Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

The Role of Probiotics in Improving Food Safety: Inactivation of Pathogens and Biological Toxins

Author(s): Fereshteh Ansari, Chi-Ching Lee, Azadeh Rashidimehr, Soheyl Eskandari, Tolulope Joshua Ashaolu, Esmaeel Mirzakhani, Hadi Pourjafar* and Seid Mahdi Jafari*

Volume 25, Issue 8, 2024

Published on: 21 June, 2023

Page: [962 - 980] Pages: 19

DOI: 10.2174/1389201024666230601141627

Price: $65

conference banner
Abstract

Currently, many advances have been made in avoiding food contamination by numerous pathogenic and toxigenic microorganisms. Many studies have shown that different probiotics, in addition to having beneficial effects on the host’s health, have a very good ability to eliminate and neutralize pathogens and their toxins in foods which leads to enhanced food safety. The present review purposes to comprehensively discuss the role of probiotics in improving food safety by inactivating pathogens (bacterial, fungal, viral, and parasite agents) and neutralizing their toxins in food products. Some recent examples in terms of the anti-microbial activities of probiotics in the body after consuming contaminated food have also been mentioned. This review shows that different probiotics have the potential to inactivate pathogens and neutralize and detoxify various biological agents in foods, as well as in the host body after consumption.

Keywords: Probiotics, food safety, detoxification, inactivation, pathogens, mycotoxins.

Graphical Abstract
[1]
Saravanan, A.; Kumar, P.S.; Hemavathy, R.V.; Jeevanantham, S.; Kamalesh, R.; Sneha, S.; Yaashikaa, P.R. Methods of detection of food-borne pathogens: A review. Environ. Chem. Lett., 2021, 19(1), 189-207.
[http://dx.doi.org/10.1007/s10311-020-01072-z]
[2]
Abebe, E.; Gugsa, G.; Ahmed, M. Review on major food-borne zoonotic bacterial pathogens. J. Trop. Med., 2020, 2020, 1-19.
[http://dx.doi.org/10.1155/2020/4674235] [PMID: 32684938]
[3]
Zinedine, A.; El Akhdari, S. Food safety and climate change: case of mycotoxins. In: Research Anthology on Food Waste Reduction and Alternative Diets for Food and Nutrition Security; IGI Global, 2021; pp. 39-62.
[http://dx.doi.org/10.4018/978-1-7998-5354-1.ch003]
[4]
Thippareddi, H.; Balamurugan, S.; Patel, J.; Singh, M.; Brassard, J. Coronaviruses-potential human threat from foodborne transmission? Lebensm. Wiss. Technol., 2020, 134, 110147.
[http://dx.doi.org/10.1016/j.lwt.2020.110147] [PMID: 32921811]
[5]
Al-Shawi, S.G.; Dang, D.S.; Yousif, A.Y.; Al-Younis, Z.K.; Najm, T.A.; Matarneh, S.K. The potential use of probiotics to improve animal health, efficiency, and meat quality. A review. Agriculture, 2020, 10(10), 452.
[http://dx.doi.org/10.3390/agriculture10100452]
[6]
Panezai, N. Stratagies used to control bacteriophages contamination in dairy food and industry. Pak-Euro Journal of Medical and Life Sciences, 2021, 4, S1-S10.
[http://dx.doi.org/10.31580/pjmls.v4iSpecial%20Is.1866]
[7]
Šušković, J.; Kos, B.; Beganović, J.; Leboš Pavunc, A.; Habjanič, K.; Matošić, S. Antimicrobial activity–the most important property of probiotic and starter lactic acid bacteria. Food Technol. Biotechnol., 2010, 48(3), 296-307.
[8]
Wang, X.; Wang, W.; Lv, H.; Zhang, H.; Liu, Y.; Zhang, M.; Wang, Y.; Tan, Z. Probiotic potential and wide-spectrum antimicrobial activity of lactic acid bacteria isolated from infant feces. Probiotics Antimicrob. Proteins, 2021, 13(1), 90-101.
[http://dx.doi.org/10.1007/s12602-020-09658-3] [PMID: 32405962]
[9]
Luz, C.; Ferrer, J.; Mañes, J.; Meca, G. Toxicity reduction of ochratoxin A by lactic acid bacteria. Food Chem. Toxicol., 2018, 112, 60-66.
[http://dx.doi.org/10.1016/j.fct.2017.12.030] [PMID: 29274433]
[10]
Berrilli, F.; Di Cave, D.; Cavallero, S.; D’Amelio, S. Interactions between parasites and microbial communities in the human gut. Front. Cell. Infect. Microbiol., 2012, 2, 141.
[http://dx.doi.org/10.3389/fcimb.2012.00141] [PMID: 23162802]
[11]
Jay, J.M.; Loessner, M.; Golden, D. Modern food microbiology; Chapman Hall, 2021.
[12]
Cherrington, C.A.; Hinton, M.; Mead, G.C.; Chopra, I. Organic acids: chemistry, antibacterial activity and practical applications. Adv. Microb. Physiol., 1991, 32, 87-108.
[http://dx.doi.org/10.1016/S0065-2911(08)60006-5] [PMID: 1882730]
[13]
Adamczak, A.; Ożarowski, M.; Karpiński, T.M. Antibacterial activity of some flavonoids and organic acids widely distributed in plants. J. Clin. Med., 2019, 9(1), 109.
[http://dx.doi.org/10.3390/jcm9010109] [PMID: 31906141]
[14]
Hismiogullari, S.; Hismiogullari, A.; Sahin, F.; Oner, E.; Yenice, S.; Karasartova, D. Investigation of antibacterial and cytotoxic effects of organic acids including ascorbic acid, lactic acid and acetic acids on mammalian cells. J. Anim. Vet. Adv., 2008.
[15]
Tejero-Sariñena, S.; Barlow, J.; Costabile, A.; Gibson, G.R.; Rowland, I. In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: Evidence for the effects of organic acids. Anaerobe, 2012, 18(5), 530-538.
[http://dx.doi.org/10.1016/j.anaerobe.2012.08.004] [PMID: 22959627]
[16]
McMillin, K.W. Advancements in meat packaging. Meat Sci., 2017, 132, 153-162.
[http://dx.doi.org/10.1016/j.meatsci.2017.04.015] [PMID: 28465018]
[17]
Sears, D.F.; Eisenberg, R.M. A model representing a physiological role of CO2 at the cell membrane. J. Gen. Physiol., 1961, 44(5), 869-887.
[http://dx.doi.org/10.1085/jgp.44.5.869] [PMID: 13749510]
[18]
Yu, T.; Chen, Y. Effects of elevated carbon dioxide on environmental microbes and its mechanisms: A review. Sci. Total Environ., 2019, 655, 865-879.
[http://dx.doi.org/10.1016/j.scitotenv.2018.11.301] [PMID: 30481713]
[19]
Melly, E.; Cowan, A.E.; Setlow, P. Studies on the mechanism of killing of Bacillus subtilis spores by hydrogen peroxide. J. Appl. Microbiol., 2002, 93(2), 316-325.
[http://dx.doi.org/10.1046/j.1365-2672.2002.01687.x] [PMID: 12147081]
[20]
Ay, M.; Bostan, K. Effects of activated lactoperoxidase system on microbiological quality of raw milk. Kafkas Univ. Vet. Fak. Derg., 2017, 23(1)
[http://dx.doi.org/10.9775/kvfd.2016.15993]
[21]
Arefin, S.; Sarker, M.; Islam, M. HarunurRashid, M.; Islam, M. Use of Hydrogen Peroxide (H2O2) in raw cow’s milk preservation. J. Adv. Vet. Anim. Res., 2017, 4(4), 371-377.
[http://dx.doi.org/10.5455/javar.2017.d236]
[22]
Reid, G. Probiotic Lactobacilli for urogenital health in women. J. Clin. Gastroenterol., 2008, 42(Suppl. 3), S234-S236.
[http://dx.doi.org/10.1097/MCG.0b013e31817f1298] [PMID: 18685506]
[23]
Rosca, I.; Petrovici, A.R.; Brebu, M.; Stoica, I.; Minea, B.; Marangoci, N. An original method for producing acetaldehyde and diacetyl by yeast fermentation. Braz. J. Microbiol., 2016, 47(4), 949-954.
[http://dx.doi.org/10.1016/j.bjm.2016.07.005] [PMID: 27528084]
[24]
Gossauer, A. Structure and reactivity of biomolecules, Verlag Helvetica Chimica Acta. Zurich; Wiley-VCH: Weinheim, 2006.
[25]
Vandenbergh, P.A. Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiol. Rev., 1993, 12(1-3), 221-237.
[http://dx.doi.org/10.1111/j.1574-6976.1993.tb00020.x]
[26]
Gänzle, M.G. Reutericyclin: Biological activity, mode of action, and potential applications. Appl. Microbiol. Biotechnol., 2004, 64(3), 326-332.
[http://dx.doi.org/10.1007/s00253-003-1536-8] [PMID: 14735324]
[27]
Lin, X.B.; Lohans, C.T.; Duar, R.; Zheng, J.; Vederas, J.C.; Walter, J.; Gänzle, M. Genetic determinants of reutericyclin biosynthesis in Lactobacillus reuteri. Appl. Environ. Microbiol., 2015, 81(6), 2032-2041.
[http://dx.doi.org/10.1128/AEM.03691-14] [PMID: 25576609]
[28]
Gänzle, M.G.; Höltzel, A.; Walter, J.; Jung, G.; Hammes, W.P. Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Appl. Environ. Microbiol., 2000, 66(10), 4325-4333.
[http://dx.doi.org/10.1128/AEM.66.10.4325-4333.2000] [PMID: 11010877]
[29]
Talarico, T.L.; Casas, I.A.; Chung, T.C.; Dobrogosz, W.J. Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob. Agents Chemother., 1988, 32(12), 1854-1858.
[http://dx.doi.org/10.1128/AAC.32.12.1854] [PMID: 3245697]
[30]
Casas, I.A.; Dobrogosz, W.J. Validation of the probiotic concept: Lactobacillus reuteri confers broad-spectrum protection against disease in humans and animals. Microb. Ecol. Health Dis., 2000, 12(4), 247-285.
[http://dx.doi.org/10.1080/08910600050216246-1]
[31]
Cleusix, V.; Lacroix, C.; Vollenweider, S.; Duboux, M.; Le Blay, G. Inhibitory activity spectrum of reuterin produced by Lactobacillus reuteri against intestinal bacteria. BMC Microbiol., 2007, 7(1), 101.
[http://dx.doi.org/10.1186/1471-2180-7-101] [PMID: 17997816]
[32]
Vollenweider, S.; Lacroix, C. 3-Hydroxypropionaldehyde: Applications and perspectives of biotechnological production. Appl. Microbiol. Biotechnol., 2004, 64(1), 16-27.
[http://dx.doi.org/10.1007/s00253-003-1497-y] [PMID: 14669058]
[33]
Rodríguez, E.; Arqués, J.L.; Rodríguez, R.; Nuñez, M.; Medina, M. Reuterin production by lactobacilli isolated from pig faeces and evaluation of probiotic traits. Lett. Appl. Microbiol., 2003, 37(3), 259-263.
[http://dx.doi.org/10.1046/j.1472-765X.2003.01390.x] [PMID: 12904230]
[34]
Engels, C.; Schwab, C.; Zhang, J.; Stevens, M.J.A.; Bieri, C.; Ebert, M.O.; McNeill, K.; Sturla, S.J.; Lacroix, C. Acrolein contributes strongly to antimicrobial and heterocyclic amine transformation activities of reuterin. Sci. Rep., 2016, 6(1), 36246.
[http://dx.doi.org/10.1038/srep36246] [PMID: 27819285]
[35]
Langa, S.; Martín-Cabrejas, I.; Montiel, R.; Peirotén, Á.; Arqués, J.L.; Medina, M. Protective effect of reuterin-producing Lactobacillus reuteri against Listeria monocytogenes and Escherichia coli O157:H7 in semi-hard cheese. Food Control, 2018, 84, 284-289.
[http://dx.doi.org/10.1016/j.foodcont.2017.08.004]
[36]
Mishra, S. K.; Malik, R.; Panwar, H.; Barui, A. K. Microencapsulation of reuterin to enhance long-term efficacy against food-borne pathogen Listeria monocytogenes. 3 Biotech., 2018, 8(1), 1-7.
[http://dx.doi.org/10.1007/s13205-017-1035-8]
[37]
Al-Nabulsi, A.A.; Osaili, T.M.; Oqdeh, S.B.; Olaimat, A.N.; Jaradat, Z.W.; Ayyash, M.; Holley, R.A. Antagonistic effects of Lactobacillus reuteri against Escherichia coli O157:H7 in white-brined cheese under different storage conditions. J. Dairy Sci., 2021, 104(3), 2719-2734.
[http://dx.doi.org/10.3168/jds.2020-19308] [PMID: 33455758]
[38]
Pu, J.; Chen, D.; Tian, G.; He, J.; Zheng, P.; Mao, X.; Yu, J.; Huang, Z.; Zhu, L.; Luo, J.; Luo, Y.; Yu, B. Protective effects of benzoic acid, bacillus Coagulans, and oregano oil on intestinal injury caused by Enterotoxigenic Escherichia coli in weaned piglets. BioMed Res. Int., 2018, 2018, 1-12.
[http://dx.doi.org/10.1155/2018/1829632] [PMID: 30225247]
[39]
Salleh, F.; Lani, M.N.; Kamaruding, N.A.; Chilek, T.Z.T.; Ismail, N. Lactic acid bacteria producing sorbic acid and benzoic acid compounds from fermented Durian Flesh (Tempoyak) and their antibacterial activities against foodborne pathogenic bacteria. Appl. Food Biotechnol., 2021, 8(2), 121-132.
[http://dx.doi.org/10.22037/afb.v8i2.32749]
[40]
Riley, M.A.; Wertz, J.E. Bacteriocins: Evolution, ecology, and application. Annu. Rev. Microbiol., 2002, 56(1), 117-137.
[http://dx.doi.org/10.1146/annurev.micro.56.012302.161024] [PMID: 12142491]
[41]
Aucher, W.; Lacombe, C.; Héquet, A.; Frère, J.; Berjeaud, J.M. Influence of amino acid substitutions in the leader peptide on maturation and secretion of mesentericin Y105 by Leuconostoc mesenteroides. J. Bacteriol., 2005, 187(6), 2218-2223.
[http://dx.doi.org/10.1128/JB.187.6.2218-2223.2005] [PMID: 15743973]
[42]
Hosseininezhad, M.; Yazdi, M. Bacteriocins: Natural, bio-safe preservatives and biological alternatives for chemical additives. Journal of Biosafety, 2016, 9(2), 49-59.
[43]
Cotter, P.D.; Ross, R.P.; Hill, C. Bacteriocins-a viable alternative to antibiotics? Nat. Rev. Microbiol., 2013, 11(2), 95-105.
[http://dx.doi.org/10.1038/nrmicro2937] [PMID: 23268227]
[44]
Riley, M.A.; Chavan, M.A. Bacteriocins; Springer, 2007.
[http://dx.doi.org/10.1007/978-3-540-36604-1]
[45]
Sharp, C.; Boinett, C.; Cain, A.; Housden, N.G.; Kumar, S.; Turner, K.; Parkhill, J.; Kleanthous, C. O-antigen-dependent colicin insensitivity of uropathogenic Escherichia coli. J. Bacteriol., 2019, 201(4), e00545-18.
[http://dx.doi.org/10.1128/JB.00545-18] [PMID: 30510143]
[46]
Bosák, J.; Micenková, L.; Hrala, M.; Pomorská, K.; Kunova Bosakova, M.; Krejci, P.; Göpfert, E.; Faldyna, M.; Šmajs, D. Colicin FY inhibits pathogenic Yersinia enterocolitica in mice. Sci. Rep., 2018, 8(1), 12242.
[http://dx.doi.org/10.1038/s41598-018-30729-7] [PMID: 30115964]
[47]
Gillor, O.; Vriezen, J.A.C.; Riley, M.A. The role of SOS boxes in enteric bacteriocin regulation. Microbiology, 2008, 154(6), 1783-1792.
[http://dx.doi.org/10.1099/mic.0.2007/016139-0] [PMID: 18524933]
[48]
Riley, M.A.; Pinou, T.; Wertz, J.E.; Tan, Y.; Valletta, C.M. Molecular characterization of the klebicin B plasmid of Klebsiella pneumoniae. Plasmid, 2001, 45(3), 209-221.
[http://dx.doi.org/10.1006/plas.2001.1519] [PMID: 11407916]
[49]
Chi, H. Garvicin KS, a bacteriocin with wide inhibitory spectrum and potential application., Philosophiae Doctor (PhD); Faculty of Chemistry, Biotechnology and Food Science: Norwegian University of Life Sciences, 2018.
[50]
Sharp, C.; Bray, J.; Housden, N.G.; Maiden, M.C.J.; Kleanthous, C. Diversity and distribution of nuclease bacteriocins in bacterial genomes revealed using Hidden Markov Models. PLOS Comput. Biol., 2017, 13(7), e1005652.
[http://dx.doi.org/10.1371/journal.pcbi.1005652] [PMID: 28715501]
[51]
Behrens, H.M.; Lowe, E.D.; Gault, J.; Housden, N.G.; Kaminska, R.; Weber, T.M.; Thompson, C.M.A.; Mislin, G.L.A.; Schalk, I.J.; Walker, D.; Robinson, C.V.; Kleanthous, C. Pyocin S5 import into Pseudomonas aeruginosa reveals a generic mode of bacteriocin transport. MBio, 2020, 11(2), e03230-e19.
[http://dx.doi.org/10.1128/mBio.03230-19] [PMID: 32156826]
[52]
Rooney, W.M.; Chai, R.; Milner, J.J.; Walker, D. Bacteriocins targeting Gram-negative phytopathogenic bacteria: Plantibiotics of the future. Front. Microbiol., 2020, 11, 575981.
[http://dx.doi.org/10.3389/fmicb.2020.575981] [PMID: 33042091]
[53]
De Vuyst, L.; Leroy, F. Bacteriocins from lactic acid bacteria: Production, purification, and food applications. Microbial Physiology, 2007, 13(4), 194-199.
[http://dx.doi.org/10.1159/000104752] [PMID: 17827969]
[54]
Heng, N.C.; Wescombe, P.A.; Burton, J.P.; Jack, R.W.; Tagg, J.R. The diversity of bacteriocins in Gram-positive bacteria. In bacteriocins, Springer, 2007, 45-92.
[http://dx.doi.org/10.1007/978-3-540-36604-1_4]
[55]
Chen, H.; Hoover, D.G. Bacteriocins and their food applications. Compr. Rev. Food Sci. Food Saf., 2003, 2(3), 82-100.
[http://dx.doi.org/10.1111/j.1541-4337.2003.tb00016.x] [PMID: 33451234]
[56]
Ramu, R.; Shirahatti, P.S.; Devi, A.T.; Prasad, A. Bacteriocins and their applications in food preservation. Crit. Rev. Food Sci. Nutr., 2015.
[57]
Nes, I.F.; Diep, D.B.; Håvarstein, L.S.; Brurberg, M.B.; Eijsink, V.; Holo, H. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie van Leeuwenhoek, 1996, 70(2-4), 113-128.
[http://dx.doi.org/10.1007/BF00395929] [PMID: 8879403]
[58]
Kumariya, R.; Garsa, A.K.; Rajput, Y.S.; Sood, S.K.; Akhtar, N.; Patel, S. Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb. Pathog., 2019, 128, 171-177.
[http://dx.doi.org/10.1016/j.micpath.2019.01.002] [PMID: 30610901]
[59]
Yu, X.; Lu, N.; Wang, J.; Chen, Z.; Chen, C.; Regenstein, J.M.; Zhou, P. Effect of N-terminal modification on the antimicrobial activity of nisin. Food Control, 2020, 114, 107227.
[http://dx.doi.org/10.1016/j.foodcont.2020.107227]
[60]
Daba, G.M.; Elkhateeb, W.A. Bacteriocins of lactic acid bacteria as biotechnological tools in food and pharmaceuticals: Current applications and future prospects. Biocatal. Agric. Biotechnol., 2020, 28, 101750.
[http://dx.doi.org/10.1016/j.bcab.2020.101750]
[61]
Drider, D.; Fimland, G.; Héchard, Y.; McMullen, L.M.; Prévost, H. The continuing story of class IIa bacteriocins. Microbiol. Mol. Biol. Rev., 2006, 70(2), 564-582.
[http://dx.doi.org/10.1128/MMBR.00016-05] [PMID: 16760314]
[62]
Zimina, M.; Babich, O.; Prosekov, A.; Sukhikh, S.; Ivanova, S.; Shevchenko, M.; Noskova, S. Overview of global trends in classification, methods of preparation and application of bacteriocins. Antibiotics, 2020, 9(9), 553.
[http://dx.doi.org/10.3390/antibiotics9090553] [PMID: 32872235]
[63]
Erkaya, E.; Genç, B.; Akbulut, S.; Adiguzel, G.; Omeroglu, M.A.; Ozkan, H.; Adiguzel, A. Bacteriocin producing bacteria isolated from turkish traditional sausage samples. J. Pure Appl. Microbiol., 2020, 14(2), 1567-1576.
[http://dx.doi.org/10.22207/JPAM.14.2.55]
[64]
Yalçin, H.; Üstündağ, H. Bacteriocins and their use in food products. Mehmet Akif Ersoy Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 2019, 5(1), 53-65.
[65]
Grande Burgos, M.; Pulido, R.; del Carmen López Aguayo, M.; Gálvez, A.; Lucas, R. The cyclic antibacterial peptide enterocin AS-48: Isolation, mode of action, and possible food applications. Int. J. Mol. Sci., 2014, 15(12), 22706-22727.
[http://dx.doi.org/10.3390/ijms151222706] [PMID: 25493478]
[66]
Kawai, Y.; Kemperman, R.; Kok, J.; Saito, T. The circular bacteriocins gassericin A and circularin A. Curr. Protein Pept. Sci., 2004, 5(5), 393-398.
[http://dx.doi.org/10.2174/1389203043379549] [PMID: 15544534]
[67]
Vijay Simha, B.; Sood, S.K.; Kumariya, R.; Garsa, A.K. Simple and rapid purification of pediocin PA-1 from Pediococcus pentosaceous NCDC 273 suitable for industrial application. Microbiol. Res., 2012, 167(9), 544-549.
[http://dx.doi.org/10.1016/j.micres.2012.01.001] [PMID: 22277956]
[68]
Cotter, P.D.; Hill, C.; Ross, R.P. Bacteriocins: Developing innate immunity for food. Nat. Rev. Microbiol., 2005, 3(10), 777-788.
[http://dx.doi.org/10.1038/nrmicro1273] [PMID: 16205711]
[69]
Yang, S.C.; Lin, C.H.; Sung, C.T.; Fang, J.Y. Antibacterial activities of bacteriocins: Application in foods and pharmaceuticals. Front. Microbiol., 2014, 5, 241.
[http://dx.doi.org/10.3389/fmicb.2014.00241] [PMID: 24904554]
[70]
Bernbom, N.; Licht, T.R.; Brogren, C.H.; Jelle, B.; Johansen, A.H.; Badiola, I.; Vogensen, F.K.; Nørrung, B. Effects of Lactococcus lactis on composition of intestinal microbiota: Role of nisin. Appl. Environ. Microbiol., 2006, 72(1), 239-244.
[http://dx.doi.org/10.1128/AEM.72.1.239-244.2006] [PMID: 16391049]
[71]
Bakkal, S.; Riley, M.A.; Robinson, S.M. Bacteriocins of aquatic microorganisms and their potential applications in the seafood industry; INTECH Open Access Publisher, 2012.
[http://dx.doi.org/10.5772/28302]
[72]
Corr, S.C.; Li, Y.; Riedel, C.U.; O’Toole, P.W.; Hill, C.; Gahan, C.G.M. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc. Natl. Acad. Sci. USA, 2007, 104(18), 7617-7621.
[http://dx.doi.org/10.1073/pnas.0700440104] [PMID: 17456596]
[73]
Dabour, N.; Zihler, A.; Kheadr, E.; Lacroix, C.; Fliss, I. In vivo study on the effectiveness of pediocin PA-1 and Pediococcus acidilactici UL5 at inhibiting Listeria monocytogenes. Int. J. Food Microbiol., 2009, 133(3), 225-233.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2009.05.005] [PMID: 19541383]
[74]
Cursino, L.; Šmajs, D.; Šmarda, J.; Nardi, R.M.D.; Nicoli, J.R.; Chartone-Souza, E.; Nascimento, A.M.A. Exoproducts of the Escherichia coli. strain H22 inhibiting some enteric pathogens both in vitro and in vivo. J. Appl. Microbiol., 2006, 100(4), 821-829.
[http://dx.doi.org/10.1111/j.1365-2672.2006.02834.x] [PMID: 16553738]
[75]
Millette, M.; Cornut, G.; Dupont, C.; Shareck, F.; Archambault, D.; Lacroix, M. Capacity of human nisin- and pediocin-producing lactic Acid bacteria to reduce intestinal colonization by vancomycin-resistant enterococci. Appl. Environ. Microbiol., 2008, 74(7), 1997-2003.
[http://dx.doi.org/10.1128/AEM.02150-07] [PMID: 18245231]
[76]
Eveno, M.; Savard, P.; Belguesmia, Y.; Bazinet, L.; Gancel, F.; Drider, D.; Fliss, I. Compatibility, cytotoxicity, and gastrointestinal tenacity of bacteriocin-producing bacteria selected for a consortium probiotic formulation to be used in livestock feed. Probiotics Antimicrob. Proteins, 2021, 13(1), 208-217.
[http://dx.doi.org/10.1007/s12602-020-09687-y] [PMID: 32712896]
[77]
Asahara, T.; Shimizu, K.; Nomoto, K.; Hamabata, T.; Ozawa, A.; Takeda, Y. Probiotic bifidobacteria protect mice from lethal infection with Shiga toxin-producing Escherichia coli O157:H7. Infect. Immun., 2004, 72(4), 2240-2247.
[http://dx.doi.org/10.1128/IAI.72.4.2240-2247.2004] [PMID: 15039348]
[78]
Rossetto, O.; Pirazzini, M.; Montecucco, C. Botulinum neurotoxins: Genetic, structural and mechanistic insights. Nat. Rev. Microbiol., 2014, 12(8), 535-549.
[http://dx.doi.org/10.1038/nrmicro3295] [PMID: 24975322]
[79]
Alizadeh, A.M.; Hashempour-Baltork, F.; Alizadeh-Sani, M.; Maleki, M.; Azizi-Lalabad, M.; Khosravi-Darani, K. Inhibition of Clostridium (C.) botulinum and its toxins by probiotic bacteria and their metabolites: An update review. Qual. Assur. Saf. Crops Foods, 2020, 12(SP1), 59-68.
[http://dx.doi.org/10.15586/qas.v12iSP1.823]
[80]
Lam, T.; Tam, C.; Stanker, L.; Cheng, L. Probiotic microorganisms inhibit epithelial cell internalization of botulinum neurotoxin serotype A. Toxins, 2016, 8(12), 377.
[http://dx.doi.org/10.3390/toxins8120377] [PMID: 27999281]
[81]
Carey, C.M.; Kostrzynska, M.; Ojha, S.; Thompson, S. The effect of probiotics and organic acids on Shiga-toxin 2 gene expression in enterohemorrhagic Escherichia coli. O157:H7. J. Microbiol. Methods, 2008, 73(2), 125-132.
[http://dx.doi.org/10.1016/j.mimet.2008.01.014] [PMID: 18328583]
[82]
Castagliuolo, I.; LaMont, J.T.; Nikulasson, S.T.; Pothoulakis, C. Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum. Infect. Immun., 1996, 64(12), 5225-5232.
[http://dx.doi.org/10.1128/iai.64.12.5225-5232.1996] [PMID: 8945570]
[83]
Pothoulakis, C.; Kelly, C.P.; Joshi, M.A.; Gao, N.; O’Keane, C.J.; Castagliuolo, I.; Lamont, J.T. Saccharomyces boulardii inhibits Clostridium difficile toxin A binding and enterotoxicity in rat ileum. Gastroenterology, 1993, 104(4), 1108-1115.
[http://dx.doi.org/10.1016/0016-5085(93)90280-P] [PMID: 8462799]
[84]
Valdés-Varela, L.; Alonso-Guervos, M.; García-Suárez, O.; Gueimonde, M.; Ruas-Madiedo, P. Screening of bifidobacteria and lactobacilli able to antagonize the cytotoxic effect of Clostridium difficile upon intestinal epithelial HT29 monolayer. Front. Microbiol., 2016, 7, 577.
[http://dx.doi.org/10.3389/fmicb.2016.00577] [PMID: 27148250]
[85]
Trejo, F.M.; Pérez, P.F.; De Antoni, G.L. Co-culture with potentially probiotic microorganisms antagonises virulence factors of Clostridium difficile in vitro. Antonie van Leeuwenhoek, 2010, 98(1), 19-29.
[http://dx.doi.org/10.1007/s10482-010-9424-6] [PMID: 20232250]
[86]
Ripert, G.; Racedo, S.M.; Elie, A.M.; Jacquot, C.; Bressollier, P.; Urdaci, M.C. Secreted compounds of the probiotic Bacillus clausii strain O/C inhibit the cytotoxic effects induced by Clostridium difficile and Bacillus cereus toxins. Antimicrob. Agents Chemother., 2016, 60(6), 3445-3454.
[http://dx.doi.org/10.1128/AAC.02815-15] [PMID: 27001810]
[87]
Paton, A.W.; Morona, R.; Paton, J.C. Designer probiotics for prevention of enteric infections. Nat. Rev. Microbiol., 2006, 4(3), 193-200.
[http://dx.doi.org/10.1038/nrmicro1349] [PMID: 16462752]
[88]
Mousavi Khaneghah, A.; Abhari, K.; Eş, I.; Soares, M.B.; Oliveira, R.B.A.; Hosseini, H.; Rezaei, M.; Balthazar, C.F.; Silva, R.; Cruz, A.G.; Ranadheera, C.S.; Sant’Ana, A.S. Interactions between probiotics and pathogenic microorganisms in hosts and foods: A review. Trends Food Sci. Technol., 2020, 95, 205-218.
[http://dx.doi.org/10.1016/j.tifs.2019.11.022]
[89]
A, M.; Teitelbaum, D.; R, D.; F, Y.; C, H.; A, C. Probiotics up-regulate MUC-2 mucin gene expression in a Caco-2 cell-culture model. Pediatr. Surg. Int., 2002, 18(7), 586-590.
[http://dx.doi.org/10.1007/s00383-002-0855-7] [PMID: 12471471]
[90]
Caballero-Franco, C.; Keller, K.; De Simone, C.; Chadee, K. The VSL#3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 292(1), G315-G322.
[http://dx.doi.org/10.1152/ajpgi.00265.2006] [PMID: 16973917]
[91]
Maldonado Galdeano, C.; Cazorla, S.I.; Lemme Dumit, J.M.; Vélez, E.; Perdigón, G. Beneficial effects of probiotic consumption on the immune system. Ann. Nutr. Metab., 2019, 74(2), 115-124.
[http://dx.doi.org/10.1159/000496426] [PMID: 30673668]
[92]
Pahumunto, N.; Sophatha, B.; Piwat, S.; Teanpaisan, R. Increasing salivary IgA and reducing Streptococcus mutans by probiotic Lactobacillus paracasei SD1: A double-blind, randomized, controlled study. J. Dent. Sci., 2019, 14(2), 178-184.
[http://dx.doi.org/10.1016/j.jds.2019.01.008] [PMID: 31210892]
[93]
Corbo, M.R.; Campaniello, D.; Speranza, B.; Altieri, C.; Sinigaglia, M.; Bevilacqua, A. Neutralisation of toxins by probiotics during the transit into the gut: challenges and perspectives. Int. J. Food Sci. Technol., 2018, 53(6), 1339-1351.
[http://dx.doi.org/10.1111/ijfs.13745]
[94]
Nybom, S. Removal of cyanobacterial toxins by strains of probiotic bacteria; Department of Biosciences Biochemistry, 2011.
[95]
Meriluoto, J.; Gueimonde, M.; Haskard, C.A.; Spoof, L.; Sjövall, O.; Salminen, S. Removal of the cyanobacterial toxin microcystin-LR by human probiotics. Toxicon, 2005, 46(1), 111-114.
[http://dx.doi.org/10.1016/j.toxicon.2005.03.013] [PMID: 15922388]
[96]
Nybom, S.M.K.; Salminen, S.J.; Meriluoto, J.A.O. Removal of microcystin-LR by strains of metabolically active probiotic bacteria. FEMS Microbiol. Lett., 2007, 270(1), 27-33.
[http://dx.doi.org/10.1111/j.1574-6968.2007.00644.x] [PMID: 17263839]
[97]
Nybom, S.M.K.; Salminen, S.J.; Meriluoto, J.A.O. Specific strains of probiotic bacteria are efficient in removal of several different cyanobacterial toxins from solution. Toxicon, 2008, 52(2), 214-220.
[http://dx.doi.org/10.1016/j.toxicon.2008.04.169] [PMID: 18639912]
[98]
Nybom, S.M.K.; Dziga, D.; Heikkilä, J.E.; Kull, T.P.J.; Salminen, S.J.; Meriluoto, J.A.O. Characterization of microcystin-LR removal process in the presence of probiotic bacteria. Toxicon, 2012, 59(1), 171-181.
[http://dx.doi.org/10.1016/j.toxicon.2011.11.008] [PMID: 22115989]
[99]
Haskard, C.A.; El-Nezami, H.S.; Kankaanpää, P.E.; Salminen, S.; Ahokas, J.T. Surface binding of aflatoxin B(1) by lactic acid bacteria. Appl. Environ. Microbiol., 2001, 67(7), 3086-3091.
[http://dx.doi.org/10.1128/AEM.67.7.3086-3091.2001] [PMID: 11425726]
[100]
Ahlberg, S.H.; Joutsjoki, V.; Korhonen, H.J. Potential of lactic acid bacteria in aflatoxin risk mitigation. Int. J. Food Microbiol., 2015, 207, 87-102.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2015.04.042] [PMID: 26001523]
[101]
Kabak, B.; Dobson, A.D.W.; Var, I. Strategies to prevent mycotoxin contamination of food and animal feed: A review. Crit. Rev. Food Sci. Nutr., 2006, 46(8), 593-619.
[http://dx.doi.org/10.1080/10408390500436185] [PMID: 17092826]
[102]
Amalaradjou, M.A.R.; Bhunia, A.K. Modern approaches in probiotics research to control foodborne pathogens. Adv. Food Nutr. Res., 2012, 67, 185-239.
[http://dx.doi.org/10.1016/B978-0-12-394598-3.00005-8] [PMID: 23034117]
[103]
Salminen, S.; Nybom, S.; Meriluoto, J.; Collado, M.C.; Vesterlund, S.; El-Nezami, H. Interaction of probiotics and pathogens—benefits to human health? Curr. Opin. Biotechnol., 2010, 21(2), 157-167.
[http://dx.doi.org/10.1016/j.copbio.2010.03.016] [PMID: 20413293]
[104]
Kumar, P.; Mahato, D.K.; Kamle, M.; Mohanta, T.K.; Kang, S.G. Aflatoxins: A global concern for food safety, human health and their management. Front. Microbiol., 2017, 7, 2170.
[http://dx.doi.org/10.3389/fmicb.2016.02170] [PMID: 28144235]
[105]
Smith, J. Aflatoxins. In: Handbook of plant and fungal toxicants; CRC Press, 2020; pp. 269-285.
[http://dx.doi.org/10.1201/9780429281952-19]
[106]
Liu, X.; Fan, L.; Yin, S.; Chen, H.; Hu, H. Molecular mechanisms of fumonisin B1-induced toxicities and its applications in the mechanism-based interventions. Toxicon, 2019, 167, 1-5.
[http://dx.doi.org/10.1016/j.toxicon.2019.06.009] [PMID: 31173793]
[107]
Zoghi, A.; Khosravi-Darani, K.; Sohrabvandi, S. Surface binding of toxins and heavy metals by probiotics. Mini Rev. Med. Chem., 2014, 14(1), 84-98.
[http://dx.doi.org/10.2174/1389557513666131211105554] [PMID: 24329992]
[108]
Hueza, I.; Raspantini, P.; Raspantini, L.; Latorre, A.; Górniak, S. Zearalenone, an estrogenic mycotoxin, is an immunotoxic compound. Toxins, 2014, 6(3), 1080-1095.
[http://dx.doi.org/10.3390/toxins6031080] [PMID: 24632555]
[109]
Rogowska, A.; Pomastowski, P.; Sagandykova, G.; Buszewski, B. Zearalenone and its metabolites: Effect on human health, metabolism and neutralisation methods. Toxicon, 2019, 162, 46-56.
[http://dx.doi.org/10.1016/j.toxicon.2019.03.004] [PMID: 30851274]
[110]
Pfohl-Leszkowicz, A.; Manderville, R.A.; Ochratoxin, A.; Ochratoxin, A. An overview on toxicity and carcinogenicity in animals and humans. Mol. Nutr. Food Res., 2007, 51(1), 61-99.
[http://dx.doi.org/10.1002/mnfr.200600137] [PMID: 17195275]
[111]
Tao, Y.; Xie, S.; Xu, F.; Liu, A.; Wang, Y.; Chen, D.; Pan, Y.; Huang, L.; Peng, D.; Wang, X.; Yuan, Z.; Ochratoxin, A. Toxicity, oxidative stress and metabolism. Food Chem. Toxicol., 2018, 112, 320-331.
[http://dx.doi.org/10.1016/j.fct.2018.01.002] [PMID: 29309824]
[112]
Funes, G.J.; Gómez, P.L.; Resnik, S.L.; Alzamora, S.M. Application of pulsed light to patulin reduction in McIlvaine buffer and apple products. Food Control, 2013, 30(2), 405-410.
[http://dx.doi.org/10.1016/j.foodcont.2012.09.001]
[113]
Kamboj, S.; Gupta, N.; Bandral, J.D.; Gandotra, G.; Anjum, N. Food safety and hygiene: A review. Int. J. Chem. Stud., 2020, 8(2), 358-368.
[http://dx.doi.org/10.22271/chemi.2020.v8.i2f.8794]
[114]
Turner, P.C.; Wu, Q.K.; Piekkola, S.; Gratz, S.; Mykkänen, H.; El-Nezami, H. Lactobacillus rhamnosus strain GG restores alkaline phosphatase activity in differentiating Caco-2 cells dosed with the potent mycotoxin deoxynivalenol. Food Chem. Toxicol., 2008, 46(6), 2118-2123.
[http://dx.doi.org/10.1016/j.fct.2008.02.004] [PMID: 18343010]
[115]
Gratz, S. Aflatoxin binding by probiotics: Experimental studies on intestinal aflatoxin transport, metabolism and toxicity; University of Kuopio, 2007.
[116]
Gerez, C.L.; Torino, M.I.; Rollán, G.; Font de Valdez, G. Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties. Food Control, 2009, 20(2), 144-148.
[http://dx.doi.org/10.1016/j.foodcont.2008.03.005]
[117]
Perczak, A.; Goliński, P.; Bryła, M.; Waśkiewicz, A. The efficiency of lactic acid bacteria against pathogenic fungi and mycotoxins. Arh. Hig. Rada Toksikol., 2018, 69(1), 32-45.
[http://dx.doi.org/10.2478/aiht-2018-69-3051] [PMID: 29604200]
[118]
Wu, Q.; Jezkova, A.; Yuan, Z.; Pavlikova, L.; Dohnal, V.; Kuca, K. Biological degradation of aflatoxins. Drug Metab. Rev., 2009, 41(1), 1-7.
[http://dx.doi.org/10.1080/03602530802563850] [PMID: 19514968]
[119]
Muhialdin, B.J.; Saari, N.; Meor Hussin, A.S. Review on the biological detoxification of mycotoxins using lactic acid bacteria to enhance the sustainability of foods supply. Molecules, 2020, 25(11), 2655.
[http://dx.doi.org/10.3390/molecules25112655] [PMID: 32517380]
[120]
Hathout, A.S.; Mohamed, S.R.; El-Nekeety, A.A.; Hassan, N.S.; Aly, S.E.; Abdel-Wahhab, M.A. Ability of Lactobacillus casei and Lactobacillus reuteri to protect against oxidative stress in rats fed aflatoxins-contaminated diet. Toxicon, 2011, 58(2), 179-186.
[http://dx.doi.org/10.1016/j.toxicon.2011.05.015] [PMID: 21658402]
[121]
Hernandez-Mendoza, A.; González-Córdova, A.F.; Vallejo-Cordoba, B.; Garcia, H.S. Effect of oral supplementation of Lactobacillus reuteri in reduction of intestinal absorption of aflatoxin B 1 in rats. J. Basic Microbiol., 2011, 51(3), 263-268.
[http://dx.doi.org/10.1002/jobm.201000119] [PMID: 21298677]
[122]
Dänicke, S.; Döll, S. A probiotic feed additive containing spores of Bacillus subtilis and B. licheniformis does not prevent absorption and toxic effects of the Fusarium toxin deoxynivalenol in piglets. Food Chem. Toxicol., 2010, 48(1), 152-158.
[http://dx.doi.org/10.1016/j.fct.2009.09.032] [PMID: 19796665]
[123]
Hernandez-Mendoza, A.; Garcia, H.S.; Steele, J.L. Screening of Lactobacillus casei strains for their ability to bind aflatoxin B1. Food Chem. Toxicol., 2009, 47(6), 1064-1068.
[http://dx.doi.org/10.1016/j.fct.2009.01.042] [PMID: 19425181]
[124]
Topcu, A.; Bulat, T.; Wishah, R.; Boyacı, I.H. Detoxification of aflatoxin B1 and patulin by Enterococcus faecium strains. Int. J. Food Microbiol., 2010, 139(3), 202-205.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2010.03.006] [PMID: 20356644]
[125]
Liu, A.; Zheng, Y.; Liu, L.; Chen, S.; He, L.; Ao, X.; Yang, Y.; Liu, S. Decontamination of Aflatoxins by lactic acid bacteria. Curr. Microbiol., 2020, 77(12), 3821-3830.
[http://dx.doi.org/10.1007/s00284-020-02220-y] [PMID: 32979055]
[126]
Wang, J.; Xie, Y. Review on microbial degradation of zearalenone and aflatoxins. Grain & Oil Science and Technology, 2020, 3(3), 117-125.
[http://dx.doi.org/10.1016/j.gaost.2020.05.002]
[127]
Chlebicz, A.; Śliżewska, K. In vitro detoxification of aflatoxin B 1, deoxynivalenol, fumonisins, T-2 toxin and zearalenone by probiotic bacteria from genus Lactobacillus and Saccharomyces cerevisiae yeast. Probiotics Antimicrob. Proteins, 2020, 12(1), 289-301.
[http://dx.doi.org/10.1007/s12602-018-9512-x] [PMID: 30721525]
[128]
Taheur, F.B.; Fedhila, K.; Chaieb, K.; Kouidhi, B.; Bakhrouf, A.; Abrunhosa, L. Adsorption of aflatoxin B1, zearalenone and ochratoxin A by microorganisms isolated from Kefir grains. Int. J. Food Microbiol., 2017, 251, 1-7.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2017.03.021] [PMID: 28376398]
[129]
Ndagano, D.; Lamoureux, T.; Dortu, C.; Vandermoten, S.; Thonart, P. Antifungal activity of 2 lactic acid bacteria of the Weissella genus isolated from food. J. Food Sci., 2011, 76(6), M305-M311.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02257.x] [PMID: 21729073]
[130]
Dal Bello, F.; Clarke, C.I.; Ryan, L.A.M.; Ulmer, H.; Schober, T.J.; Ström, K.; Sjögren, J.; van Sinderen, D.; Schnürer, J.; Arendt, E.K. Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. J. Cereal Sci., 2007, 45(3), 309-318.
[http://dx.doi.org/10.1016/j.jcs.2006.09.004]
[131]
Prema, P.; Smila, D.; Palavesam, A.; Immanuel, G. Production and characterization of an antifungal compound (3-phenyllactic acid) produced by Lactobacillus plantarum strain. Food Bioprocess Technol., 2010, 3(3), 379-386.
[http://dx.doi.org/10.1007/s11947-008-0127-1]
[132]
Schwenninger, S.M.; Lacroix, C.; Truttmann, S.; Jans, C.; Spörndli, C.; Bigler, L.; Meile, L. Characterization of low-molecular-weight antiyeast metabolites produced by a food-protective Lactobacillus-Propionibacterium coculture. J. Food Prot., 2008, 71(12), 2481-2487.
[http://dx.doi.org/10.4315/0362-028X-71.12.2481] [PMID: 19244902]
[133]
Mandal, V.; Sen, S.K.; Mandal, N.C. Detection, isolation and partial characterization of antifungal compound (s) produced by Pediococcus acidilactici LAB 5. Nat. Prod. Commun., 2007, 2(6)
[134]
Le Lay, C.; Coton, E.; Le Blay, G.; Chobert, J.M.; Haertlé, T.; Choiset, Y.; Van Long, N.N.; Meslet-Cladière, L.; Mounier, J. Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria. Int. J. Food Microbiol., 2016, 239, 79-85.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2016.06.020] [PMID: 27350657]
[135]
Lim, S.M.; Yoon, M.Y.; Choi, G.J.; Choi, Y.H.; Jang, K.S.; Shin, T.S.; Park, H.W.; Yu, N.H.; Kim, Y.H.; Kim, J.C. Diffusible and volatile antifungal compounds produced by an antagonistic Bacillus velezensis G341 against various phytopathogenic fungi. Plant Pathol. J., 2017, 33(5), 488-498.
[http://dx.doi.org/10.5423/PPJ.OA.04.2017.0073] [PMID: 29018312]
[136]
Rouxel, M.; Barthe, M.; Marchand, P.; Juin, C.; Mondamert, L.; Berges, T.; Blanc, P.; Verdon, J.; Berjeaud, J.M.; Aucher, W. Characterization of antifungal compounds produced by lactobacilli in cheese-mimicking matrix: Comparison between active and inactive strains. Int. J. Food Microbiol., 2020, 333, 108798.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2020.108798] [PMID: 32771821]
[137]
Salomskiene, J.; Jonkuviene, D.; Macioniene, I.; Abraitiene, A.; Zeime, J.; Repeckiene, J.; Vaiciulyte-Funk, L. Differences in the occurence and efficiency of antimicrobial compounds produced by lactic acid bacteria. Eur. Food Res. Technol., 2019, 245(3), 569-579.
[http://dx.doi.org/10.1007/s00217-018-03227-3]
[138]
Surendran Nair, M.; Amalaradjou, M.A.; Venkitanarayanan, K. Antivirulence properties of probiotics in combating microbial pathogenesis. Adv. Appl. Microbiol., 2017, 98, 1-29.
[http://dx.doi.org/10.1016/bs.aambs.2016.12.001] [PMID: 28189153]
[139]
Armando, M.R.; Pizzolitto, R.P.; Dogi, C.A.; Cristofolini, A.; Merkis, C.; Poloni, V.; Dalcero, A.M.; Cavaglieri, L.R. Adsorption of ochratoxin A and zearalenone by potential probiotic Saccharomyces cerevisiae strains and its relation with cell wall thickness. J. Appl. Microbiol., 2012, 113(2), 256-264.
[http://dx.doi.org/10.1111/j.1365-2672.2012.05331.x] [PMID: 22563909]
[140]
Bejaoui, H.; Mathieu, F.; Taillandier, P.; Lebrihi, A. Ochratoxin A removal in synthetic and natural grape juices by selected oenological Saccharomyces strains. J. Appl. Microbiol., 2004, 97(5), 1038-1044.
[http://dx.doi.org/10.1111/j.1365-2672.2004.02385.x] [PMID: 15479420]
[141]
Pulvirenti, A.; De Vero, L.; Blaiotta, G.; Sidari, R.; Iosca, G.; Gullo, M.; Caridi, A. Selection of Wine Saccharomyces cerevisiae strains and their screening for the adsorption activity of pigments, phenolics and ochratoxin A. Fermentation, 2020, 6(3), 80.
[http://dx.doi.org/10.3390/fermentation6030080]
[142]
Shetty, P.H.; Jespersen, L. Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents. Trends Food Sci. Technol., 2006, 17(2), 48-55.
[http://dx.doi.org/10.1016/j.tifs.2005.10.004]
[143]
Elizabeth Santin, ; Alex Maiorka, ; Marcos Macari; Fischer da, A.V.; Macari, M.; Silva, A.; Alessi, A.C. Evaluation of the efficacy of Saccharomyces cerevisiae cell wall to ameliorate the toxic effects of aflatoxin in broilers. Int. J. Poult. Sci., 2003, 2(5), 341-344.
[http://dx.doi.org/10.3923/ijps.2003.341.344]
[144]
Raju, M.V.L.N.; Devegowda, G. Influence of esterified-glucomannan on performance and organ morphology, serum biochemistry and haematology in broilers exposed to individual and combined mycotoxicosis (aflatoxin, ochratoxin and T-2 toxin). Br. Poult. Sci., 2000, 41(5), 640-650.
[http://dx.doi.org/10.1080/713654986] [PMID: 11201446]
[145]
Raymond, S.L.; Smith, T.K.; Swamy, H.V.L.N. Effects of feeding a blend of grains naturally contaminated with Fusarium mycotoxins on feed intake, serum chemistry, and hematology of horses, and the efficacy of a polymeric glucomannan mycotoxin adsorbent1. J. Anim. Sci., 2003, 81(9), 2123-2130.
[http://dx.doi.org/10.2527/2003.8192123x] [PMID: 12968685]
[146]
Zhao, L.; Jin, H.; Lan, J.; Zhang, R.; Ren, H.; Zhang, X.; Yu, G. Detoxification of zearalenone by three strains of lactobacillus plantarum from fermented food in vitro. Food Control, 2015, 54, 158-164.
[http://dx.doi.org/10.1016/j.foodcont.2015.02.003]
[147]
Sangsila, A.; Faucet-Marquis, V.; Pfohl-Leszkowicz, A.; Itsaranuwat, P. Detoxification of zearalenone by Lactobacillus pentosus strains. Food Control, 2016, 62, 187-192.
[http://dx.doi.org/10.1016/j.foodcont.2015.10.031]
[148]
Petruzzi, L.; Corbo, M.R.; Sinigaglia, M.; Bevilacqua, A. Ochratoxin A removal by yeasts after exposure to simulated human gastrointestinal conditions. J. Food Sci., 2016, 81(11), M2756-M2760.
[http://dx.doi.org/10.1111/1750-3841.13518] [PMID: 27732755]
[149]
Zoghi, A.; Khosravi-Darani, K.; Sohrabvandi, S.; Attar, H.; Alavi, S.A. Effect of probiotics on patulin removal from synbiotic apple juice. J. Sci. Food Agric., 2017, 97(8), 2601-2609.
[http://dx.doi.org/10.1002/jsfa.8082] [PMID: 27785791]
[150]
Huang, L.; Duan, C.; Zhao, Y.; Gao, L.; Niu, C.; Xu, J.; Li, S. Reduction of aflatoxin B1 toxicity by Lactobacillus plantarum C88: A potential probiotic strain isolated from Chinese traditional fermented food “tofu”. PLoS One, 2017, 12(1), e0170109.
[http://dx.doi.org/10.1371/journal.pone.0170109] [PMID: 28129335]
[151]
Mahmood Fashandi, H.; Abbasi, R.; Mousavi Khaneghah, A. The detoxification of aflatoxin M 1 by Lactobacillus acidophilus and Bifidobacterium spp.: A review. J. Food Process. Preserv., 2018, 42(9), e13704.
[http://dx.doi.org/10.1111/jfpp.13704]
[152]
Sokoutifar, R.; Razavilar, V.; Anvar, A.A.; Shoeiby, S. Degraded aflatoxin M1 in artificially contaminated fermented milk using Lactobacillus acidophilus and Lactobacillus plantarum affected by some bio‐physical factors. J. Food Saf., 2018, 38(6), e12544.
[http://dx.doi.org/10.1111/jfs.12544]
[153]
Juodeikiene, G.; Bartkiene, E.; Cernauskas, D.; Cizeikiene, D.; Zadeike, D.; Lele, V.; Bartkevics, V. Antifungal activity of lactic acid bacteria and their application for Fusarium mycotoxin reduction in malting wheat grains. Lebensm. Wiss. Technol., 2018, 89, 307-314.
[http://dx.doi.org/10.1016/j.lwt.2017.10.061]
[154]
Abdelmotilib, N.; Hamad, G.; Elderea, H.; Salem, E.; Sohaimy, S. Aflatoxin M1 reduction in milk by a novel combination of probiotic bacterial and yeast strains. Eur. J. Nutr. Food Saf., 2018, 8(2), 83-99.
[http://dx.doi.org/10.9734/EJNFS/2018/39486]
[155]
Taroub, B.; Salma, L.; Manel, Z.; Ouzari, H.I.; Hamdi, Z.; Moktar, H. Isolation of lactic acid bacteria from grape fruit: antifungal activities, probiotic properties, and in vitro detoxification of ochratoxin A. Ann. Microbiol., 2019, 69(1), 17-27.
[http://dx.doi.org/10.1007/s13213-018-1359-6]
[156]
Martínez, M.P.; Magnoli, A.P.; González Pereyra, M.L.; Cavaglieri, L. Probiotic bacteria and yeasts adsorb aflatoxin M1 in milk and degrade it to less toxic AFM1-metabolites. Toxicon, 2019, 172, 1-7.
[http://dx.doi.org/10.1016/j.toxicon.2019.10.001] [PMID: 31610179]
[157]
Vasconcelos, R.A.M.; Kalschne, D.L.; Wochner, K.F.; Moreira, M.C.C.; Becker-algeri, T.A.; Centenaro, A.I.; Colla, E.; Rodrigues, P.C.A.; Drunkler, D.A. Feasibility of L. plantarum and prebiotics on Aflatoxin B1 detoxification in cow milk. Food Sci. Technol., 2020, 41(3)
[158]
Cruz, P.O.; Matos, C.J.; Nascimento, Y.M.; Tavares, J.F.; Souza, E.L.; Magalhães, H.I.F. Efficacy of potentially probiotic fruit-derived Lactobacillus fermentum, L. paracasei and L. plantarum to remove aflatoxin M1in vitro. Toxins , 2020, 13(1), 4.
[http://dx.doi.org/10.3390/toxins13010004] [PMID: 33374495]
[159]
Ondiek, W.; Wang, Y.; Sun, L.; Zhou, L.; On, S.L.; Zheng, H.; Ravi, G. Removal of aflatoxin b1 and t-2 toxin by bacteria isolated from commercially available probiotic dairy foods. Food Sci. Technol. Int., 2021, 1082013220987916
[http://dx.doi.org/10.1177/1082013220987916] [PMID: 33478275]
[160]
Arena, M.P.; Capozzi, V.; Russo, P.; Drider, D.; Spano, G.; Fiocco, D. Immunobiosis and probiosis: Antimicrobial activity of lactic acid bacteria with a focus on their antiviral and antifungal properties. Appl. Microbiol. Biotechnol., 2018, 102(23), 9949-9958.
[http://dx.doi.org/10.1007/s00253-018-9403-9] [PMID: 30280241]
[161]
Al Kassaa, I.; Hober, D.; Hamze, M.; Chihib, N.E.; Drider, D. Antiviral potential of lactic acid bacteria and their bacteriocins. Probiotics Antimicrob. Proteins, 2014, 6(3-4), 177-185.
[http://dx.doi.org/10.1007/s12602-014-9162-6] [PMID: 24880436]
[162]
Botić, T.; Klingberg, T.; Weingartl, H.; Cencič, A. A novel eukaryotic cell culture model to study antiviral activity of potential probiotic bacteria. Int. J. Food Microbiol., 2007, 115(2), 227-234.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2006.10.044] [PMID: 17261339]
[163]
Kassaa, I.A.; Hober, D.; Hamze, M.; Caloone, D.; Dewilde, A.; Chihib, N.; Drider, D. Vaginal Lactobacillus gasseri CMUL57 can inhibit herpes simplex type 2 but not Coxsackievirus B4E2. Arch. Microbiol., 2015, 197(5), 657-664.
[http://dx.doi.org/10.1007/s00203-015-1101-8] [PMID: 25752765]
[164]
Wang, Z.; Chai, W.; Burwinkel, M.; Twardziok, S.; Wrede, P.; Palissa, C.; Esch, B.; Schmidt, M.F.G. Inhibitory influence of Enterococcus faecium on the propagation of swine influenza A virus in vitro. PLoS One, 2013, 8(1), e53043.
[http://dx.doi.org/10.1371/journal.pone.0053043] [PMID: 23308134]
[165]
Bermudez-Brito, M.; Plaza-Díaz, J.; Muñoz-Quezada, S.; Gómez-Llorente, C.; Gil, A. Probiotic mechanisms of action. Ann. Nutr. Metab., 2012, 61(2), 160-174.
[http://dx.doi.org/10.1159/000342079] [PMID: 23037511]
[166]
Mastromarino, P.; Cacciotti, F.; Masci, A.; Mosca, L. Antiviral activity of Lactobacillus brevis towards herpes simplex virus type 2: Role of cell wall associated components. Anaerobe, 2011, 17(6), 334-336.
[http://dx.doi.org/10.1016/j.anaerobe.2011.04.022] [PMID: 21621625]
[167]
Todorov, S.D.; Wachsman, M.B.; Knoetze, H.; Meincken, M.; Dicks, L.M.T. An antibacterial and antiviral peptide produced by Enterococcus mundtii ST4V isolated from soya beans. Int. J. Antimicrob. Agents, 2005, 25(6), 508-513.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.02.005] [PMID: 15869868]
[168]
Ansari, F.; Pashazadeh, F.; Nourollahi, E.; Hajebrahimi, S.; Munn, Z.; Pourjafar, H. A systematic review and meta-analysis: The effectiveness of probiotics for viral gastroenteritis. Curr. Pharm. Biotechnol., 2020, 21(11), 1042-1051.
[http://dx.doi.org/10.2174/1389201021666200416123931] [PMID: 32297578]
[169]
Fooks, L.J.; Gibson, G.R. Probiotics as modulators of the gut flora. Br. J. Nutr., 2002, 88(S1)(Suppl. 1), s39-s49.
[http://dx.doi.org/10.1079/BJN2002628] [PMID: 12215180]
[170]
Olaya Galán, N.N.; Ulloa Rubiano, J.C.; Velez Reyes, F.A.; Fernandez Duarte, K.P.; Salas Cárdenas, S.P.; Gutierrez Fernandez, M.F. In vitro antiviral activity of Lactobacillus casei and Bifidobacterium adolescentis against rotavirus infection monitored by NSP 4 protein production. J. Appl. Microbiol., 2016, 120(4), 1041-1051.
[http://dx.doi.org/10.1111/jam.13069] [PMID: 26801008]
[171]
Turner, R.B.; Woodfolk, J.A.; Borish, L.; Steinke, J.W.; Patrie, J.T.; Muehling, L.M.; Lahtinen, S.; Lehtinen, M.J. Effect of probiotic on innate inflammatory response and viral shedding in experimental rhinovirus infection-a randomised controlled trial. Benef. Microbes, 2017, 8(2), 207-215.
[http://dx.doi.org/10.3920/BM2016.0160] [PMID: 28343401]
[172]
Moye, Z.; Woolston, J.; Sulakvelidze, A. Bacteriophage applications for food production and processing. Viruses, 2018, 10(4), 205.
[http://dx.doi.org/10.3390/v10040205] [PMID: 29671810]
[173]
Nagarajan, V.; Peng, M.; Tabashsum, Z.; Salaheen, S.; Padilla, J.; Biswas, D. Antimicrobial effect and probiotic potential of phage resistant Lactobacillus plantarum and its interactions with zoonotic bacterial pathogens. Foods, 2019, 8(6), 194.
[http://dx.doi.org/10.3390/foods8060194] [PMID: 31195676]
[174]
Basualdo, J.; Sparo, M.; Chiodo, P.; Ciarmela, M.; Minvielle, M. Oral treatment with a potential probiotic (Enterococcus faecalis CECT 7121) appears to reduce the parasite burden of mice infected with Toxocara canis. Ann. Trop. Med. Parasitol., 2007, 101(6), 559-562.
[http://dx.doi.org/10.1179/136485907X193824] [PMID: 17716442]
[175]
Bautista-Garfias, C.R.; Ixta-Rodríguez, O.; Martínez-Gómez, F.; López, M.G.; Aguilar-Figueroa, B.R. Effect of viable or dead Lactobacillus casei organisms administered orally to mice on resistance against Trichinella spiralis infection. Parasite, 2001, 8(2)(Suppl.), S226-S228.
[http://dx.doi.org/10.1051/parasite/200108s2226] [PMID: 11484363]
[176]
Humen, M.A.; De Antoni, G.L.; Benyacoub, J.; Costas, M.E.; Cardozo, M.I.; Kozubsky, L.; Saudan, K.Y.; Boenzli-Bruand, A.; Blum, S.; Schiffrin, E.J.; Pérez, P.F. Lactobacillus johnsonii La1 antagonizes Giardia intestinalis in vivo. Infect. Immun., 2005, 73(2), 1265-1269.
[http://dx.doi.org/10.1128/IAI.73.2.1265-1269.2005] [PMID: 15664978]
[177]
Walcher, D.L.; Cruz, L.A.X.; de Lima Telmo, P.; Martins, L.H.R.; da Costa de Avila, L.F.; Berne, M.E.A.; Scaini, C.J. Lactobacillus rhamnosus reduces parasite load on Toxocara canis experimental infection in mice, but has no effect on the parasite in vitro. Parasitol. Res., 2018, 117(2), 597-602.
[http://dx.doi.org/10.1007/s00436-017-5712-7] [PMID: 29243027]
[178]
Sanad, M.M.; Al-Malki, J.S.; Al-Ghabban, A.G. In Control of cryptosporidiosis by probiotic bacteria International Conference on Agricultural, Ecological and Medical Sciences (AEMS-2015), 2015, pp. 7-8.
[179]
Dvorožňáková, E.; Bucková, B.; Hurníková, Z.; Revajová, V.; Lauková, A. Effect of probiotic bacteria on phagocytosis and respiratory burst activity of blood polymorphonuclear leukocytes (PMNL) in mice infected with Trichinella spiralis. Vet. Parasitol., 2016, 231, 69-76.
[http://dx.doi.org/10.1016/j.vetpar.2016.07.004] [PMID: 27425573]
[180]
Ribeiro, M.R.S.; Oliveira, D.R.; Oliveira, F.M.S.; Caliari, M.V.; Martins, F.S.; Nicoli, J.R.; Torres, M.F.; Andrade, M.E.R.; Cardoso, V.N.; Gomes, M.A. Effect of probiotic Saccharomyces boulardii in experimental giardiasis. Benef. Microbes, 2018, 9(5), 789-797.
[http://dx.doi.org/10.3920/BM2017.0155] [PMID: 30165752]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy