Erondu N. Fat and energy partitioning: Longitudinal observations in leptin-treated adults homozygous for a Lep mutation. Obesity (Silver Spring) 2006; 14(2): 258-65.
[http://dx.doi.org/10.1038/oby.2006.33 ] [PMID: 16571851]
[301]
Fischer-Posovszky P, von Schnurbein J, Moepps B, et al. A new missense mutation in the leptin gene causes mild obesity and hypogonadism without affecting T cell responsiveness. J Clin Endocrinol Metab 2010; 95(6): 2836-40.
[http://dx.doi.org/10.1210/jc.2009-2466 ] [PMID: 20382689]
[302]
Farooqi IS, Jebb SA, Langmack G, et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 1999; 341(12): 879-84.
[http://dx.doi.org/10.1056/NEJM199909163411204 ] [PMID: 10486419]
[303]
Licinio J, Caglayan S, Ozata M, et al. Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults. Proc Natl Acad Sci USA 2004; 101(13): 4531-6.
[http://dx.doi.org/10.1073/pnas.0308767101 ] [PMID: 15070752]
[304]
Farooqi IS, Matarese G, Lord GM, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest 2002; 110(8): 1093-103.
[http://dx.doi.org/10.1172/JCI0215693 ] [PMID: 12393845]
[305]
Mazen I, El-Gammal M, Abdel-Hamid M, Amr K. A novel homozygous missense mutation of the leptin gene (N103K) in an obese Egyptian patient. Mol Genet Metab 2009; 97(4): 305-8.
[http://dx.doi.org/10.1016/j.ymgme.2009.04.002 ] [PMID: 19427251]
[306]
Paz-Filho G, Mastronardi C, Delibasi T, Wong ML, Licinio J. Congenital leptin deficiency: Diagnosis and effects of leptin replacement therapy. Arq Bras Endocrinol Metabol 2010; 54(8): 690-7.
[http://dx.doi.org/10.1590/S0004-27302010000800005 ] [PMID: 21340154]
[307]
von Schnurbein J, Heni M, Moss A, et al. Rapid improvement of hepatic steatosis after initiation of leptin substitution in a leptin-deficient girl. Horm Res Paediatr 2013; 79(5): 310-7.
[http://dx.doi.org/10.1159/000348541 ] [PMID: 23651953]
[308]
Brandt S, von Schnurbein J, Denzer C, Kratzer W, Wabitsch M. Lower circulating leptin levels are related to non-alcoholic fatty liver disease in children with obesity. Front Endocrinol (Lausanne) 2022; 13: 881982.
[http://dx.doi.org/10.3389/fendo.2022.881982 ] [PMID: 35677722]
[309]
Paz-Filho GJ, Delibasi T, Erol HK, Wong ML, Licinio J. Cellular immunity before and after leptin replacement therapy. J Pediatr Endocrinol Metab 2009; 22(11): 1069-74.
[http://dx.doi.org/10.1515/JPEM.2009.22.11.1069 ] [PMID: 20101893]
[310]
Farooqi IS, Wangensteen T, Collins S, et al. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med 2007; 356(3): 237-47.
[http://dx.doi.org/10.1056/NEJMoa063988 ] [PMID: 17229951]
[311]
Huvenne H, Le Beyec J, Pépin D, et al. Seven novel deleterious LEPR mutations found in early-onset obesity: A ΔExon6-8 shared by subjects from Reunion Island, France, suggests a founder effect. J Clin Endocrinol Metab 2015; 100(5): E757-66.
[http://dx.doi.org/10.1210/jc.2015-1036 ] [PMID: 25751111]
[312]
Clément K, Vaisse C, Lahlou N, et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 1998; 392(6674): 398-401.
[http://dx.doi.org/10.1038/32911 ] [PMID: 9537324]
[313]
Andiran N, Çelik N, Andiran F. Homozygosity for two missense mutations in the leptin receptor gene (P316T;W646C) in a Turkmenian girl with severe early-onset obesity. J Pediatr Endocrinol Metab 2011; 24(11-12): 1043-5.
[http://dx.doi.org/10.1515/JPEM.2011.313 ] [PMID: 22308862]
[314]
Mazen I, El-Gammal M, Abdel-Hamid M, Farooqi IS, Amr K. Homozygosity for a novel missense mutation in the leptin receptor gene (P316T) in two Egyptian cousins with severe early onset obesity. Mol Genet Metab 2011; 102(4): 461-4.
[http://dx.doi.org/10.1016/j.ymgme.2010.12.013 ] [PMID: 21306929]
[315]
Le Beyec J, Cugnet-Anceau C, Pépin D, et al. Homozygous leptin receptor mutation due to uniparental disomy of chromosome 1: Response to bariatric surgery. J Clin Endocrinol Metab 2013; 98(2): E397-402.
[http://dx.doi.org/10.1210/jc.2012-2779 ] [PMID: 23275530]
[316]
Niazi RK, Gjesing AP, Hollensted M, et al. Identification of novel LEPR mutations in Pakistani families with morbid childhood obesity. BMC Med Genet 2018; 19(1): 199.
[http://dx.doi.org/10.1186/s12881-018-0710-x ] [PMID: 30442103]
[317]
Nunziata A, Funcke JB, Borck G, et al. Functional and phenotypic characteristics of human leptin receptor mutations. J Endocr Soc 2019; 3(1): 27-41.
[http://dx.doi.org/10.1210/js.2018-00123 ] [PMID: 30560226]
[318]
Armağan C, Yılmaz C, Koç A. et al.A toddler with a novel LEPR mutation. Hormones (Athens) 2019; 18(2): 237-40.
[http://dx.doi.org/10.1007/s42000-019-00097-6] [PMID: 30778850]
[319]
Zorn S, von Schnurbein J, Kohlsdorf K, Denzer C, Wabitsch M. Diagnostic and therapeutic odyssey of two patients with compound heterozygous leptin receptor deficiency. Mol Cell Pediatr 2020; 7(1): 15.
[http://dx.doi.org/10.1186/s40348-020-00107-3 ] [PMID: 33140236]
[320]
Voigtmann F, Wolf P, Landgraf K, et al. Identification of a novel leptin receptor (LEPR) variant and proof of functional relevance directing treatment decisions in patients with morbid obesity. Metabolism 2021; 116: 154438.
[http://dx.doi.org/10.1016/j.metabol.2020.154438 ] [PMID: 33221380]
[321]
Chaves C, Kay T, Anselmo J. Early onset obesity due to a mutation in the human leptin receptor gene. Endocrinol Diabetes Metab Case Rep 2022; 2022: 21-0124.
[http://dx.doi.org/10.1530/EDM-21-0124 ] [PMID: 36001025]
[322]
Brandt S, Schnurbein J, Lennerz B, et al. Methylphenidate in children with monogenic obesity due to LEPR or MC4R deficiency improves feeling of satiety and reduces BMI‐SDS—A case series. Pediatr Obes 2020; 15(1): e12577.
[http://dx.doi.org/10.1111/ijpo.12577 ] [PMID: 31670905]
[323]
Clément K, van den Akker E, Argente J, et al. Efficacy and safety of setmelanotide, an MC4R agonist, in individuals with severe obesity due to LEPR or POMC deficiency: Single-arm, open-label, multicentre, phase 3 trials. Lancet Diabetes Endocrinol 2020; 8(12): 960-70.
[http://dx.doi.org/10.1016/S2213-8587(20)30364-8 ] [PMID: 33137293]
[324]
Krude H, Biebermann H, Luck W, Horn R, Brabant G, Grüters A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 1998; 19(2): 155-7.
[http://dx.doi.org/10.1038/509 ] [PMID: 9620771]
[325]
Yeo GSH, Farooqi IS, Aminian S, Halsall DJ, Stanhope RG, O’Rahilly S. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet 1998; 20(2): 111-2.
[http://dx.doi.org/10.1038/2404 ] [PMID: 9771698]
[326]
Vaisse C, Clement K, Guy-Grand B, Froguel P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet 1998; 20(2): 113-4.
[http://dx.doi.org/10.1038/2407 ] [PMID: 9771699]
[327]
Farooqi IS, Yeo GSH, Keogh JM, et al. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest 2000; 106(2): 271-9.
[http://dx.doi.org/10.1172/JCI9397 ] [PMID: 10903343]
[328]
Kobayashi H, Ogawa Y, Shintani M, et al. A Novel homozygous missense mutation of melanocortin-4 receptor (MC4R) in a Japanese woman with severe obesity. Diabetes 2002; 51(1): 243-6.
[http://dx.doi.org/10.2337/diabetes.51.1.243 ] [PMID: 11756348]
[329]
Farooqi IS, Keogh JM, Yeo GSH, Lank EJ, Cheetham T, O’Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 2003; 348(12): 1085-95.
[http://dx.doi.org/10.1056/NEJMoa022050 ] [PMID: 12646665]
[330]
Buono P, Pasanisi F, Nardelli C, et al. Six novel mutations in the proopiomelanocortin and melanocortin receptor 4 genes in severely obese adults living in southern Italy. Clin Chem 2005; 51(8): 1358-64.
[http://dx.doi.org/10.1373/clinchem.2005.047886 ] [PMID: 15951321]
[331]
Dubern B, Bisbis S, Talbaoui H, et al. Homozygous null mutation of the melanocortin-4 receptor and severe early-onset obesity. J Pediatr 2007; 150(6): 613-7.
[http://dx.doi.org/10.1016/j.jpeds.2007.01.041]
[332]
Martinelli CE, Keogh JM, Greenfield JR, et al. Obesity due to melanocortin 4 receptor (MC4R) deficiency is associated with increased linear growth and final height, fasting hyperinsulinemia, and incompletely suppressed growth hormone secretion. J Clin Endocrinol Metab 2011; 96(1): E181-8.
[http://dx.doi.org/10.1210/jc.2010-1369 ] [PMID: 21047921]
[333]
Thearle MS, Muller YL, Hanson RL, et al. Greater impact of melanocortin-4 receptor deficiency on rates of growth and risk of type 2 diabetes during childhood compared with adulthood in Pima Indians. Diabetes 2012; 61(1): 250-7.
[http://dx.doi.org/10.2337/db11-0708 ] [PMID: 22106157]
[334]
Vaisse C, Clement K, Durand E, Hercberg S, Guy-Grand B, Froguel P. Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Invest 2000; 106(2): 253-62.
[http://dx.doi.org/10.1172/JCI9238 ] [PMID: 10903341]
[335]
Lubrano-Berthelier C, Dubern B, Lacorte JM, et al. Melanocortin 4 receptor mutations in a large cohort of severely obese adults: Prevalence, functional classification, genotype-phenotype relationship, and lack of association with binge eating. J Clin Endocrinol Metab 2006; 91(5): 1811-8.
[http://dx.doi.org/10.1210/jc.2005-1411 ] [PMID: 16507637]
[336]
Lubrano-Berthelier C, Le Stunff C, Bougnères P, Vaisse C. A homozygous null mutation delineates the role of the melanocortin-4 receptor in humans. J Clin Endocrinol Metab 2004; 89(5): 2028-32.
[http://dx.doi.org/10.1210/jc.2003-031993 ] [PMID: 15126516]
[337]
Collet TH, Dubern B, Mokrosinski J, et al. Evaluation of a melanocortin-4 receptor (MC4R) agonist (Setmelanotide) in MC4R deficiency. Mol Metab 2017; 6(10): 1321-9.
[http://dx.doi.org/10.1016/j.molmet.2017.06.015 ] [PMID: 29031731]
[338]
Fojas EGF, Radha SK, Ali T, Nadler EP, Lessan N. Weight and glycemic control outcomes of bariatric surgery and pharmacotherapy in patients with melanocortin-4 receptor deficiency. Front Endocrinol (Lausanne) 2022; 12: 792354.
[http://dx.doi.org/10.3389/fendo.2021.792354 ] [PMID: 35095762]
[339]
Cooiman MI, Alsters SIM, Duquesnoy M, et al. Long-term weight outcome after bariatric surgery in patients with melanocortin-4 receptor gene variants: A Case–Control Study of 105 Patients. Obes Surg 2022; 32(3): 837-44.
[http://dx.doi.org/10.1007/s11695-021-05869-x ] [PMID: 34984630]
[340]
Geller F, Reichwald K, Dempfle A, et al. Melanocortin-4 receptor gene variant I103 is negatively associated with obesity. Am J Hum Genet 2004; 74(3): 572-81.
[http://dx.doi.org/10.1086/382490 ] [PMID: 14973783]
[341]
Stutzmann F, Vatin V, Cauchi S, et al. Non-synonymous polymorphisms in melanocortin-4 receptor protect against obesity: The two facets of a Janus obesity gene. Hum Mol Genet 2007; 16(15): 1837-44.
[http://dx.doi.org/10.1093/hmg/ddm132 ] [PMID: 17519222]
[342]
Krude H, Biebermann H, Schnabel D, et al. Obesity due to proopiomelanocortin deficiency: Three new cases and treatment trials with thyroid hormone and ACTH4-10. J Clin Endocrinol Metab 2003; 88(10): 4633-40.
[http://dx.doi.org/10.1210/jc.2003-030502 ] [PMID: 14557433]
[343]
Clément K, Dubern B, Mencarelli M, et al. Unexpected endocrine features and normal pigmentation in a young adult patient carrying a novel homozygous mutation in the POMC gene. J Clin Endocrinol Metab 2008; 93(12): 4955-62.
[http://dx.doi.org/10.1210/jc.2008-1164 ] [PMID: 18765507]
[344]
Darcan S, Can S, Goksen D, Asar G. Transient salt wasting in POMC-deficiency due to infection induced stress. Exp Clin Endocrinol Diabetes 2010; 118(4): 281-3.
[http://dx.doi.org/10.1055/s-0029-1241203 ] [PMID: 19998238]
[345]
Mendiratta MS, Yang Y, Balazs AE, et al. Early onset obesity and adrenal insufficiency associated with a homozygous POMC mutation. Int J Pediatr Endocrinol 2011; 2011(1): 5.
[http://dx.doi.org/10.1186/1687-9856-2011-5 ] [PMID: 21860632]
[346]
Cirillo G, Marini R, Ito S, et al. Lack of red hair phenotype in a North‐African obese child homozygous for a novel POMC null mutation: Nonsense‐mediated decay RNA evaluation and hair pigment chemical analysis. Br J Dermatol 2012; 167(6): 1393-5.
[http://dx.doi.org/10.1111/j.1365-2133.2012.11060.x ] [PMID: 22612534]
[347]
Hung CN, Poon WT, Lee CY, Law CY, Chan AYW. A case of early-onset obesity, hypocortisolism, and skin pigmentation problem due to a novel homozygous mutation in the proopiomelanocortin (POMC) gene in an Indian boy. J Pediatr Endocrinol Metab 2012; 25(1-2): 175-9.
[http://dx.doi.org/10.1515/jpem-2011-0437 ] [PMID: 22570972]
[348]
Ozen S, Aldemir O. Early-onset severe obesity with ACTH deficiency and red hair in a boy: The POMC deficiency. Genet Couns 2012; 23(4): 493-5.
[PMID: 23431750]
[349]
Aslan IR, Ranadive SA, Valle I, Kollipara S, Noble JA, Vaisse C. The melanocortin system and insulin resistance in humans: Insights from a patient with complete POMC deficiency and type 1 diabetes mellitus. Int J Obes 2014; 38(1): 148-51.
[http://dx.doi.org/10.1038/ijo.2013.53 ] [PMID: 23649472]
[350]
Ozsu E, Bahm A. Delayed diagnosis of proopiomelanocortin (POMC) deficiency with type 1 diabetes in a 9-year-old girl and her infant sibling. J Pediatr Endocrinol Metab 2017; 30(10): 1137-40.
[http://dx.doi.org/10.1515/jpem-2017-0064 ] [PMID: 28915118]
[351]
Hilado MA, Randhawa RS. A novel mutation in the proopiomelanocortin (POMC) gene of a Hispanic child: Metformin treatment shows a beneficial impact on the body mass index. J Pediatr Endocrinol Metab 2018; 31(7): 815-9.
[http://dx.doi.org/10.1515/jpem-2017-0467 ] [PMID: 29858905]
[352]
Çetinkaya S, Güran T, Kurnaz E, et al. A Patient with Proopiomelanocortin Deficiency: An Increasingly Important Diagnosis to Make. J Clin Res Pediatr Endocrinol 2018; 10(1): 68-73.
[http://dx.doi.org/10.4274/jcrpe.4638 ] [PMID: 28739551]
[353]
Graves LE, Khouri JM, Kristidis P, Verge CF. Proopiomelanocortin deficiency diagnosed in infancy in two boys and a review of the known cases. J Paediatr Child Health 2021; 57(4): 484-90.
[http://dx.doi.org/10.1111/jpc.15407 ] [PMID: 33666293]
[354]
Gregoric N, Groselj U, Bratina N, et al. Two cases with an early presented proopiomelanocortin deficiency—A long-term follow-up and systematic literature review. front endocrinol (Lausanne) 2021; 12: 689387.
[http://dx.doi.org/10.3389/fendo.2021.689387] [PMID: 34177811]
[355]
Farooqi IS, Drop S, Clements A, et al. Heterozygosity for a POMC-null mutation and increased obesity risk in humans. Diabetes 2006; 55(9): 2549-53.
[http://dx.doi.org/10.2337/db06-0214 ] [PMID: 16936203]
[356]
Hearn T, Spalluto C, Phillips VJ, et al. Subcellular localization of ALMS1 supports involvement of centrosome and basal body dysfunction in the pathogenesis of obesity, insulin resistance, and type 2 diabetes. Diabetes 2005; 54(5): 1581-7.
[http://dx.doi.org/10.2337/diabetes.54.5.1581 ] [PMID: 15855349]
[357]
Knorz VJ, Spalluto C, Lessard M, et al. Centriolar association of ALMS1 and likely centrosomal functions of the ALMS motif-containing proteins C10orf90 and KIAA1731. Mol Biol Cell 2010; 21(21): 3617-29.
[http://dx.doi.org/10.1091/mbc.e10-03-0246 ] [PMID: 20844083]
[358]
Marshall JD, Maffei P, Collin GB, Naggert JK. Alström syndrome: Genetics and clinical overview. Curr Genomics 2011; 12(3): 225-35.
[http://dx.doi.org/10.2174/138920211795677912 ] [PMID: 22043170]
[359]
Leitch CC, Lodh S, Prieto-Echagüe V, Badano JL, Zaghloul NA. Basal body proteins regulate Notch signaling via endosomal trafficking. J Cell Sci 2014; 127(Pt 11): jcs.130344.
[http://dx.doi.org/10.1242/jcs.130344] [PMID: 24681783]
[360]
Marshall JD, Bronson RT, Collin GB, et al. New Alström syndrome phenotypes based on the evaluation of 182 cases. Arch Intern Med 2005; 165(6): 675-83.
[http://dx.doi.org/10.1001/archinte.165.6.675 ] [PMID: 15795345]
[361]
Jatti K, Paisey R, More R. Coronary artery disease in Alström syndrome. Eur J Hum Genet 2012; 20(1): 117-8.
[http://dx.doi.org/10.1038/ejhg.2011.168 ] [PMID: 21897446]
[362]
Han JC, Reyes-Capo DP, Liu CY, et al. Comprehensive endocrine-metabolic evaluation of patients with alström syndrome compared with BMI-matched controls. J Clin Endocrinol Metab 2018; 103(7): 2707-19.
[http://dx.doi.org/10.1210/jc.2018-00496 ] [PMID: 29718281]
[363]
Satman I, Yılmaz Mt, Gürsoy N. et al.Evaluation of insulin resistant diabetes mellitus in Alström syndrome: A long-term prospective follow-up of three siblings. Diabetes Res Clin Pract 2002; 56(3): 189-96.
[http://dx.doi.org/10.1016/S0168-8227(02)00004-9 ] [PMID: 11947966]
[364]
Minton JAL, Owen KR, Ricketts CJ, et al. Syndromic obesity and diabetes: Changes in body composition with age and mutation analysis of ALMS1 in 12 United Kingdom kindreds with Alstrom syndrome. J Clin Endocrinol Metab 2006; 91(8): 3110-6.
[http://dx.doi.org/10.1210/jc.2005-2633 ] [PMID: 16720663]
[365]
Pirgon O, Atabek ME, Tanju IA. Metabolic syndrome features presenting in early childhood in Alström syndrome: A case report. J Clin Res Pediatr Endocrinol 2009; 1(6): 278-80.
[http://dx.doi.org/10.4274/jcrpe.v1i6.278 ] [PMID: 21274310]
[366]
Romano S, Maffei P, Bettini V, et al. Alström syndrome is associated with short stature and reduced GH reserve. Clin Endocrinol (Oxf) 2013; 79(4): 529-36.
[http://dx.doi.org/10.1111/cen.12180 ] [PMID: 23445176]
[367]
Paisey RB, Hodge D, Williams K. Body fat distribution, serum glucose, lipid and insulin response to meals in Alström syndrome. J Hum Nutr Diet 2008; 21(3): 268-74.
[http://dx.doi.org/10.1111/j.1365-277X.2008.00866.x ] [PMID: 18477182]
[368]
Mokashi A, Cummings EA. Presentation and course of diabetes in children and adolescents with Alstrom syndrome. Pediatr Diabetes 2011; 12(3pt2): 270-5.
[http://dx.doi.org/10.1111/j.1399-5448.2010.00698.x ] [PMID: 21518413]
[369]
Deveault C, Billingsley G, Duncan JL, et al. BBS genotype-phenotype assessment of a multiethnic patient cohort calls for a revision of the disease definition. Hum Mutat 2011; 32(6): 610-9.
[http://dx.doi.org/10.1002/humu.21480 ] [PMID: 21344540]
[370]
Feuillan PP, Ng D, Han JC, et al. Patients with Bardet-Biedl syndrome have hyperleptinemia suggestive of leptin resistance. J Clin Endocrinol Metab 2011; 96(3): E528-35.
[http://dx.doi.org/10.1210/jc.2010-2290 ] [PMID: 21209035]
[371]
Marion V, Stoetzel C, Schlicht D, et al. Transient ciliogenesis involving Bardet-Biedl syndrome proteins is a fundamental characteristic of adipogenic differentiation. Proc Natl Acad Sci USA 2009; 106(6): 1820-5.
[http://dx.doi.org/10.1073/pnas.0812518106 ] [PMID: 19190184]
[372]
Marion V, Mockel A, De Melo C, et al. BBS-induced ciliary defect enhances adipogenesis, causing paradoxical higher-insulin sensitivity, glucose usage, and decreased inflammatory response. Cell Metab 2012; 16(3): 363-77.
[http://dx.doi.org/10.1016/j.cmet.2012.08.005 ] [PMID: 22958920]
[373]
Green JS, Parfrey PS, Harnett JD, et al. The cardinal manifestations of Bardet-Biedl syndrome, a form of Laurence-Moon-Biedl syndrome. N Engl J Med 1989; 321(15): 1002-9.
[http://dx.doi.org/10.1056/NEJM198910123211503 ] [PMID: 2779627]
[374]
Carmi R, Elbedour K, Stone EM, Sheffield VC. Phenotypic differences among patients with Bardet-Biedl syndrome linked to three different chromosome loci. Am J Med Genet 1995; 59(2): 199-203.
[http://dx.doi.org/10.1002/ajmg.1320590216 ] [PMID: 8588586]
[375]
Beales PL, Elcioglu N, Woolf AS, Parker D, Flinter FA. New criteria for improved diagnosis of Bardet-Biedl syndrome: Results of a population survey. J Med Genet 1999; 36(6): 437-46.
[http://dx.doi.org/10.1136/jmg.36.6.437 ] [PMID: 10874630]
[376]
Iannello S, Bosco P, Cavaleri A, Camuto M, Milazzo P, Belfiore F. A review of the literature of Bardet-Biedl disease and report of three cases associated with metabolic syndrome and diagnosed after the age of fifty. Obes Rev 2002; 3(2): 123-35.
[http://dx.doi.org/10.1046/j.1467-789X.2002.00055.x ] [PMID: 12120419]
[377]
Keskin M, Atabek ME. Kurtoğlu S. Bardet-Biedl syndrome with syndrome X: A patient report. J Pediatr Endocrinol Metab 2004; 17(6): 913-5.
[http://dx.doi.org/10.1515/JPEM.2004.17.6.914 ] [PMID: 15270411]
[378]
Benzinou M, Walley A, Lobbens S, et al. Bardet-Biedl syndrome gene variants are associated with both childhood and adult common obesity in French Caucasians. Diabetes 2006; 55(10): 2876-82.
[http://dx.doi.org/10.2337/db06-0337 ] [PMID: 17003356]
[379]
Forsythe E, Beales PL. Bardet–Biedl syndrome. Eur J Hum Genet 2013; 21(1): 8-13.
[http://dx.doi.org/10.1038/ejhg.2012.115 ] [PMID: 22713813]
[380]
Lim ET, Liu YP, Chan Y, et al. A novel test for recessive contributions to complex diseases implicates Bardet-Biedl syndrome gene BBS10 in idiopathic type 2 diabetes and obesity. Am J Hum Genet 2014; 95(5): 509-20.
[http://dx.doi.org/10.1016/j.ajhg.2014.09.015 ] [PMID: 25439097]
[381]
Jeziorny K, Antosik K, Jakiel P. Młynarski W, Borowiec M, Zmysłowska A. Next-Generation Sequencing in the Diagnosis of Patients with Bardet–Biedl Syndrome—New Variants and Relationship with Hyperglycemia and Insulin Resistance. Genes (Basel) 2020; 11(11): 1283.
[http://dx.doi.org/10.3390/genes11111283 ] [PMID: 33138063]
[382]
Sherafat-Kazemzadeh R, Ivey L, Kahn SR, et al. Hyperphagia among patients with Bardet-Biedl syndrome. Pediatr Obes 2013; 8(5): e64-7.
[http://dx.doi.org/10.1111/j.2047-6310.2013.00182.x ] [PMID: 23776152]
[383]
Mujahid S, Hunt KF, Cheah YS, et al. The endocrine and metabolic characteristics of a Large Bardet-biedl syndrome clinic population. J Clin Endocrinol Metab 2018; 103(5): 1834-41.
[http://dx.doi.org/10.1210/jc.2017-01459 ] [PMID: 29409041]
[384]
Grace C, Beales P, Summerbell C, et al. Energy metabolism in Bardet–Biedl syndrome. Int J Obes 2003; 27(11): 1319-24.
[http://dx.doi.org/10.1038/sj.ijo.0802420 ] [PMID: 14574341]
[385]
Moore SJ, Green JS, Fan Y, et al. Clinical and genetic epidemiology of Bardet-Biedl syndrome in Newfoundland: A 22-year prospective, population-based, cohort study. Am J Med Genet A 2005; 132A(4): 352-60.
[http://dx.doi.org/10.1002/ajmg.a.30406 ] [PMID: 15637713]
[386]
Webb MP, Dicks EL, Green JS, et al. Autosomal recessive Bardet–Biedl syndrome: First-degree relatives have no predisposition to metabolic and renal disorders. Kidney Int 2009; 76(2): 215-23.
[http://dx.doi.org/10.1038/ki.2009.116 ] [PMID: 19367329]
[387]
Imhoff O, Marion V, Stoetzel C, et al. Bardet-Biedl Syndrome. Clin J Am Soc Nephrol 2011; 6(1): 22-9.
[http://dx.doi.org/10.2215/CJN.03320410 ] [PMID: 20876674]
[388]
Rouskas K, Paletas K, Kalogeridis A, et al. Association between BBS6/MKKS gene polymorphisms, obesity and metabolic syndrome in the Greek population. Int J Obes 2008; 32(11): 1618-25.
[http://dx.doi.org/10.1038/ijo.2008.167 ] [PMID: 18813213]
[389]
Hendricks AE, Bochukova EG, Marenne G, et al. Rare Variant Analysis of Human and Rodent Obesity Genes in Individuals with Severe Childhood Obesity. Sci Rep 2017; 7(1): 4394.
[http://dx.doi.org/10.1038/s41598-017-03054-8 ] [PMID: 28663568]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy