Review Article

组蛋白去乙酰化酶在NLRP3炎性体介导的癫痫中的作用

卷 24, 期 8, 2024

发表于: 12 September, 2023

页: [980 - 1003] 页: 24

弟呕挨: 10.2174/1566524023666230731095431

价格: $65

conference banner
摘要

癫痫是最常见的脑部疾病之一,不仅在世界范围内导致死亡,而且还影响患者的日常生活。以往的研究表明,炎症在癫痫的病理生理中起着重要作用。炎症小体的激活可以通过促进caspase-1的成熟和各种炎症效应物的分泌来促进神经炎症,包括趋化因子、白细胞介素和肿瘤坏死因子。随着对炎症小体在癫痫发生发展中的作用机制的深入研究,发现NLRP3炎症小体可能通过介导神经元炎症损伤、神经元丢失和血脑屏障功能障碍诱发癫痫。因此,阻断NLRP3炎性小体的激活可能是一种新的癫痫治疗策略。然而,特异性阻断NLRP3炎性小体组装的药物尚未被批准用于临床。本文就炎症调节剂HDACs调控NLRP3炎性小体激活的机制作一综述。这有助于探索HDAC抑制剂抑制脑炎性损伤的机制,为控制癫痫的发展提供潜在的治疗策略。

关键词: 组蛋白去乙酰化酶,癫痫,NLRP3炎性体,神经炎症,NF-κB, TNF-α。

[1]
Trinka E, Kwan P, Lee B, et al. Epilepsy in Asia: Disease burden, management barriers, and challenges. Epilepsia 2019; 60(S1): 7-21.
[2]
Farooqui AA, Ong WY, Horrocks LA. Inhibitors of brain phospholipase A2 activity: Their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol Rev 2006; 58(3): 591-620.
[http://dx.doi.org/10.1124/pr.58.3.7] [PMID: 16968951]
[3]
Pan W, Song X, Hu Q, Zhang Y. miR-485 inhibits histone deacetylase HDAC5, HIF1α and PFKFB3 expression to alleviate epilepsy in cellular and rodent models. Aging 2021; 13(10): 14416-32.
[http://dx.doi.org/10.18632/aging.203058] [PMID: 34021541]
[4]
Paudel YN. Role of innate immune receptor TLR4 and its endogenous ligands in epileptogenesis. Pharmacol Res 2020; 160105172.
[5]
Cai M, Lin W. The function of NF-Kappa B during epilepsy, a potential therapeutic target. Front Neurosci 2022; 16: 851394.
[6]
Martins-Ferreira R, Leal B, Chaves J, et al. Epilepsy progression is associated with cumulative DNA methylation changes in inflammatory genes. Prog Neurobiol 2022; 209: 102207.
[7]
Ellwanger K, Becker E, Kienes I, et al. The NLR family pyrin domain–containing 11 protein contributes to the regulation of inflammatory signaling. J Biol Chem 2018; 293(8): 2701-10.
[http://dx.doi.org/10.1074/jbc.RA117.000152] [PMID: 29301940]
[8]
Liu X, Xia S, Zhang Z, Wu H, Lieberman J. Channelling inflammation: Gasdermins in physiology and disease. Nat Rev Drug Discov 2021; 20(5): 384-405.
[http://dx.doi.org/10.1038/s41573-021-00154-z] [PMID: 33692549]
[9]
Denes A, Coutts G, Lénárt N, et al. AIM2 and NLRC4 inflammasomes contribute with ASC to acute brain injury independently of NLRP3. Proc Natl Acad Sci USA 2015; 112(13): 4050-5.
[http://dx.doi.org/10.1073/pnas.1419090112] [PMID: 25775556]
[10]
Xu J, Zhao X, Jiang X, et al. Tubastatin A improves post-resuscitation myocardial dysfunction by inhibiting NLRP3-mediated pyroptosis through enhancing transcription factor EB signaling. J Am Heart Assoc 2022; 11(7): e024205.
[http://dx.doi.org/10.1161/JAHA.121.024205] [PMID: 35322683]
[11]
Esih K. Goričar K, Soltirovska-Šalamon A, Dolžan V, Rener-Primec Z. Genetic polymorphisms, gene–gene interactions and neurologic sequelae at two years follow-up in newborns with hypoxic-ischemic encephalopathy treated with hypothermia. Antioxidants 2021; 10(9): 1495.
[http://dx.doi.org/10.3390/antiox10091495] [PMID: 34573127]
[12]
Endres M, Moro MA, Nolte CH, Dames C, Buckwalter MS, Meisel A. Immune pathways in etiology, acute phase, and chronic sequelae of ischemic stroke. Circ Res 2022; 130(8): 1167-86.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.319994] [PMID: 35420915]
[13]
Coll RC, Schroder K, Pelegrín P. NLRP3 and pyroptosis blockers for treating inflammatory diseases. Trends Pharmacol Sci 2022; 43(8): 653-68.
[http://dx.doi.org/10.1016/j.tips.2022.04.003] [PMID: 35513901]
[14]
Xia L, Liu L, Wang Q, et al. Relationship between the pyroptosis pathway and epilepsy: A bioinformatic analysis. Front Neurol 2021; 12: 782739.
[15]
Kovacs SB, Miao EA. Gasdermins: Effectors of pyroptosis. Trends Cell Biol 2017; 27(9): 673-84.
[http://dx.doi.org/10.1016/j.tcb.2017.05.005] [PMID: 28619472]
[16]
Xu C, Zhang S, Gong Y, et al. Subicular caspase-1 contributes to pharmacoresistance in temporal lobe epilepsy. Ann Neurol 2021; 90(3): 377-90.
[http://dx.doi.org/10.1002/ana.26173] [PMID: 34288031]
[17]
Wen S, Deng F, Li L, Xu L, Li X, Fan Q VX. VX765 amelioratesrenal injury and fibrosis in diabetes by regulating caspase-1-mediated pyroptosis and inflammation. J Diabetes Investig 2022; 13(1): 22-33.
[http://dx.doi.org/10.1111/jdi.13660] [PMID: 34494385]
[18]
Kumar H, Pandey S, Zou J, et al. NLRC5 deficiency does not influence cytokine induction by virus and bacteria infections. J Immunol 2011; 186(2): 994-1000.
[http://dx.doi.org/10.4049/jimmunol.1002094] [PMID: 21148033]
[19]
Lünemann JD, Malhotra S, Shinohara ML, Montalban X, Comabella M. Targeting inflammasomes to treat neurological diseases. Ann Neurol 2021; 90(2): 177-88.
[http://dx.doi.org/10.1002/ana.26158] [PMID: 34219266]
[20]
Lénárt N, Brough D, Dénes Á. Inflammasomes link vascular disease with neuroinflammation and brain disorders. J Cereb Blood Flow Metab 2016; 36(10): 1668-85.
[http://dx.doi.org/10.1177/0271678X16662043] [PMID: 27486046]
[21]
Guo Q, Wu Y, Hou Y, et al. Cytokine secretion and pyroptosis of thyroid follicular cells mediated by enhanced NLRP3, NLRP1, NLRC4, and AIM2 inflammasomes are associated with autoimmune thyroiditis. Front Immunol 2018; 9: 1197.
[22]
Wang C, Yang T, Xiao J, et al. NLRP3 inflammasome activation triggers gasdermin D–independent inflammation. Sci Immunol 2021; 6(64): eabj3859.
[http://dx.doi.org/10.1126/sciimmunol.abj3859] [PMID: 34678046]
[23]
Xu S, Bian H, Shu S, et al. AIM2 deletion enhances blood-brain barrier integrity in experimental ischemic stroke. CNS Neurosci Ther 2021; 27(10): 1224-37.
[http://dx.doi.org/10.1111/cns.13699] [PMID: 34156153]
[24]
Milikovsky DZ, Ofer J, Senatorov VV Jr, et al. Paroxysmal slow cortical activity in Alzheimer’s disease and epilepsy is associated with blood-brain barrier dysfunction. Sci Transl Med 2019; 11(521): eaaw8954.
[http://dx.doi.org/10.1126/scitranslmed.aaw8954] [PMID: 31801888]
[25]
Esteves AR, Munoz-Pinto MF. Footprints of a microbial toxin from the gut microbiome to mesencephalic mitochondria. Gut 2021; 72(1): 73-89.
[PMID: 34836918]
[26]
Gan H, Zhang L, Chen H, et al. The pivotal role of the NLRC4 inflammasome in neuroinflammation after intracerebral hemorrhage in rats. Exp Mol Med 2021; 53(11): 1807-18.
[http://dx.doi.org/10.1038/s12276-021-00702-y] [PMID: 34848837]
[27]
Li J, Hao JH, Yao D, et al. Caspase-1 inhibition prevents neuronal death by targeting the canonical inflammasome pathway of pyroptosis in a murine model of cerebral ischemia. CNS Neurosci Ther 2020; 26(9): 925-39.
[http://dx.doi.org/10.1111/cns.13384] [PMID: 32343048]
[28]
TRöSCHER AR, Gruber J, Wagner JN. Inflammation mediated epileptogenesis as possible mechanism underlying ischemic post-stroke epilepsy. Front Aging Neurosci 2021; 13: 781174.
[29]
Gao B, Wu Y, Yang YJ, et al. Sinomenine exerts anticonvulsant profile and neuroprotective activity in pentylenetetrazole kindled rats: involvement of inhibition of NLRP1 inflammasome. J Neuroinflammation 2018; 15(1): 152.
[http://dx.doi.org/10.1186/s12974-018-1199-0] [PMID: 29776417]
[30]
Wang YC, Li WZ. Acid-sensing ion channel 1a contributes to the effect of extracellular acidosis on NLRP1 inflammasome activation in cortical neurons. J Neuroinflammation 2015; 12: 246.
[31]
Tan CC, Zhang JG, Tan MS, et al. NLRP1 inflammasome is activated in patients with medial temporal lobe epilepsy and contributes to neuronal pyroptosis in amygdala kindling-induced rat model. J Neuroinflammation 2015; 12: 18.
[32]
Meihe L, Shan G, Minchao K, et al. The ferroptosis-NLRP1 inflammasome: The vicious cycle of an adverse pregnancy. Front Cell Dev Biol 2021; 9: 707959.
[33]
Shao C, Yuan J, Liu Y, et al. Epileptic brain fluorescent imaging reveals apigenin can relieve the myeloperoxidase-mediated oxidative stress and inhibit ferroptosis. Proc Natl Acad Sci 2020; 117(19): 10155-64.
[http://dx.doi.org/10.1073/pnas.1917946117] [PMID: 32327603]
[34]
Shao C, Liu Y, Chen Z, et al. 3D two-photon brain imaging reveals dihydroartemisinin exerts antiepileptic effects by modulating iron homeostasis. Cell Chem Biol 2022; 29(1): 43-56.e12.
[http://dx.doi.org/10.1016/j.chembiol.2021.12.006] [PMID: 34936859]
[35]
Chen K, Guan Q, Yin X, et al. Ferrostatin-1 obviates seizures and associated cognitive deficits in ferric chloride-induced posttraumatic epilepsy via suppressing ferroptosis. Free Radic Biol Med 2022; 179: 109-18.
[36]
Wang H, Xu P, Liao D, et al. Association between NLPR1, NLPR3, and P2X7R gene polymorphisms with partial seizures. BioMed Res Int 2017; 2017: 9547902.
[37]
Cheon SY, Kim EJ, Kim SY, et al. Apoptosis signal-regulating kinase 1 silencing on astroglial inflammasomes in an experimental model of ischemic stroke. Neuroscience 2018; 390: 218-30.
[38]
Sun X, Song X, Zhang L, et al. NLRP2 is highly expressed in a mouse model of ischemic stroke. Biochem Biophys Res Commun 2016; 479(4): 656-62.
[http://dx.doi.org/10.1016/j.bbrc.2016.09.157] [PMID: 27693696]
[39]
Zhang Q, Sun Y, He Z, et al. Kynurenine regulates NLRP2 inflammasome in astrocytes and its implications in depression. Brain Behav Immun 2020; 88: 471-81.
[40]
Billingham LK, Stoolman JS, Vasan K, et al. Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. Nat Immunol 2022; 23(5): 692-704.
[http://dx.doi.org/10.1038/s41590-022-01185-3] [PMID: 35484407]
[41]
Sharma BR, Kanneganti TD. NLRP3 inflammasome in cancer and metabolic diseases. Nat Immunol 2021; 22(5): 550-9.
[http://dx.doi.org/10.1038/s41590-021-00886-5] [PMID: 33707781]
[42]
Liu Q, Zhang D, Hu D, et al. The role of mitochondria in NLRP3 inflammasome activation. Mol Immunol 2018; 103: 115-24.
[43]
Groß CJ, Mishra R, Schneider KS, et al. K + efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria. Immunity 2016; 45(4): 761-73.
[http://dx.doi.org/10.1016/j.immuni.2016.08.010] [PMID: 27692612]
[44]
Bauernfeind FG, Horvath G, Stutz A, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 2009; 183(2): 787-91.
[http://dx.doi.org/10.4049/jimmunol.0901363] [PMID: 19570822]
[45]
Lamkanfi M, Dixit VM. Inflammasomes: Guardians of cytosolic sanctity. Immunol Rev 2009; 227(1): 95-105.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00730.x] [PMID: 19120479]
[46]
Park G, Moon BC, Ryu SM, et al. Cicadidae periostracum attenuates atopic dermatitis symptoms and pathology via the regulation of nlrp3 inflammasome activation. Oxid Med Cell Longev 2021; 2021: 8878153.
[47]
Hochheiser IV, Behrmann H, Hagelueken G, et al. Directionality of PYD filament growth determined by the transition of NLRP3 nucleation seeds to ASC elongation. Sci Adv 2022; 8(19): eabn7583.
[http://dx.doi.org/10.1126/sciadv.abn7583] [PMID: 35559676]
[48]
Huang Y, Zhou JH, Zhang H, et al. Brown adipose TRX2 deficiency activates mtDNA-NLRP3 to impair thermogenesis and protect against diet-induced insulin resistance. J Clin Invest 2022; 132(9): e148852.
[http://dx.doi.org/10.1172/JCI148852] [PMID: 35202005]
[49]
Xia S, Zhang Z, Magupalli VG, et al. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature 2021; 593(7860): 607-11.
[http://dx.doi.org/10.1038/s41586-021-03478-3] [PMID: 33883744]
[50]
Xiang T, Luo X, Ye L, et al. Klotho alleviates NLRP3 inflammasome-mediated neuroinflammation in a temporal lobe epilepsy rat model by activating the Nrf2 signaling pathway. Epilepsy Behav 2022; 128: 108509.
[51]
Lin WS, Hsu TR. Hypothesis: Febrile infection-related epilepsy syndrome is a microglial NLRP3 inflammasome/IL-1 axis-driven autoinflammatory syndrome. Clin Transl Immunology 2021; 10(6): e1299.
[http://dx.doi.org/10.1002/cti2.1299] [PMID: 34141434]
[52]
Yue J, Wei YJ, Yang XL, Liu SY, Yang H, Zhang CQ. NLRP3 inflammasome and endoplasmic reticulum stress in the epileptogenic zone in temporal lobe epilepsy: molecular insights into their interdependence. Neuropathol Appl Neurobiol 2020; 46(7): 770-85.
[http://dx.doi.org/10.1111/nan.12621] [PMID: 32311777]
[53]
Zhang H, Yu S, Xia L, Peng X, Wang S, Yao B. NLRP3 Inflammasome activation enhances ADK expression to accelerate epilepsy in mice. Neurochem Res 2022; 47(3): 713-22.
[http://dx.doi.org/10.1007/s11064-021-03479-8] [PMID: 34797502]
[54]
Sun Y, Ma J, Li D, et al. Interleukin-10 inhibits interleukin-1β production and inflammasome activation of microglia in epileptic seizures. J Neuroinflammation 2019; 16(1): 66.
[http://dx.doi.org/10.1186/s12974-019-1452-1] [PMID: 30922332]
[55]
He Q, Jiang L, Man S, Wu L, Hu Y, Chen W. Curcumin reduces neuronal loss and inhibits the NLRP3 inflammasome activation in an epileptic rat model. Curr Neurovasc Res 2018; 15(3): 186-92.
[http://dx.doi.org/10.2174/1567202615666180731100224] [PMID: 30062967]
[56]
Wang L, Ding J, Zhu C, et al. Semaglutide attenuates seizure severity and ameliorates cognitive dysfunction by blocking the NLR family pyrin domain containing 3 inflammasome in pentylenetetrazole kindled mice. Int J Mol Med 2021; 48(6): 219.
[http://dx.doi.org/10.3892/ijmm.2021.5052] [PMID: 34676876]
[57]
Gong L, Han Y, Chen R, Yang P, Zhang C. LncRNA ZNF883-Mediated NLRP3 inflammasome activation and epilepsy development involve USP47 upregulation. Mol Neurobiol 2022; 59(8): 5207-21.
[http://dx.doi.org/10.1007/s12035-022-02902-7] [PMID: 35678979]
[58]
Shen K, Mao Q, Yin X, et al. NLRP3 inflammasome activation leads to epileptic neurona l apoptosis. Curr Neurovasc Res 2019; 15(4): 276-81.
[http://dx.doi.org/10.2174/1567202616666181122165540] [PMID: 30468127]
[59]
Rong S, Wan D, Fan Y, et al. Amentoflavone affects epileptogenesis and exerts neuroprotective effects by inhibiting NLRP3 inflammasome. Front Pharmacol 2019; 10: 856.
[60]
Franke M, Bieber M, Kraft P, et al. The NLRP3 inflammasome drives inflammation in ischemia/reperfusion injury after transient middle cerebral artery occlusion in mice. Brain Behav Immun 2021; 92: 223-33.
[61]
Zusso M, Lunardi V, Franceschini D, et al. Ciprofloxacin and levofloxacin attenuate microglia inflammatory response via TLR4/NF-kB pathway. J Neuroinflammation 2019; 16(1): 148.
[http://dx.doi.org/10.1186/s12974-019-1538-9] [PMID: 31319868]
[62]
Scheiblich H, Bousset L, Schwartz S, et al. Microglial NLRP3 inflammasome activation upon TLR2 and TLR5 ligation by distinct α-synuclein assemblies. J Immunol 2021; 207(8): 2143-54.
[http://dx.doi.org/10.4049/jimmunol.2100035] [PMID: 34507948]
[63]
Zhao MW, Qiu WJ. SP1 activated-lncRNA SNHG1 mediates the development of epilepsy via miR-154-5p/TLR5 axis. Epilepsy Res 2020; 168: 106476.
[64]
Cui Y, Zhang NN. Modified citrus pectin alleviates cerebral ischemia/reperfusion injury by inhibiting NLRP3 inflammasome activation via TLR4/NF-ĸB signaling pathway in microglia. J Inflamm Res 2022; 15: 3369-85.
[65]
Wang J, Zhang F, Xu H, et al. TLR4 aggravates microglial pyroptosis by promoting DDX3X-mediated NLRP3 inflammasome activation via JAK2/STAT1 pathway after spinal cord injury. Clin Transl Med 2022; 12(6): e894.
[http://dx.doi.org/10.1002/ctm2.894] [PMID: 35692100]
[66]
Li C, Zhao Z, Luo Y, et al. Macrophage-disguised manganese dioxide nanoparticles for neuroprotection by reducing oxidative stress and modulating inflammatory microenvironment in acute ischemic stroke. Adv Sci 2021; 8(20): 2101526.
[http://dx.doi.org/10.1002/advs.202101526] [PMID: 34436822]
[67]
Li D, Ren W, Jiang Z, Zhu L. Regulation of the NLRP3 inflammasome and macrophage pyroptosis by the p38 MAPK signaling pathway in a mouse model of acute lung injury. Mol Med Rep 2018; 18(5): 4399-409.
[http://dx.doi.org/10.3892/mmr.2018.9427] [PMID: 30152849]
[68]
Guan Y, Li L, Kan L, et al. Inhalation of salvianolic acid B prevents fine particulate matter-induced acute airway inflammation and oxidative stress by downregulating the LTR4/MyD88/NLRP3 pathway. Oxid Med Cell Longev 2022; 2022: 5044356.
[69]
Li W, Ali T, He K, et al. Ibrutinib alleviates LPS-induced neuroinflammation and synaptic defects in a mouse model of depression. Brain Behav Immun 2021; 92: 10-24.
[70]
Chen J, Mao K, Yu H, et al. p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson’s disease. J Neuroinflammation 2021; 18(1): 295.
[http://dx.doi.org/10.1186/s12974-021-02349-y] [PMID: 34930303]
[71]
Qin Z, Song J, Lin A, et al. GPR120 modulates epileptic seizure and neuroinflammation mediated by NLRP3 inflammasome. J Neuroinflammation 2022; 19(1): 121.
[http://dx.doi.org/10.1186/s12974-022-02482-2] [PMID: 35624482]
[72]
Webster KM, Sun M, Crack P, O’Brien TJ, Shultz SR, Semple BD. Inflammation in epileptogenesis after traumatic brain injury. J Neuroinflammation 2017; 14(1): 10.
[http://dx.doi.org/10.1186/s12974-016-0786-1] [PMID: 28086980]
[73]
Zhong Z, Umemura A, Sanchez-Lopez E, et al. NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell 2016; 164(5): 896-910.
[http://dx.doi.org/10.1016/j.cell.2015.12.057] [PMID: 26919428]
[74]
Wu KKL, Long K, Lin H, et al. The APPL1-Rab5 axis restricts NLRP3 inflammasome activation through early endosomal-dependent mitophagy in macrophages. Nat Commun 2021; 12(1): 6637.
[http://dx.doi.org/10.1038/s41467-021-26987-1] [PMID: 34789781]
[75]
Tapia-Abellán A, Angosto-Bazarra D, Alarcón-Vila C, et al. Sensing low intracellular potassium by NLRP3 results in a stable open structure that promotes inflammasome activation. Sci Adv 2021; 7(38): eabf4468.
[http://dx.doi.org/10.1126/sciadv.abf4468] [PMID: 34524838]
[76]
Tang T, Lang X, Xu C, et al. CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation. Nat Commun 2017; 8(1): 202.
[http://dx.doi.org/10.1038/s41467-017-00227-x] [PMID: 28779175]
[77]
Yu S, Green J, Wellens R, Lopez-Castejon G, Brough D. Bafilomycin A1 enhances NLRP3 inflammasome activation in human monocytes independent of lysosomal acidification. FEBS J 2021; 288(10): 3186-96.
[http://dx.doi.org/10.1111/febs.15619] [PMID: 33145969]
[78]
Prendecki M, McAdoo SP, Turner-Stokes T, et al. Glomerulonephritis and autoimmune vasculitis are independent of P2RX7 but may depend on alternative inflammasome pathways. J Pathol 2022; 257(3): 300-13.
[http://dx.doi.org/10.1002/path.5890] [PMID: 35239186]
[79]
Katsnelson MA, Lozada-Soto KM, Russo HM, Miller BA, Dubyak GR. NLRP3 inflammasome signaling is activated by low-level lysosome disruption but inhibited by extensive lysosome disruption: Roles for K + efflux and Ca 2+ influx. Am J Physiol Cell Physiol 2016; 311(1): C83-C100.
[http://dx.doi.org/10.1152/ajpcell.00298.2015] [PMID: 27170638]
[80]
Hseu YC, Tseng YF. Coenzyme Q(0) inhibits NLRP3 inflammasome activation through mitophagy induction in LPS/ATP-stimulated macrophages. Oxid Med Cell Longev 2022; 2022: 4266214.
[81]
Molagoda IMN, Athapaththu AMGK, Choi YH, et al. Fisetin inhibits NLRp3 inflammasome by suppressing TLR4/MD2-mediated mitochondrial ROS production. Antioxidants 2021; 10(8): 1215.
[http://dx.doi.org/10.3390/antiox10081215] [PMID: 34439462]
[82]
Kapetanovic R, Bokil NJ, Sweet MJ. Innate immune perturbations, accumulating DAMPs and inflammasome dysregulation: A ticking time bomb in ageing. Ageing Res Rev 2015; 24(Pt A): 40-53.
[83]
Dong H, Zhao B, Chen J, et al. Mitochondrial calcium uniporter promotes phagocytosis-dependent activation of the NLRP3 inflammasome. Proc Natl Acad Sci 2022; 119(26): e2123247119.
[http://dx.doi.org/10.1073/pnas.2123247119] [PMID: 35733245]
[84]
Shimada K, Crother TR, Karlin J, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 2012; 36(3): 401-14.
[http://dx.doi.org/10.1016/j.immuni.2012.01.009] [PMID: 22342844]
[85]
Liu X, Chen Z. The pathophysiological role of mitochondrial oxidative stress in lung diseases. J Transl Med 2017; 15(1): 207.
[http://dx.doi.org/10.1186/s12967-017-1306-5] [PMID: 29029603]
[86]
Yang N, Guan QW, Chen FH, et al. Antioxidants targeting mitochondrial oxidative stress: promising neuroprotectants for epilepsy. Oxid Med Cell Longev 2020; 2020: 6687185.
[87]
Bronner DN, Abuaita BH, Chen X, et al. Endoplasmic reticulum stress activates the inflammasome via NLRP3- and caspase-2-driven mitochondrial damage. Immunity 2015; 43(3): 451-62.
[http://dx.doi.org/10.1016/j.immuni.2015.08.008] [PMID: 26341399]
[88]
Molagoda IMN, Lee KT, Choi YH, et al. Anthocyanins from hibiscus syriacus L. Inhibit NLRP3 inflammasome in BV2 microglia cells by alleviating NF-κB- and ER stress-induced Ca(2+) accumulation and mitochondrial ROS production. Oxid Med Cell Longev 2021; 2021: 1246491.
[89]
O’Neill LAJ. Cardiolipin and the Nlrp3 inflammasome. Cell Metab 2013; 18(5): 610-2.
[http://dx.doi.org/10.1016/j.cmet.2013.10.013] [PMID: 24206659]
[90]
Jiang Q, Tang G, Zhong XM, Ding DR, Wang H, Li JN. Role of Stat3 in NLRP3/caspase-1-mediated hippocampal neuronal pyroptosis in epileptic mice. Synapse 2021; 75(12): e22221.
[http://dx.doi.org/10.1002/syn.22221] [PMID: 34958692]
[91]
Ni DX. Synthesis of nigranoic acid and manwuweizic acid derivatives as HDAC inhibitors and anti-inflammatory agents. Bioorg Chem 2021; 109: 104728.
[92]
Shakespear MR, Halili MA, Irvine KM, Fairlie DP, Sweet MJ. Histone deacetylases as regulators of inflammation and immunity. Trends Immunol 2011; 32(7): 335-43.
[http://dx.doi.org/10.1016/j.it.2011.04.001] [PMID: 21570914]
[93]
Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 2009; 10(1): 32-42.
[http://dx.doi.org/10.1038/nrg2485] [PMID: 19065135]
[94]
Kumar V, Kundu S, Singh A, Singh S. Understanding the role of histone deacetylase and their inhibitors in neurodegenerative disorders: Current targets and future perspective. Curr Neuropharmacol 2022; 20(1): 158-78.
[http://dx.doi.org/10.2174/1570159X19666210609160017] [PMID: 34151764]
[95]
Kumar S, Attrish D, Srivastava A, et al. Non-histone substrates of histone deacetylases as potential therapeutic targets in epilepsy. Expert Opin Ther Targets 2021; 25(1): 75-85.
[http://dx.doi.org/10.1080/14728222.2021.1860016] [PMID: 33275850]
[96]
Ellmeier W, Seiser C. Histone deacetylase function in CD4+ T cells. Nat Rev Immunol 2018; 18(10): 617-34.
[http://dx.doi.org/10.1038/s41577-018-0037-z] [PMID: 30022149]
[97]
Demyanenko S, Neginskaya M, Berezhnaya E. Expression of class I histone deacetylases in ipsilateral and contralateral hemispheres after the focal photothrombotic infarction in the mouse brain. Transl Stroke Res 2018; 9(5): 471-83.
[http://dx.doi.org/10.1007/s12975-017-0595-6] [PMID: 29218547]
[98]
Bradley EW, Carpio LR, van Wijnen AJ, McGee-Lawrence ME, Westendorf JJ. Histone deacetylases in bone development and skeletal disorders. Physiol Rev 2015; 95(4): 1359-81.
[http://dx.doi.org/10.1152/physrev.00004.2015] [PMID: 26378079]
[99]
Santos L, Escande C, Denicola A. Potential modulation of sirtuins by oxidative stress. Oxid Med Cell Longev 2016; 2016: 9831825.
[100]
Huberfeld G, Vecht CJ. Seizures and gliomas — towards a single therapeutic approach. Nat Rev Neurol 2016; 12(4): 204-16.
[http://dx.doi.org/10.1038/nrneurol.2016.26] [PMID: 26965673]
[101]
Simeone TA, Simeone KA, Rho JM. Ketone bodies as anti-seizure agents. Neurochem Res 2017; 42(7): 2011-8.
[http://dx.doi.org/10.1007/s11064-017-2253-5] [PMID: 28397070]
[102]
Srivastava A, Banerjee J, Dubey V, et al. Role of altered expression, activity and sub-cellular distribution of various histone deacetylases (HDACs) in mesial temporal lobe epilepsy with hippocampal sclerosis. Cell Mol Neurobiol 2022; 42(4): 1049-64.
[http://dx.doi.org/10.1007/s10571-020-00994-0] [PMID: 33258018]
[103]
Mondello P, Brea EJ, De Stanchina E, et al. Panobinostat acts synergistically with ibrutinib in diffuse large B cell lymphoma cells with MyD88 L265 mutations. JCI Insight 2017; 2(6): e90196.
[http://dx.doi.org/10.1172/jci.insight.90196] [PMID: 28352655]
[104]
Pan X, Fang X, Wang F, et al. Butyrate ameliorates caerulein-induced acute pancreatitis and associated intestinal injury by tissue-specific mechanisms. Br J Pharmacol 2019; 176(23): 4446-61.
[http://dx.doi.org/10.1111/bph.14806] [PMID: 31347703]
[105]
Wu C, Su Z, Lin M, et al. NLRP11 attenuates Toll-like receptor signalling by targeting TRAF6 for degradation via the ubiquitin ligase RNF19A. Nat Commun 2017; 8(1): 1977.
[http://dx.doi.org/10.1038/s41467-017-02073-3] [PMID: 29215004]
[106]
Picard C, Casanova JL, Puel A. Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IκBα deficiency. Clin Microbiol Rev 2011; 24(3): 490-7.
[http://dx.doi.org/10.1128/CMR.00001-11] [PMID: 21734245]
[107]
Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ, Han M. Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention. Signal Transduct Target Ther 2022; 7(1): 131.
[http://dx.doi.org/10.1038/s41392-022-00955-7] [PMID: 35459215]
[108]
Jagirdar R, Drexel M, Kirchmair E, et al. Rapid changes in expression of class I and IV histone deacetylases during epileptogenesis in mouse models of temporal lobe epilepsy. Exp Neurol 2015; 273: 92-104.
[109]
Li F, Zhao H, Li G, et al. Intravenous antagomiR-494 lessens brain-infiltrating neutrophils by increasing HDAC2-mediated repression of multiple MMPs in experimental stroke. FASEB J 2020; 34(5): 6934-49.
[http://dx.doi.org/10.1096/fj.201903127R] [PMID: 32239566]
[110]
Jia T, Wang M, Yan W, et al. Upregulation of miR-489-3p attenuates cerebral ischemia/reperfusion injury by targeting histone deacetylase 2 (HDAC2). Neuroscience 2022; 484: 16-25.
[111]
Miao J, Zhou X, Ji T, Chen G. NF-κB p65-dependent transcriptional regulation of histone deacetylase 2 contributes to the chronic constriction injury-induced neuropathic pain via the microRNA-183/TXNIP/NLRP3 axis. J Neuroinflammation 2020; 17(1): 225.
[http://dx.doi.org/10.1186/s12974-020-01901-6] [PMID: 32723328]
[112]
Zhao L, Li J. Impact of drug treatment and drug interactions in post-stroke epilepsy. Pharmacol Ther 2022; 233: 108030.
[113]
Ferreira-Atuesta C, Döhler N, Erdélyi-Canavese B, et al. Seizures after ischemic stroke: A matched multicenter study. Ann Neurol 2021; 90(5): 808-20.
[http://dx.doi.org/10.1002/ana.26212] [PMID: 34505305]
[114]
Wang Y, Chen Q, Jiao F, et al. Histone deacetylase 2 regulates ULK1 mediated pyroptosis during acute liver failure by the K68 acetylation site. Cell Death Dis 2021; 12(1): 55.
[http://dx.doi.org/10.1038/s41419-020-03317-9] [PMID: 33431796]
[115]
Weng D, Gao S, Shen H, et al. CD5L attenuates allergic airway inflammation by expanding CD11c HIGH alveolar macrophages and inhibiting NLRP3 inflammasome activation via HDAC2. Immunology 2022; 167(3): 384-97.
[http://dx.doi.org/10.1111/imm.13543] [PMID: 35794812]
[116]
Dai C, Liu B, Peng B, et al. Entinostat improves motor function and neuronal damage via downregulating nlrp3 inflammasome activation after spinal cord injury. Front Pharmacol 2021; 12: 774539.
[http://dx.doi.org/10.3389/fphar.2021.774539] [PMID: 34899337]
[117]
Tribble JR. Valproic acid reduces neuroinflammation to provide retinal ganglion cell neuroprotection in the retina axotomy model. Front Cell Dev Biol 2022; 10: 903436.
[118]
Yadav A, Huang TC, Chen SH, et al. Sodium phenylbutyrate inhibits Schwann cell inflammation via HDAC and NFκB to promote axonal regeneration and remyelination. J Neuroinflammation 2021; 18(1): 238.
[http://dx.doi.org/10.1186/s12974-021-02273-1] [PMID: 34656124]
[119]
Jia P, Li X, Wang X, et al. ZMYND8 mediated liquid condensates spatiotemporally decommission the latent super-enhancers during macrophage polarization. Nat Commun 2021; 12(1): 6535.
[http://dx.doi.org/10.1038/s41467-021-26864-x] [PMID: 34764296]
[120]
Yu X, Yu W, Wu L, et al. Chitotriosidase attenuates brain inflammation via HDAC3/NF-κB pathway in D-galactose and aluminum-induced rat model with cognitive impairments. Neurosci Res 2021; 172: 73-9.
[121]
Zhang F, Qi L, Feng Q, et al. HIPK2 phosphorylates HDAC3 for NF-κB acetylation to ameliorate colitis-associated colorectal carcinoma and sepsis. Proc Natl Acad Sci 2021; 118(28): e2021798118.
[http://dx.doi.org/10.1073/pnas.2021798118]
[122]
Lee IK, Song H, Kim H, et al. RORα regulates cholesterol metabolism of CD8+ T cells for anticancer immunity. Cancers 2020; 12(7): 1733.
[http://dx.doi.org/10.3390/cancers12071733]
[123]
Chen S, Ye J, Chen X, et al. Valproic acid attenuates traumatic spinal cord injury-induced inflammation via STAT1 and NF-κB pathway dependent of HDAC3. J Neuroinflammation 2018; 15(1): 150.
[http://dx.doi.org/10.1186/s12974-018-1193-6] [PMID: 29776446]
[124]
Chi Z, Chen S, Xu T, et al. Histone deacetylase 3 couples mitochondria to drive IL-1β-dependent inflammation by configuring fatty acid oxidation. Mol Cell 2020; 80(1): 43-58.e7.
[http://dx.doi.org/10.1016/j.molcel.2020.08.015] [PMID: 32937100]
[125]
Chakraborty K, Raundhal M, Chen BB, et al. The mito-DAMP cardiolipin blocks IL-10 production causing persistent inflammation during bacterial pneumonia. Nat Commun 2017; 8: 13944.
[126]
Sanford JA, Zhang LJ, Williams MR, Gangoiti JA, Huang CM, Gallo RL. Inhibition of HDAC8 and HDAC9 by microbial short-chain fatty acids breaks immune tolerance of the epidermis to TLR ligands. Sci Immunol 2016; 1(4): eaah4609.
[http://dx.doi.org/10.1126/sciimmunol.aah4609] [PMID: 28783689]
[127]
Sawada Y, Nakatsuji T, Dokoshi T, et al. Cutaneous innate immune tolerance is mediated by epigenetic control of MAP2K3 by HDAC8/9. Sci Immunol 2021; 6(59): eabe1935.
[http://dx.doi.org/10.1126/sciimmunol.abe1935] [PMID: 34021025]
[128]
Li S, Fossati G, Marchetti C, et al. Specific inhibition of histone deacetylase 8 reduces gene expression and production of proinflammatory cytokines in vitro and in vivo. J Biol Chem 2015; 290(4): 2368-78.
[http://dx.doi.org/10.1074/jbc.M114.618454] [PMID: 25451941]
[129]
Wang C, Hockerman S, Jacobsen EJ, et al. Selective inhibition of the p38α MAPK–MK2 axis inhibits inflammatory cues including inflammasome priming signals. J Exp Med 2018; 215(5): 1315-25.
[http://dx.doi.org/10.1084/jem.20172063] [PMID: 29549113]
[130]
Choubey D. Type I interferon (IFN)-inducible Absent in Melanoma 2 proteins in neuroinflammation: implications for Alzheimer’s disease. J Neuroinflammation 2019; 16(1): 236.
[http://dx.doi.org/10.1186/s12974-019-1639-5] [PMID: 31771614]
[131]
Lee CH, Choi Y, Cho H, et al. Histone deacetylase 8 inhibition alleviates cholestatic liver injury and fibrosis. Biochem Pharmacol 2021; 183: 114312.
[132]
Yang CX, Bao F, Zhong J, et al. The inhibitory effects of class I histone deacetylases on hippocampal neuro-inflammatory regulation in aging mice with postoperative cognitive dysfunction. Eur Rev Med Pharmacol Sci 2020; 24(19): 10194-202.
[PMID: 33090427]
[133]
Hinrichsen F, Hamm J, Westermann M, et al. Microbial regulation of hexokinase 2 links mitochondrial metabolism and cell death in colitis. Cell Metab 2021; 33(12): 2355-2366.e8.
[http://dx.doi.org/10.1016/j.cmet.2021.11.004] [PMID: 34847376]
[134]
Uytterhoeven V, Kaempf N, Verstreken P. Mitochondria re-set epilepsy. Neuron 2019; 102(5): 907-10.
[http://dx.doi.org/10.1016/j.neuron.2019.05.023] [PMID: 31170397]
[135]
Sykes L, Wood E, Kwan J. Antiepileptic drugs for the primary and secondary prevention of seizures after stroke. Cochrane Database Syst Rev 2014; 1: CD005398.
[136]
Cui S, Wang C, Bai W, et al. CD1d1 intrinsic signaling in macrophages controls NLRP3 inflammasome expression during inflammation. Sci Adv 2020; 6(43): eaaz7290.
[http://dx.doi.org/10.1126/sciadv.aaz7290] [PMID: 33087357]
[137]
Hong Z, Zhang X, Zhang T, et al. The ROS/GRK2/HIF- 1α/NLRP3 pathway mediates pyroptosis of fibroblast-like synoviocytes and the regulation of monomer derivatives of paeoniflorin. Oxid Med Cell Longev 2022; 2022: 4566851.
[http://dx.doi.org/10.1155/2022/4566851] [PMID: 35132350]
[138]
Chen H, Deng Y, Gan X, et al. NLRP12 collaborates with NLRP3 and NLRC4 to promote pyroptosis inducing ganglion cell death of acute glaucoma. Mol Neurodegener 2020; 15(1): 26.
[http://dx.doi.org/10.1186/s13024-020-00372-w] [PMID: 32295623]
[139]
Luan B, Goodarzi MO, Phillips NG, et al. Leptin-mediated increases in catecholamine signaling reduce adipose tissue inflammation via activation of macrophage HDAC4. Cell Metab 2014; 19(6): 1058-65.
[http://dx.doi.org/10.1016/j.cmet.2014.03.024] [PMID: 24768298]
[140]
Fang J, She J, Lin F, et al. RRx-001 exerts neuroprotection against LPS-induced microglia activation and neuroinflammation through disturbing the TLR4 pathway. Front Pharmacol 2022; 13: 889383.
[http://dx.doi.org/10.3389/fphar.2022.889383] [PMID: 35462935]
[141]
Liu S, Tao J, Duan F, Li H, Tan H. HHcy induces pyroptosis and atherosclerosis via the lipid raft-mediated nox-ros-nlrp3 inflammasome pathway in apoE–/– Mice. Cells 2022; 11(15): 2438.
[http://dx.doi.org/10.3390/cells11152438]
[142]
Zhang Q Y, Wang Z J, Sun D M, et al. Novel therapeutic effects of leonurine on ischemic stroke: New mechanisms of BBB integrity. Oxid Med Cell Longev 2017; 2017: 7150376.
[http://dx.doi.org/10.1155/2017/7150376] [PMID: 28690765 ]
[143]
Sohrabji F. Estrogen-IGF-1 interactions in neuroprotection: ischemic stroke as a case study. Front Neuroendocrinol 2015; 36: 1-14.
[144]
Jagirdar R, Drexel M, Bukovac A, Tasan RO, Sperk G. Expression of class II histone deacetylases in two mouse models of temporal lobe epilepsy. J Neurochem 2016; 136(4): 717-30.
[http://dx.doi.org/10.1111/jnc.13440] [PMID: 26603269]
[145]
Ives A, Nomura J, Martinon F, et al. Xanthine oxidoreductase regulates macrophage IL1β secretion upon NLRP3 inflammasome activation. Nat Commun 2015; 6: 6555.
[http://dx.doi.org/10.1038/ncomms7555] [PMID: 25800347]
[146]
Tong J, Zhou J, Fang M, et al. The anti-inflammatory mechanism of SAHA in acute pancreatitis through HDAC5/SLIT2/Akt/β-catenin axis. Hum Mol Genet 2022; 31(12): 2023-34.
[http://dx.doi.org/10.1093/hmg/ddab370] [PMID: 35022732]
[147]
Jie L, Guohui J, Chen Y, et al. Altered expression of hypoxia-Inducible factor-1α participates in the epileptogenesis in animal models. Synapse 2014; 68(9): 402-9.
[http://dx.doi.org/10.1002/syn.21752] [PMID: 24889205]
[148]
Seo HW, Kim EJ, Na H, Lee MO. Transcriptional activation of hypoxia-inducible factor-1α by HDAC4 and HDAC5 involves differential recruitment of p300 and FIH-1. FEBS Lett 2009; 583(1): 55-60.
[http://dx.doi.org/10.1016/j.febslet.2008.11.044] [PMID: 19071119]
[149]
Ye J, Zhong S, Deng Y, et al. HDAC7 activates IKK/NF-κB signaling to regulate astrocyte-mediated inflammation. Mol Neurobiol 2022; 59(10): 6141-57.
[http://dx.doi.org/10.1007/s12035-022-02965-6] [PMID: 35871708]
[150]
Shakespear MR, Hohenhaus DM, Kelly GM, et al. Histone deacetylase 7 promotes Toll-like receptor 4-dependent proinflammatory gene expression in macrophages. J Biol Chem 2013; 288(35): 25362-74.
[http://dx.doi.org/10.1074/jbc.M113.496281] [PMID: 23853092]
[151]
Das Gupta K, Shakespear MR, Curson JEB, et al. Class IIa histone deacetylases drive toll-like receptor-inducible glycolysis and macrophage inflammatory responses via pyruvate kinase M2. Cell Rep 2020; 30(8): 2712-2728.e8.
[http://dx.doi.org/10.1016/j.celrep.2020.02.007] [PMID: 32101747]
[152]
Ramnath D, Das Gupta K, Wang Y, et al. The histone deacetylase Hdac7 supports LPS-inducible glycolysis and Il-1β production in murine macrophages via distinct mechanisms. J Leukoc Biol 2022; 111(2): 327-36.
[http://dx.doi.org/10.1002/JLB.2MR1021-260R] [PMID: 34811804]
[153]
Yang W, Xia Y, Cao Y, et al. EGFR-induced and PKCε monoubiquitylation-dependent NF-κB activation upregulates PKM2 expression and promotes tumorigenesis. Mol Cell 2018; 69(2): 347.
[http://dx.doi.org/10.1016/j.molcel.2017.12.034] [PMID: 29351852]
[154]
Li Q, Leng K, Liu Y, et al. The impact of hyperglycaemia on PKM2-mediated NLRP3 inflammasome/stress granule signalling in macrophages and its correlation with plaque vulnerability: An in vivo and in vitro study. Metabolism 2020; 107: 154231.
[http://dx.doi.org/10.1016/j.metabol.2020.154231] [PMID: 32298723]
[155]
Gao CL, Hou GG, Liu J, et al. Synthesis and target identification of benzoxepane derivatives as potential anti-neuroinflammatory agents for ischemic stroke. Angew Chem Int Ed 2020; 59(6): 2429-39.
[http://dx.doi.org/10.1002/anie.201912489] [PMID: 31782597]
[156]
Fann DYW, Lee SY, Manzanero S, Chunduri P, Sobey CG, Arumugam TV. Pathogenesis of acute stroke and the role of inflammasomes. Ageing Res Rev 2013; 12(4): 941-66.
[http://dx.doi.org/10.1016/j.arr.2013.09.004] [PMID: 24103368]
[157]
Xie M, Yu Y, Kang R, et al. PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. Nat Commun 2016; 7: 13280.
[http://dx.doi.org/10.1038/ncomms13280] [PMID: 27779186]
[158]
Wang FX, Xiong XY, Zhong Q, Meng ZY, Yang H, Yang QW. Foxp3 exhibits antiepileptic effects in ictogenesis involved in TLR4 signaling. FASEB J 2017; 31(7): 2948-62.
[http://dx.doi.org/10.1096/fj.201600989R] [PMID: 28386044]
[159]
Bettini ML, Pan F, Bettini M, et al. Loss of epigenetic modification driven by the Foxp3 transcription factor leads to regulatory T cell insufficiency. Immunity 2012; 36(5): 717-30.
[http://dx.doi.org/10.1016/j.immuni.2012.03.020] [PMID: 22579476]
[160]
Lu S, Li H, Li K, Fan XD. HDAC9 promotes brain ischemic injury by provoking IκBα/NF-κB and MAPKs signaling pathways. Biochem Biophys Res Commun 2018; 503(3): 1322-9.
[http://dx.doi.org/10.1016/j.bbrc.2018.07.043] [PMID: 30031609]
[161]
Shi W, Wei X, Wang Z, et al. HDAC 9 exacerbates endothelial injury in cerebral ischaemia/reperfusion injury. J Cell Mol Med 2016; 20(6): 1139-49.
[http://dx.doi.org/10.1111/jcmm.12803] [PMID: 26865248]
[162]
Cao X, Zhang M, Li H, et al. Histone deacetylase9 represents the epigenetic promotion of m1 macrophage polarization and inflammatory response via TLR4 regulation. Biomed Res Int 2022; 2022: 7408136.
[http://dx.doi.org/10.1155/2022/7408136] [PMID: 35941971]
[163]
Beier UH, Angelin A, Akimova T, et al. Essential role of mitochondrial energy metabolism in Foxp3 + T-regulatory cell function and allograft survival. FASEB J 2015; 29(6): 2315-26.
[http://dx.doi.org/10.1096/fj.14-268409] [PMID: 25681462]
[164]
Asare Y, Campbell-James TA, Bokov Y, et al. Histone deacetylase 9 activates IKK to regulate atherosclerotic plaque vulnerability. Circ Res 2020; 127(6): 811-23.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.316743] [PMID: 32546048]
[165]
Loi M, Gennaccaro L, Fuchs C, et al. Treatment with a GSK-3β/HDAC dual inhibitor restores neuronal survival and maturation in an in vitro and in vivo model of CDKL5 deficiency disorder. Int J Mol Sci 2021; 22(11): 5950.
[http://dx.doi.org/10.3390/ijms22115950] [PMID: 34073043]
[166]
Chang P, Li H, Hu H, et al. The role of HDAC6 in autophagy and NLRP3 inflammasome. Front Immunol 2021; 12: 763831.
[http://dx.doi.org/10.3389/fimmu.2021.763831] [PMID: 34777380]
[167]
Nakahira K, Haspel JA, Rathinam VAK, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 2011; 12(3): 222-30.
[http://dx.doi.org/10.1038/ni.1980] [PMID: 21151103]
[168]
Li M, Hu W, Wang R, et al. Sp1 S-sulfhydration induced by hydrogen sulfide inhibits inflammation via HDAC6/MyD88/NF-κB signaling pathway in adjuvant-induced arthritis. Antioxidants 2022; 11(4): 732.
[http://dx.doi.org/10.3390/antiox11040732]
[169]
Pang X, Guan Q, Lin X, Chang N. Knockdown of HDAC6 alleviates ventricular remodeling in experimental dilated cardiomyopathy via inhibition of NLRP3 inflammasome activation and promotion of cardiomyocyte autophagy. Cell Biol Toxicol 2022.
[http://dx.doi.org/10.1007/s10565-022-09727-z] [PMID: 35764897]
[170]
New M, Sheikh S, Bekheet M, et al. TLR adaptor protein MYD88 mediates sensitivity to HDAC inhibitors via a cytokine-dependent mechanism. Cancer Res 2016; 76(23): 6975-87.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0504] [PMID: 27733371]
[171]
Wang L, Zheng S, Zhang L, et al. Histone deacetylation 10 alleviates inflammation after intracerebral hemorrhage via the PTPN22/NLRP3 pathway in rats. Neuroscience 2020; 432: 247-59.
[172]
Berger TC, Vigeland MD, Hjorthaug HS, et al. Neuronal and glial DNA methylation and gene expression changes in early epileptogenesis. PLoS One 2019; 14(12): e0226575.
[http://dx.doi.org/10.1371/journal.pone.0226575] [PMID: 31887157]
[173]
Sheppe AEF, Santelices J, Czyz DM, Edelmann MJ. Yersinia pseudotuberculosis YopJ limits macrophage response by downregulating COX-2-mediated biosynthesis of PGE2 in a MAPK/ERK-dependent manner. Microbiol Spectr 2021; 9(1): e00496-21.
[http://dx.doi.org/10.1128/Spectrum.00496-21] [PMID: 34319170]
[174]
Farr SA, Cuzzocrea S, Esposito E, et al. Adenosine A3 receptor as a novel therapeutic target to reduce secondary events and improve neurocognitive functions following traumatic brain injury. J Neuroinflammation 2020; 17(1): 339.
[http://dx.doi.org/10.1186/s12974-020-02009-7] [PMID: 33183330]
[175]
Yao F, Jin Z, Zheng Z, et al. HDAC11 promotes both NLRP3/caspase-1/GSDMD and caspase-3/GSDME pathways causing pyroptosis via ERG in vascular endothelial cells. Cell Death Discov 2022; 8(1): 112.
[http://dx.doi.org/10.1038/s41420-022-00906-9] [PMID: 35279683]
[176]
Lee Y, Mansur RB, Brietzke E, et al. Peripheral inflammatory biomarkers define biotypes of bipolar depression. Mol Psychiatry 2021; 26(7): 3395-406.
[http://dx.doi.org/10.1038/s41380-021-01051-y] [PMID: 33658605]
[177]
Brennan GP, Dey D, Chen Y, et al. Dual and opposing roles of MicroRNA-124 in epilepsy are mediated through inflammatory and NRSF-dependent gene networks. Cell Rep 2016; 14(10): 2402-12.
[http://dx.doi.org/10.1016/j.celrep.2016.02.042] [PMID: 26947066]
[178]
Dong SY, Guo YJ, Feng Y, et al. The epigenetic regulation of HIF-1α by SIRT1 in MPP + treated SH-SY5Y cells. Biochem Biophys Res Commun 2016; 470(2): 453-9.
[http://dx.doi.org/10.1016/j.bbrc.2016.01.013] [PMID: 26768367]
[179]
Yang J, He F, Meng Q, Sun Y, Wang W, Wang C. Inhibiting HIF-1α decreases expression of TNF-α and Caspase-3 in specific brain regions exposed kainic acid-induced status epilepticus. Cell Physiol Biochem 2016; 38(1): 75-82.
[http://dx.doi.org/10.1159/000438610] [PMID: 26741705]
[180]
Ouyang X, Ghani A, Malik A, et al. Adenosine is required for sustained inflammasome activation via the A-A receptor and the HIF-1α pathway. Nat Commun 2013; 4: 2909.
[http://dx.doi.org/10.1038/ncomms3909] [PMID: 24352507]
[181]
Wang D, Li Z, Zhang Y, et al. Targeting of microRNA-199a-5p protects against pilocarpine-induced status epilepticus and seizure damage via SIRT1-p53 cascade. Epilepsia 2016; 57(5): 706-16.
[http://dx.doi.org/10.1111/epi.13348] [PMID: 26945677]
[182]
Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 2004; 23(12): 2369-80.
[http://dx.doi.org/10.1038/sj.emboj.7600244] [PMID: 15152190]
[183]
Zaki OS, Nassar NN, Abdallah DM, Safar MM, Mohammed RA. Cilostazol alleviates NLRP3 inflammasome–induced allodynia/hyperalgesia in murine cerebral cortex following transient ischemia: Focus on TRPA1/Glutamate and Akt/Dopamine/BDNF/Nrf2 trajectories. Mol Neurobiol 2022; 59(12): 7194-211.
[http://dx.doi.org/10.1007/s12035-022-03024-w] [PMID: 36127628]
[184]
Arioz BI. Melatonin attenuates LPS-induced acute depressive-like behaviors and microglial NLRP3 inflammasome activation through the SIRT1/Nrf2 pathway. Front Immunol 2019; 1511: 10.
[PMID: 31327964]
[185]
Schiaffino L, Bonafede R, Scambi I, Parrella E, Pizzi M, Mariotti R. Acetylation state of RelA modulated by epigenetic drugs prolongs survival and induces a neuroprotective effect on ALS murine model. Sci Rep 2018; 8(1): 12875.
[http://dx.doi.org/10.1038/s41598-018-30659-4] [PMID: 30150770]
[186]
Li F, Chen Y, Li Y, et al. Geniposide alleviates diabetic nephropathy of mice through AMPK/SIRT1/NF-κB pathway. Eur J Pharmacol 2020; 886: 173449.
[http://dx.doi.org/10.1016/j.ejphar.2020.173449] [PMID: 32758570]
[187]
Zhou Y, Wang S, Wan T, et al. Cyanidin-3-O-β-glucoside inactivates NLRP3 inflammasome and alleviates alcoholic steatohepatitis via SirT1/NF-κB signaling pathway. Free Radic Biol Med 2020; 160: 334-41.
[PMID: 32805401]
[188]
He M, Chiang HH, Luo H, et al. An acetylation switch of the NLRP3 inflammasome regulates aging-associated chronic inflammation and insulin resistance. Cell Metab 2020; 31(3): 580-591.e5.
[http://dx.doi.org/10.1016/j.cmet.2020.01.009] [PMID: 32032542]
[189]
Qin K, Han C, Zhang H, et al. NAD(+) dependent deacetylase Sirtuin 5 rescues the innate inflammatory response of endotoxin tolerant macrophages by promoting acetylation of p65. J Autoimmun 2017; 81: 120-9.
[http://dx.doi.org/10.1016/j.jaut.2017.04.006] [PMID: 28461090]
[190]
Yang JW, Czech T, Felizardo M, Baumgartner C, Lubec G. Aberrant expression of cytoskeleton proteins in hippocampus from patients with mesial temporal lobe epilepsy. Amino Acids 2006; 30(4): 477-93.
[http://dx.doi.org/10.1007/s00726-005-0281-y] [PMID: 16583313]
[191]
Dong X, He Y, Ye F, et al. Vitamin D3 ameliorates nitrogen mustard-induced cutaneous inflammation by inactivating the NLRP3 inflammasome through the SIRT3–SOD2–mtROS signaling pathway. Clin Transl Med 2021; 11(2): e312.
[http://dx.doi.org/10.1002/ctm2.312] [PMID: 33634989]
[192]
Chen M, Zhu X, Ran L, Lang H, Yi L, Mi M. Trimethylamine-N-oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway. J Am Heart Assoc 2017; 6(9): e006347.
[http://dx.doi.org/10.1161/JAHA.117.006347] [PMID: 28871042]
[193]
Dikalova AE, Pandey A, Xiao L, et al. Mitochondrial deacetylase sirt3 reduces vascular dysfunction and hypertension while Sirt3 depletion in essential hypertension is linked to vascular inflammation and oxidative stress. Circ Res 2020; 126(4): 439-52.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.315767] [PMID: 31852393]
[194]
Cheng A, Yang Y, Zhou Y, et al. Mitochondrial SIRT3 mediates adaptive responses of neurons to exercise and metabolic and excitatory challenges. Cell Metab 2016; 23(1): 128-42.
[http://dx.doi.org/10.1016/j.cmet.2015.10.013] [PMID: 26698917]
[195]
Wang CY, Chen CC, Lin MH, et al. TLR9 binding to beclin 1 and mitochondrial SIRT3 by a sodium-glucose co-transporter 2 inhibitor protects the heart from doxorubicin toxicity. Biology 2020; 9(11): 369.
[http://dx.doi.org/10.3390/biology9110369] [PMID: 33138323]
[196]
Hoque R, Sohail M, Malik A, et al. TLR9 and the NLRP3 inflammasome link acinar cell death with inflammation in acute pancreatitis. Gastroenterology 2011; 141(1): 358-69.
[http://dx.doi.org/10.1053/j.gastro.2011.03.041] [PMID: 21439959]
[197]
Koo J E, Shin S W, Um S H, et al. X-shaped DNA potentiates therapeutic efficacy in colitis-associated colon cancer through dual activation of TLR9 and inflammasomes. Mol Cancer 2015; 14: 104.
[http://dx.doi.org/10.1186/s12943-015-0369-2] [PMID: 25971982]
[198]
Matsuda T, Murao N, Katano Y, et al. TLR9 signalling in microglia attenuates seizure-induced aberrant neurogenesis in the adult hippocampus. Nat Commun 2015; 6: 6514.
[199]
Gao J, Chen N, Li N, et al. Neuroprotective effects of trilobatin, a novel naturally occurring sirt3 agonist from lithocarpus polystachyus rehd., mitigate cerebral ischemia/reperfusion injury: Involvement of TLR4/NF-κB and Nrf2/Keap-1 signaling. Antioxid Redox Signal 2020; 33(2): 117-43.
[http://dx.doi.org/10.1089/ars.2019.7825] [PMID: 32212827]
[200]
Shih J, Liu L, Mason A, Higashimori H, Donmez G. Loss of SIRT4 decreases GLT-1-dependent glutamate uptake and increases sensitivity to kainic acid. J Neurochem 2014; 131(5): 573-81.
[http://dx.doi.org/10.1111/jnc.12942] [PMID: 25196144]
[201]
Xu X, Zhang L, Hua F, et al. FOXM1-activated SIRT4 inhibits NF-κB signaling and NLRP3 inflammasome to alleviate kidney injury and podocyte pyroptosis in diabetic nephropathy. Exp Cell Res 2021; 408(2): 112863.
[http://dx.doi.org/10.1016/j.yexcr.2021.112863] [PMID: 34626587]
[202]
Yao P, Chen T, Jiang P, Li L, Du W. Functional skewing of TRIM21-SIRT5 interplay dictates IL -1β production in DSS -induced colitis. EMBO Rep 2022; 23(9): e54391.
[http://dx.doi.org/10.15252/embr.202154391] [PMID: 35770730]
[203]
Li F, Liu L. SIRT5 deficiency enhances susceptibility to kainate-induced seizures and exacerbates hippocampal neurodegeneration not through mitochondrial antioxidant enzyme SOD2. Front Cell Neurosci 2016; 10: 171.
[204]
Diaz-Cañestro C, Merlini M, Bonetti NR, et al. Sirtuin 5 as a novel target to blunt blood-brain barrier damage induced by cerebral ischemia/reperfusion injury. Int J Cardiol 2018; 260: 148-55.
[205]
Mendes KL, Lelis DF, Santos SHS. Nuclear sirtuins and inflammatory signaling pathways. Cytokine Growth Factor Rev 2017; 38: 98-105.
[206]
Bresque M, Cal K, Pérez-Torrado V, et al. SIRT6 stabilization and cytoplasmic localization in macrophages regulates acute and chronic inflammation in mice. J Biol Chem 2022; 298(3): 101711.
[http://dx.doi.org/10.1016/j.jbc.2022.101711] [PMID: 35150745]
[207]
Irmscher S, Brix SR, Zipfel SLH, et al. Serum FHR1 binding to necrotic-type cells activates monocytic inflammasome and marks necrotic sites in vasculopathies. Nat Commun 2019; 10(1): 2961.
[http://dx.doi.org/10.1038/s41467-019-10766-0] [PMID: 31273197]
[208]
He T, Shang J, Gao C, et al. A novel SIRT6 activator ameliorates neuroinflammation and ischemic brain injury via EZH2/FOXC1 axis. Acta Pharm Sin B 2021; 11(3): 708-26.
[http://dx.doi.org/10.1016/j.apsb.2020.11.002] [PMID: 33777677]
[209]
Wang J, Wang Y, Zhang H, et al. Identification of a novel microRNA-141-3p/Forkhead box C1/β-catenin axis associated with rheumatoid arthritis synovial fibroblast function in vivo and in vitro. Theranostics 2020; 10(12): 5412-34.
[http://dx.doi.org/10.7150/thno.45214] [PMID: 32373221]
[210]
Zaben M, Haan N, Sharouf F, Ahmed A, Sundstrom LE, Gray WP. IL-1β and HMGB1 are anti-neurogenic to endogenous neural stem cells in the sclerotic epileptic human hippocampus. J Neuroinflammation 2021; 18(1): 218.
[http://dx.doi.org/10.1186/s12974-021-02265-1] [PMID: 34548070]
[211]
Huang F, Luo L, Wu Y, et al. Trilobatin promotes angiogenesis after cerebral ischemia–reperfusion injury via SIRT7/VEGFA signaling pathway in rats. Phytother Res 2022; 36(7): 2940-51.
[http://dx.doi.org/10.1002/ptr.7487] [PMID: 35537702]
[212]
Yang H, Tu Z, Yang D, et al. Exosomes from hypoxic pretreated ADSCs attenuate acute ischemic stroke-induced brain injury via delivery of circ-Rps5 and promote M2 microglia/macrophage polarization. Neurosci Lett 2022; 769: 136389.
[http://dx.doi.org/10.1016/j.neulet.2021.136389] [PMID: 34896256]
[213]
Luo H, Mu WC, Karki R, et al. Mitochondrial stress-initiated aberrant activation of the NLRP3 inflammasome regulates the functional deterioration of hematopoietic stem cell aging. Cell Rep 2019; 26(4): 945-954.e4.
[http://dx.doi.org/10.1016/j.celrep.2018.12.101] [PMID: 30673616]
[214]
Li X, Liu J, Lu L, et al. Sirt7 associates with ELK1 to participate in hyperglycemia memory and diabetic nephropathy via modulation of DAPK3 expression and endothelial inflammation. Transl Res 2022; 247: 99-116.
[http://dx.doi.org/10.1016/j.trsl.2022.04.005] [PMID: 35470010]
[215]
Li G, Tang X, Zhang S, et al. Aging-conferred SIRT7 decline inhibits rosacea-like skin inflammation by modulating toll-like receptor 2-NF-κB signaling. J Invest Dermatol 2022; 142(10): 2580-2590.e6.
[http://dx.doi.org/10.1016/j.jid.2022.03.026]
[216]
Winnik S, Auwerx J, Sinclair DA, Matter CM. Protective effects of sirtuins in cardiovascular diseases: From bench to bedside. Eur Heart J 2015; 36(48): 3404-12.
[http://dx.doi.org/10.1093/eurheartj/ehv290] [PMID: 26112889]
[217]
Wang R, Sun H, Wang G, Ren H. Imbalance of lysine acetylation contributes to the pathogenesis of parkinson’s Disease. Int J Mol Sci 2020; 21(19): 7182.
[http://dx.doi.org/10.3390/ijms21197182] [PMID: 33003340]
[218]
Spitzer D, Guérit S, Puetz T, et al. Profiling the neurovascular unit unveils detrimental effects of osteopontin on the blood–brain barrier in acute ischemic stroke. Acta Neuropathol 2022; 144(2): 305-37.
[http://dx.doi.org/10.1007/s00401-022-02452-1] [PMID: 35752654]
[219]
Pitkänen A, Roivainen R, Lukasiuk K. Development of epilepsy after ischaemic stroke. Lancet Neurol 2016; 15(2): 185-97.
[http://dx.doi.org/10.1016/S1474-4422(15)00248-3] [PMID: 26597090]
[220]
De Brito CET, Leandro MVÉ, Boni RDB, et al. NLRP3 and NLRP1 inflammasomes are up-regulated in patients with mesial temporal lobe epilepsy and may contribute to overexpression of caspase-1 and IL-β in sclerotic hippocampi. Brain Res 2021; 1752: 147230.
[http://dx.doi.org/10.1016/j.brainres.2020.147230] [PMID: 33385378]
[221]
Puleo MG, Miceli S, Di Chiara T, et al. Molecular Mechanisms of Inflammasome in Ischemic Stroke Pathogenesis. Pharmaceuticals 2022; 15(10): 1168.
[http://dx.doi.org/10.3390/ph15101168] [PMID: 36297283]
[222]
Guo Z, Zhang Z, Zhang Y, et al. Design, synthesis and biological evaluation of brain penetrant benzazepine-based histone deacetylase 6 inhibitors for alleviating stroke-induced brain infarction. Eur J Med Chem 2021; 218: 113383.
[http://dx.doi.org/10.1016/j.ejmech.2021.113383] [PMID: 33799069]
[223]
Shi L, Tian Z, Fu Q, et al. miR-217-regulated MEF2D-HDAC5/ND6 signaling pathway participates in the oxidative stress and inflammatory response after cerebral ischemia. Brain Res 2020; 1739: 146835.
[http://dx.doi.org/10.1016/j.brainres.2020.146835] [PMID: 32311345]
[224]
Langley B, Brochier C, Rivieccio MA. Targeting histone deacetylases as a multifaceted approach to treat the diverse outcomes of stroke. Stroke 2009; 40(8): 2899-905.
[http://dx.doi.org/10.1161/STROKEAHA.108.540229] [PMID: 19478231]
[225]
Xu Y, Wang Q, Chen J, et al. Updating a strategy for histone deacetylases and its inhibitors in the potential treatment of cerebral ischemic stroke. Dis Markers 2020; 2020: 8820803.
[http://dx.doi.org/10.1155/2020/8820803] [PMID: 32963637]
[226]
Ventham NT, Kennedy NA, Nimmo ER, Satsangi J. Beyond gene discovery in inflammatory bowel disease: the emerging role of epigenetics. Gastroenterology 2013; 145(2): 293-308.
[http://dx.doi.org/10.1053/j.gastro.2013.05.050] [PMID: 23751777]
[227]
Sixto-López Y, Bello M, Correa-Basurto J. Exploring the inhibitory activity of valproic acid against the HDAC family using an MMGBSA approach. J Comput Aided Mol Des 2020; 34(8): 857-78.
[http://dx.doi.org/10.1007/s10822-020-00304-2] [PMID: 32180123]
[228]
Citraro R, Leo A, De Caro C, et al. Effects of histone deacetylase inhibitors on the development of epilepsy and psychiatric comorbidity in WAG/Rij rats. Mol Neurobiol 2020; 57(1): 408-21.
[http://dx.doi.org/10.1007/s12035-019-01712-8] [PMID: 31368023]
[229]
Lin MY, De Zoete MR, Van Putten JP, et al. Redirection of epithelial immune responses by short-chain fatty acids through inhibition of histone deacetylases. Front Immunol 2015; 6: 554.
[230]
Mohseni-Moghaddam P, Roghani M, Khaleghzadeh-Ahangar H, et al. A literature overview on epilepsy and inflammasome activation. Brain Res Bull 2021; 172: 229-35.
[http://dx.doi.org/10.1016/j.brainresbull.2021.05.001] [PMID: 33964347]
[231]
Wang JG, Cai Q, Zheng J, et al. Epigenetic suppression of gads expression is involved in temporal lobe epilepsy and pilocarpine-induced mice epilepsy. Neurochem Res 2016; 41(7): 1751-60.
[http://dx.doi.org/10.1007/s11064-016-1891-3] [PMID: 27220336]
[232]
Jimenez-Pacheco A, Diaz-Hernandez M, Arribas-Blázquez M, et al. Transient P2X7 receptor antagonism produces lasting reductions in spontaneous seizures and gliosis in experimental temporal lobe epilepsy. J Neurosci 2016; 36(22): 5920-32.
[http://dx.doi.org/10.1523/JNEUROSCI.4009-15.2016] [PMID: 27251615]
[233]
Carta S, Tassi S, Semino C, et al. Histone deacetylase inhibitors prevent exocytosis of interleukin-1β-containing secretory lysosomes: role of microtubules. Blood 2006; 108(5): 1618-26.
[http://dx.doi.org/10.1182/blood-2006-03-014126] [PMID: 16684958]
[234]
Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S. The P2X7 Receptor in Infection and Inflammation. Immunity 2017; 47(1): 15-31.
[http://dx.doi.org/10.1016/j.immuni.2017.06.020] [PMID: 28723547]
[235]
Wu Y, Teng Y, Zhang C, et al. The ketone body β-hydroxybutyrate alleviates CoCrMo alloy particles induced osteolysis by regulating NLRP3 inflammasome and osteoclast differentiation. J Nanobiotechnology 2022; 20(1): 120.
[http://dx.doi.org/10.1186/s12951-022-01320-0] [PMID: 35264201]
[236]
Ganai SA. Plant-derived flavone Apigenin: The small-molecule with promising activity against therapeutically resistant prostate cancer. Biomed Pharmacother 2017; 85: 47-56.
[237]
Wu B, Sodji QH, Oyelere AK. Inflammation, fibrosis and cancer: mechanisms, therapeutic options and challenges. Cancers (Basel) 2022; 14(3): 552.
[http://dx.doi.org/10.3390/cancers14030552] [PMID: 35158821]
[238]
Feng Y, Wang Y, Wang P, Huang Y, Wang F. Short-chain fatty acids manifest stimulative and protective effects on intestinal barrier function through the inhibition of NLRP3 inflammasome and autophagy. Cell Physiol Biochem 2018; 49(1): 190-205.
[http://dx.doi.org/10.1159/000492853] [PMID: 30138914]
[239]
Pohlentz MS, Müller P, Cases-Cunillera S, et al. Characterisation of NLRP3 pathway-related neuroinflammation in temporal lobe epilepsy. PLoS One 2022; 17(8): e0271995.
[http://dx.doi.org/10.1371/journal.pone.0271995] [PMID: 35972937]
[240]
Wood H. Seizures induce NLRP3 inflammasome signalling. Nat Rev Neurol 2022; 18(10): 575.
[http://dx.doi.org/10.1038/s41582-022-00713-x] [PMID: 36071271]
[241]
Hsieh MY, Lin JJ, Hsia SH, et al. Diminished toll-like receptor response in febrile infection-related epilepsy syndrome (FIRES). Biomed J 2020; 43(3): 293-304.
[http://dx.doi.org/10.1016/j.bj.2020.05.007] [PMID: 32651134]
[242]
Sung B, Pandey MK, Ahn KS, et al. Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-κB–regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-κBα kinase, leading to potentiation of apoptosis. Blood 2008; 111(10): 4880-91.
[http://dx.doi.org/10.1182/blood-2007-10-117994] [PMID: 18349320]
[243]
Ulusoy C. Vanlı-Yavuz E N, Şanlı E, et al. Peripheral blood expression levels of inflammasome complex components in two different focal epilepsy syndromes. J Neuroimmunol 2020; 347: 577343.
[244]
Gangopadhyay A, Devi S, Tenguria S, et al. NLRP3 licenses NLRP11 for inflammasome activation in human macrophages. Nat Immunol 2022; 23(6): 892-903.
[http://dx.doi.org/10.1038/s41590-022-01220-3] [PMID: 35624206]
[245]
Zhu D, Li X, Tian Y. Mitochondrial-to-nuclear communication in aging: an epigenetic perspective. Trends Biochem Sci 2022; 47(8): 645-59.
[http://dx.doi.org/10.1016/j.tibs.2022.03.008] [PMID: 35397926]
[246]
Mills EL, Kelly B, O’Neill LAJ. Mitochondria are the powerhouses of immunity. Nat Immunol 2017; 18(5): 488-98.
[http://dx.doi.org/10.1038/ni.3704] [PMID: 28418387]
[247]
Chung H, Vilaysane A, Lau A, et al. NLRP3 regulates a non-canonical platform for caspase-8 activation during epithelial cell apoptosis. Cell Death Differ 2016; 23(8): 1331-46.
[http://dx.doi.org/10.1038/cdd.2016.14] [PMID: 26891693]
[248]
Barrera MJ, Aguilera S, Castro I, et al. Dysfunctional mitochondria as critical players in the inflammation of autoimmune diseases: Potential role in Sjögren’s syndrome. Autoimmun Rev 2021; 20(8): 102867.
[http://dx.doi.org/10.1016/j.autrev.2021.102867] [PMID: 34118452]
[249]
Srivastava A, Shinn AS, Lee PJ, et al. MKK3 mediates inflammatory response through modulation of mitochondrial function. Free Radic Biol Med 2015; 83: 139-48.
[250]
Hu Z L, Sun T, Lu Ming, et al. Kir6.1/K-ATP channel on astrocytes protects against dopaminergic neurodegeneration in the MPTP mouse model of Parkinson's disease via promoting mitophagy. Brain Behav Immun 2019; 81: 509-22.
[http://dx.doi.org/10.1016/j.bbi.2019.07.009] [PMID: 31288070]
[251]
Jia J, Wang Z, Zhang M, et al. SQR mediates therapeutic effects of H 2 S by targeting mitochondrial electron transport to induce mitochondrial uncoupling. Sci Adv 2020; 6(35): eaaz5752.
[http://dx.doi.org/10.1126/sciadv.aaz5752] [PMID: 32923620]
[252]
He L, Wang J, Yang Y, Li J, Tu H. Mitochondrial Sirtuins in Parkinson’s Disease. Neurochem Res 2022; 47(6): 1491-502.
[http://dx.doi.org/10.1007/s11064-022-03560-w] [PMID: 35220492]
[253]
Afzaal A, Rehman K, Kamal S, Akash MSH. Versatile role of sirtuins in metabolic disorders: From modulation of mitochondrial function to therapeutic interventions. J Biochem Mol Toxicol 2022; 36(7): e23047.
[http://dx.doi.org/10.1002/jbt.23047] [PMID: 35297126]
[254]
Elamin M, Ruskin D N, Masino S A, et al. Ketone-based metabolic therapy: Is increased NAD(+) a primary mechanism? Front Mol Neurosci 2017; 10: 377.
[http://dx.doi.org/10.3389/fnmol.2017.00377] [PMID: 29184484]
[255]
Li L, Wang H, Zhang J, et al. SPHK1 deficiency protects mice from acetaminophen-induced ER stress and mitochondrial permeability transition. Cell Death Differ 2020; 27(6): 1924-37.
[http://dx.doi.org/10.1038/s41418-019-0471-x] [PMID: 31827236]
[256]
Su EJ, Cao C, Fredriksson L, et al. Microglial-mediated PDGF-CC activation increases cerebrovascular permeability during ischemic stroke. Acta Neuropathol 2017; 134(4): 585-604.
[http://dx.doi.org/10.1007/s00401-017-1749-z] [PMID: 28725968]
[257]
Werner Y, Mass E, Ashok Kumar P, et al. Cxcr4 distinguishes HSC-derived monocytes from microglia and reveals monocyte immune responses to experimental stroke. Nat Neurosci 2020; 23(3): 351-62.
[http://dx.doi.org/10.1038/s41593-020-0585-y] [PMID: 32042176]
[258]
Zhou M, Zhang T, Zhang B, et al. A DNA Nanostructure-Based Neuroprotectant against Neuronal Apoptosis via Inhibiting Toll-like Receptor 2 Signaling Pathway in Acute Ischemic Stroke. ACS Nano 2021; 16(1): 1456-70.
[PMID: 34967217]
[259]
Monteiro R, Azevedo I. Chronic inflammation in obesity and the metabolic syndrome. Mediators Inflamm 2010; 2010: 289645.
[PMID: 20706689]
[260]
Wang N, Liu Y, Jia C, et al. Machine learning enables discovery of Gentianine targeting TLR4/NF-κB pathway to repair ischemic stroke injury. Pharmacol Res 2021; 173: 105913.
[261]
Feyissa AM, Hasan TF, Meschia JF. Stroke-related epilepsy. Eur J Neurol 2019; 26(1): 18-e3.
[http://dx.doi.org/10.1111/ene.13813] [PMID: 30320425]
[262]
Galovic M, Ferreira-Atuesta C, Abraira L, et al. Seizures and epilepsy after stroke: Epidemiology, biomarkers and management. Drugs Aging 2021; 38(4): 285-99.
[http://dx.doi.org/10.1007/s40266-021-00837-7] [PMID: 33619704]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy