Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Stimuli-responsive Biomaterials for Tissue Engineering Applications

Author(s): Deepika Yadav*, Pramod Kumar Sharma, Rishabha Malviya*, Prem Shankar Mishra, Amareswarapu V. Surendra, G.S.N. Koteswara Rao and Budha Roja Rani

Volume 25, Issue 8, 2024

Published on: 11 September, 2023

Page: [981 - 999] Pages: 19

DOI: 10.2174/1389201024666230818121821

Price: $65

conference banner
Abstract

The use of ''smart materials,'' or ''stimulus responsive'' materials, has proven useful in a variety of fields, including tissue engineering and medication delivery. Many factors, including temperature, pH, redox state, light, and magnetic fields, are being studied for their potential to affect a material's properties, interactions, structure, and/or dimensions. New tissue engineering and drug delivery methods are made possible by the ability of living systems to respond to both external stimuli and their own internal signals) for example, materials composed of stimuliresponsive polymers that self assemble or undergo phase transitions or morphology transformation. The researcher examines the potential of smart materials as controlled drug release vehicles in tissue engineering, aiming to enable the localized regeneration of injured tissue by delivering precisely dosed drugs at precisely timed intervals.

Keywords: Tissue engineering, stimuli-responsive material, drug delivery, photothermal, sonodynamic treatment, therapy medicine.

« Previous
Graphical Abstract
[1]
Lumelsky, N.; O’Hayre, M.; Chander, P.; Shum, L.; Somerman, M.J. Autotherapies: Enhancing endogenous healing and regeneration. Trends Mol. Med., 2018, 24(11), 919-930.
[http://dx.doi.org/10.1016/j.molmed.2018.08.004] [PMID: 30213702]
[2]
Lavrador, P.; Gaspar, V.M.; Mano, J.F. Stimuli-responsive nanocarriers for delivery of bone therapeutics: Barriers and progresses. J. Control. Release, 2018, 273, 51-67.
[http://dx.doi.org/10.1016/j.jconrel.2018.01.021] [PMID: 29407678]
[3]
Rogina, A.; Ressler, A.; Matić, I.; Gallego Ferrer, G.; Marijanović, I.; Ivanković, M.; Ivanković, H. Cellular hydrogels based on pH-responsive chitosan-hydroxyapatite system. Carbohydr. Polym., 2017, 166, 173-182.
[http://dx.doi.org/10.1016/j.carbpol.2017.02.105] [PMID: 28385221]
[4]
Alvarez Echazú, M.I.; Olivetti, C.E.; Peralta, I.; Alonso, M.R.; Anesini, C.; Perez, C.J.; Alvarez, G.S.; Desimone, M.F. Development of pH-responsive biopolymer-silica composites loaded with larrea divaricata Cav. Extract with antioxidant activity. Colloids Surf. B Biointerfaces, 2018, 169, 82-91.
[http://dx.doi.org/10.1016/j.colsurfb.2018.05.015] [PMID: 29751344]
[5]
Parani, M.; Lokhande, G.; Singh, A.; Gaharwar, A.K. Engineered nanomaterials for infection control and healing acute and chronic wounds. ACS Appl. Mater. Interfaces, 2016, 8(16), 10049-10069.
[http://dx.doi.org/10.1021/acsami.6b00291] [PMID: 27043006]
[6]
Hamdan, S.; Pastar, I.; Drakulich, S.; Dikici, E.; Tomic-Canic, M.; Deo, S.; Daunert, S. Nanotechnology-driven therapeutic interventions in wound healing: potential uses and applications. ACS Cent. Sci., 2017, 3(3), 163-175.
[http://dx.doi.org/10.1021/acscentsci.6b00371] [PMID: 28386594]
[7]
Bose, S.; Robertson, S.F.; Bandyopadhyay, A. Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomater., 2018, 66, 6-22.
[http://dx.doi.org/10.1016/j.actbio.2017.11.003]
[8]
Pezzoni, M.; Catalano, P.N.; Pizarro, R.A.; Desimone, M.F.; Soler-Illia, G.J.A.A.; Bellino, M.G.; Costa, C.S. Antibiofilm effect of supramolecularly templated mesoporous silica coatings. Mater. Sci. Eng. C, 2017, 77, 1044-1049.
[http://dx.doi.org/10.1016/j.msec.2017.04.022] [PMID: 28531977]
[9]
Catalano, P.N.; Pezzoni, M.; Costa, C.; Soler-Illia, G.J.A.A.; Bellino, M.G.; Desimone, M.F. Optically transparent silver-loaded mesoporous thin film coating with long-lasting antibacterial activity. Microporous Mesoporous Mater., 2016, 236, 158-166.
[http://dx.doi.org/10.1016/j.micromeso.2016.08.034]
[10]
Bellino, M.G.; Golbert, S.; De Marzi, M.C.; Soler-Illia, G.J.A.A.; Desimone, M.F. Controlled adhesion and proliferation of a human osteoblastic cell line by tuning the nanoporosity of titania and silica coatings. Biomater. Sci., 2013, 1(2), 186-189.
[http://dx.doi.org/10.1039/C2BM00136E] [PMID: 32481797]
[11]
Badeau, B.A.; DeForest, C.A. Programming stimuli-responsive behavior into biomaterials. Annu. Rev. Biomed. Eng., 2019, 21(1), 241-265.
[http://dx.doi.org/10.1146/annurev-bioeng-060418-052324] [PMID: 30857392]
[12]
Ooi, H.W.; Hafeez, S.; van Blitterswijk, C.A.; Moroni, L.; Baker, M.B. Hydrogels that listen to cells: A review of cell-responsive strategies in biomaterial design for tissue regeneration. Mater. Horiz., 2017, 4(6), 1020-1040.
[http://dx.doi.org/10.1039/C7MH00373K]
[13]
Kondiah, P.; Choonara, Y.; Kondiah, P.; Marimuthu, T.; Kumar, P.; du Toit, L.; Pillay, V. A review of injectable polymeric hydrogel systems for application in bone tissue engineering. Molecules, 2016, 21(11), 1580.
[http://dx.doi.org/10.3390/molecules21111580] [PMID: 27879635]
[14]
Albert, K.; Hsu, H.Y. Carbon-based materials for photo-triggered theranostic applications. Molecules, 2016, 21(11), 1585.
[http://dx.doi.org/10.3390/molecules21111585] [PMID: 27879628]
[15]
Shen, L. Biocompatible polymer/quantum dots hybrid materials: Current status and future developments. J. Funct. Biomater., 2011, 2(4), 355-372.
[http://dx.doi.org/10.3390/jfb2040355] [PMID: 24956449]
[16]
Galdopórpora, J.M.; Morcillo, M.F.; Ibar, A.; Perez, C.J.; Tuttolomondo, M.V.; Desimone, M.F. Development of silver nanoparticles/gelatin thermoresponsive nanocomposites: Characterization and antimicrobial activity. Curr. Pharm. Des., 2019, 25(38), 4121-4129.
[http://dx.doi.org/10.2174/1381612825666191007163152] [PMID: 31589116]
[17]
Mousavi, S.T.; Harper, G.R.; Municoy, S.; Ashton, M.D.; Townsend, D.; Alsharif, G.H.K.; Oikonomou, V.K.; Firlak, M.; Au-Yong, S.; Murdock, B.E. Electroactive silk fibroin films for electrochemically enhanced delivery of drugs. Macromol. Mater. Eng., 2020, 2000130.
[http://dx.doi.org/10.1002/mame.202000130]
[18]
Gonçalves, G.A.R.; Paiva, R.M.A. Gene therapy: Advances, challenges and perspectives. Einstein, 2017, 15(3), 369-375.
[http://dx.doi.org/10.1590/s1679-45082017rb4024] [PMID: 29091160]
[19]
Pattni, B.S.; Torchilin, V.P. Targeted drug delivery systems: Strategies and challenges. In: Targeted Drug Delivery: Concepts and Design; Devarajan, P.V.; Jain, S., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 3-38.
[http://dx.doi.org/10.1007/978-3-319-11355-5_1]
[20]
Khademhosseini, A.; Langer, R. A decade of progress in tissue engineering. Nat. Protoc., 2016, 11(10), 1775-1781.
[http://dx.doi.org/10.1038/nprot.2016.123] [PMID: 27583639]
[21]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[22]
Gracia, R.; Mecerreyes, D. Polymers with redox properties: Materials for batteries, biosensors and more. Polym. Chem., 2013, 4(7), 2206-2214.
[http://dx.doi.org/10.1039/c3py21118e]
[23]
Guo, X.; Cheng, Y.; Zhao, X.; Luo, Y.; Chen, J.; Yuan, W.E. Advances in redox-responsive drug delivery systems of tumor microenvironment. J. Nanobiotechnology, 2018, 16(1), 74.
[http://dx.doi.org/10.1186/s12951-018-0398-2] [PMID: 30243297]
[24]
Hardy, J.G.; Lee, J.Y.; Schmidt, C.E. Biomimetic conducting polymer-based tissue scaffolds. Curr. Opin. Biotechnol., 2013, 24(5), 847-854.
[http://dx.doi.org/10.1016/j.copbio.2013.03.011] [PMID: 23578463]
[25]
Rajabi, A.H.; Jaffe, M.; Arinzeh, T.L. Piezoelectric materials for tissue regeneration: A review. Acta Biomater., 2015, 24, 12-23.
[http://dx.doi.org/10.1016/j.actbio.2015.07.010] [PMID: 26162587]
[26]
Baxter, F.R.; Bowen, C.R.; Turner, I.G.; Dent, A.C.E. Electrically active bioceramics: A review of interfacial responses. Ann. Biomed. Eng., 2010, 38(6), 2079-2092.
[http://dx.doi.org/10.1007/s10439-010-9977-6] [PMID: 20198510]
[27]
Ribeiro, C.; Sencadas, V.; Correia, D.M.; Lanceros-Méndez, S. Piezoelectric polymers as biomaterials for tissue engineering applications. Colloids Surf. B Biointerfaces, 2015, 136, 46-55.
[http://dx.doi.org/10.1016/j.colsurfb.2015.08.043] [PMID: 26355812]
[28]
Chorsi, M.T.; Curry, E.J.; Chorsi, H.T.; Das, R.; Baroody, J.; Purohit, P.K.; Ilies, H.; Nguyen, T.D. Piezoelectric biomaterials for sensors and actuators. Adv. Mater., 2019, 31(1), 1802084.
[http://dx.doi.org/10.1002/adma.201802084] [PMID: 30294947]
[29]
Yuan, H.; Lei, T.; Qin, Y.; He, J.H.; Yang, R. Design and application of piezoelectric biomaterials. J. Phys. D Appl. Phys., 2019, 52(19), 194002-194012.
[http://dx.doi.org/10.1088/1361-6463/ab0532]
[30]
Kapat, K.; Shubhra, Q.T.H.; Zhou, M.; Leeuwenburgh, S. Piezoelectric nano-biomaterials for biomedicine and tissue regeneration. Adv. Funct. Mater., 2020, 30(44), 1909045.
[http://dx.doi.org/10.1002/adfm.201909045]
[31]
Kocak, G.; Tuncer, C.; Bütün, V. pH-Responsive polymers. Polym. Chem., 2017, 8(1), 144-176.
[http://dx.doi.org/10.1039/C6PY01872F]
[32]
Omidi, M.; Yadegari, A.; Tayebi, L. Wound dressing application of pH-sensitive carbon dots/chitosan hydrogel. RSC Advances, 2017, 7(18), 10638-10649.
[http://dx.doi.org/10.1039/C6RA25340G]
[33]
Banerjee, I.; Mishra, D.; Das, T.; Maiti, T.K. Wound pH-responsive sustained release of therapeutics from a poly(NIPAAm-co-AAc) hydrogel. J. Biomater. Sci. Polym. Ed., 2012, 23(1-4), 111-132.
[http://dx.doi.org/10.1163/092050610X545049] [PMID: 22133349]
[34]
Ninan, N.; Forget, A.; Shastri, V.P.; Voelcker, N.H.; Blencowe, A. Antibacterial and anti-inflammatory ph-responsive tannic acid-carboxylated agarose composite hydrogels for wound healing. ACS Appl. Mater. Interfaces, 2016, 8(42), 28511-28521.
[http://dx.doi.org/10.1021/acsami.6b10491] [PMID: 27704757]
[35]
Tamesue, S.; Noguchi, S.; Kimura, Y.; Endo, T. Reversing redox responsiveness of hydrogels due to supramolecular interactions by utilizing double-network structures. ACS Appl. Mater. Interfaces, 2018, 10(32), 27381-27390.
[http://dx.doi.org/10.1021/acsami.8b10001] [PMID: 30028125]
[36]
Ferreira, N.N.; Ferreira, L.M.B.; Cardoso, V.M.O.; Boni, F.I.; Souza, A.L.R.; Gremião, M.P.D. Recent advances in smart hydrogels for biomedical applications: From self-assembly to functional approaches. Eur. Polym. J., 2018, 99, 117-133.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.12.004]
[37]
Karimi, M.; Eslami, M.; Sahandi-Zangabad, P.; Mirab, F.; Farajisafiloo, N.; Shafaei, Z.; Ghosh, D.; Bozorgomid, M.; Dashkhaneh, F.; Hamblin, M.R. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2016, 8(5), 696-716.
[http://dx.doi.org/10.1002/wnan.1389] [PMID: 26762467]
[38]
Adedoyin, A.A.; Ekenseair, A.K. Biomedical applications of magneto-responsive scaffolds. Nano Res., 2018, 11(10), 5049-5064.
[http://dx.doi.org/10.1007/s12274-018-2198-2]
[39]
Katz, J.S.; Burdick, J.A. Light-responsive biomaterials: Development and applications. Macromol. Biosci., 2010, 10(4), 339-348.
[http://dx.doi.org/10.1002/mabi.200900297] [PMID: 20014197]
[40]
Ward, M.A.; Georgiou, T.K. Thermoresponsive polymers for biomedical applications. Polymers, 2011, 3(3), 1215-1242.
[http://dx.doi.org/10.3390/polym3031215]
[41]
Sponchioni, M.; Capasso Palmiero, U.; Moscatelli, D. Thermo-responsive polymers: Applications of smart materials in drug delivery and tissue engineering. Mater. Sci. Eng. C, 2019, 102, 589-605.
[http://dx.doi.org/10.1016/j.msec.2019.04.069] [PMID: 31147031]
[42]
Zarrintaj, P.; Jouyandeh, M.; Ganjali, M.R.; Hadavand, B.S.; Mozafari, M.; Sheiko, S.S.; Vatankhah-Varnoosfaderani, M.; Gutiérrez, T.J.; Saeb, M.R. Thermo-sensitive polymers in medicine: A review. Eur. Polym. J., 2019, 117, 402-423.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.05.024]
[43]
Zhang, J.; Jiang, X.; Wen, X.; Xu, Q.; Zeng, H.; Zhao, Y.; Liu, M.; Wang, Z.; Hu, X.; Wang, Y. Bio-responsive smart polymers and biomedical applications. Journal of Physics: Materials, 2019, 2(3), 032004.
[http://dx.doi.org/10.1088/2515-7639/ab1af5]
[44]
Fu, X.; Hosta-Rigau, L.; Chandrawati, R.; Cui, J. Multi-stimuli-responsive polymer particles, films, and hydrogels for drug delivery. Chem, 2018, 4(9), 2084-2107.
[http://dx.doi.org/10.1016/j.chempr.2018.07.002]
[45]
Hajebi, S.; Rabiee, N.; Bagherzadeh, M.; Ahmadi, S.; Rabiee, M.; Roghani-Mamaqani, H.; Tahriri, M.; Tayebi, L.; Hamblin, M.R. Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater., 2019, 92, 1-18.
[http://dx.doi.org/10.1016/j.actbio.2019.05.018] [PMID: 31096042]
[46]
Chung, B.G.; Lee, K.H.; Khademhosseini, A.; Lee, S.H. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip, 2012, 12(1), 45-59.
[http://dx.doi.org/10.1039/C1LC20859D] [PMID: 22105780]
[47]
Dong, R.; Pang, Y.; Su, Y.; Zhu, X. Supramolecular hydrogels: Synthesis, properties and their biomedical applications. Biomater. Sci., 2015, 3(7), 937-954.
[http://dx.doi.org/10.1039/C4BM00448E] [PMID: 26221932]
[48]
Koutsopoulos, S. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: Progress, design guidelines, and applications. J. Biomed. Mater. Res. A, 2016, 104(4), 1002-1016.
[http://dx.doi.org/10.1002/jbm.a.35638] [PMID: 26707893]
[49]
Khang, G. Handbook of intelligent scaffolds for tissue engineering and regenerative medicine; CRC Press, 2017.
[50]
Annabi, N.; Tamayol, A.; Uquillas, J.A.; Akbari, M.; Bertassoni, L.E.; Cha, C.; Camci-Unal, G.; Dokmeci, M.R.; Peppas, N.A.; Khademhosseini, A. 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine. Adv. Mater., 2014, 26(1), 85-124.
[http://dx.doi.org/10.1002/adma.201303233] [PMID: 24741694]
[51]
Tsihlis, N.D.; Murar, J.; Kapadia, M.R.; Ahanchi, S.S.; Oustwani, C.S.; Saavedra, J.E.; Keefer, L.K.; Kibbe, M.R. Isopropylamine NONOate (IPA/NO) moderates neointimal hyperplasia following vascular injury. J. Vasc. Surg., 2010, 51(5), 1248-1259.
[http://dx.doi.org/10.1016/j.jvs.2009.12.028] [PMID: 20223627]
[52]
Seidel, J.M.; Malmonge, S.M. Synthesis of polyHEMA hydrogels for using as biomaterials. Bulk and solution radical-initiated polymerization techniques. Mater. Res., 2000, 3(3), 79-83.
[http://dx.doi.org/10.1590/S1516-14392000000300006]
[53]
Hennink, W.E.; van Nostrum, C.F. Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev., 2002, 54(1), 13-36.
[http://dx.doi.org/10.1016/S0169-409X(01)00240-X] [PMID: 11755704]
[54]
Billiet, T.; Vandenhaute, M.; Schelfhout, J.; Van Vlierberghe, S.; Dubruel, P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials, 2012, 33(26), 6020-6041.
[http://dx.doi.org/10.1016/j.biomaterials.2012.04.050] [PMID: 22681979]
[55]
Abdel-Azim, A.A.A.; Farahat, M.S.; Atta, A.M.; Abdel-Fattah, A.A. Preparation and properties of two-component hydrogels based on 2-acrylamido-2-methylpropane sulphonic acid. Polym. Adv. Technol., 1998, 9(5), 282-289.
[http://dx.doi.org/10.1002/(SICI)1099-1581(199805)9:5<282::AID-PAT755>3.0.CO;2-N]
[56]
Carraher, C.E., Jr Introduction to polymer chemistry; CRC Press, 2017.
[http://dx.doi.org/10.1201/9781315369488]
[57]
Sikdar, P.; Uddin, M.M.; Dip, T.M.; Islam, S.; Hoque, M.S.; Dhar, A.K.; Wu, S. Recent advances in the synthesis of smart hydrogels. Materials Advances, 2021, 2(14), 4532-4573.
[http://dx.doi.org/10.1039/D1MA00193K]
[58]
Achilias, D.S.; Verros, G.D. Modeling of diffusion-controlled reactions in free radical solution and bulk polymerization: Model validation by DSC experiments. J. Appl. Polym. Sci., 2010, 116(3) NA.
[http://dx.doi.org/10.1002/app.31675]
[59]
Ranganathan, N.; Joseph Bensingh, R.; Abdul Kader, M.; Nayak, S.K. Synthesis and properties of hydrogels prepared by various polymerization reaction systems.Cellulose-Based Superabsorbent Hydrogels; Mondal, M.I.H., Ed.; Springer International Publishing: Cham, 2018, pp. 1-25.
[http://dx.doi.org/10.1007/978-3-319-76573-0_18-1]
[60]
Chanda, M. Introduction to polymer science and chemistry: A problem-solving approach; CRC Press, 2006.
[http://dx.doi.org/10.1201/9781420007329]
[61]
Liu, M.; Liang, R.; Zhan, F.; Liu, Z.; Niu, A. Preparation of superabsorbent slow release nitrogen fertilizer by inverse suspension polymerization. Polym. Int., 2007, 56(6), 729-737.
[http://dx.doi.org/10.1002/pi.2196]
[62]
Tibbitt, M.W.; Kloxin, A.M.; Sawicki, L.A.; Anseth, K.S. Mechanical properties and degradation of chain and step-polymerized photodegradable hydrogels. Macromolecules, 2013, 46(7), 2785-2792.
[http://dx.doi.org/10.1021/ma302522x] [PMID: 24496435]
[63]
Shin, B.M.; Kim, J.H.; Chung, D.J. Synthesis of pH-responsive and adhesive super-absorbent hydrogel through bulk polymerization. Macromol. Res., 2013, 21(5), 582-587.
[http://dx.doi.org/10.1007/s13233-013-1051-4]
[64]
Young, R.J.; Lovell, P.A. Introduction to polymers; CRC Press, 2011.
[http://dx.doi.org/10.1201/9781439894156]
[65]
Liu, J.; Yin, Y. Temperature responsive hydrogels: Construction and applications. Polym. Sci., 2015, 1(13), 1-6.
[66]
Carraher, C.E. Carraher’s polymer chemistry; CRC Press, 2017.
[67]
Ebdon, J. Introduction to polymers RJ Young and PA lovell chapman and hall; Wiley Online Library: London, 1992, p. 443.
[68]
Essawy, H.A.; Ghazy, M.B.M.; El-Hai, F.A.; Mohamed, M.F. Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients. Int. J. Biol. Macromol., 2016, 89, 144-151.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.04.071] [PMID: 27126169]
[69]
El-Sherbiny, I.M.; Khalil, I.A.; Ali, I.H. Updates on stimuli-responsive polymers: Synthesis approaches and features, polymer gels; Springer, 2018, pp. 129-146.
[70]
Bauri, K.; Nandi, M.; De, P. Amino acid-derived stimuli-responsive polymers and their applications. Polym. Chem., 2018, 9(11), 1257-1287.
[http://dx.doi.org/10.1039/C7PY02014G]
[71]
Mondal, M.; Trivedy, K.; Nirmal, K.S. The silk proteins, sericin and fibroin in silkworm Bombyx mori Linn.,-a review, 2007.
[72]
Jin, R. In-situ forming biomimetic hydrogels for tissue regeneration. Biomedicine, 2012, 2, 35-58.
[http://dx.doi.org/10.5772/38852]
[73]
Ebara, M.; Kotsuchibashi, Y.; Uto, K.; Aoyagi, T.; Kim, Y-J.; Narain, R.; Idota, N.; Hoffman, J.M. Smart hydrogels. In: Smart Biomaterials; Ebara, M.; Kotsuchibashi, Y.; Narain, R.; Idota, N.; Kim, Y-J.; Hoffman, J.M.; Uto, K.; Aoyagi, T., Eds.; Springer Japan, Tokyo, 2014; pp. 9-65.
[http://dx.doi.org/10.1007/978-4-431-54400-5_2]
[74]
Lutz, J.F.; Zarafshani, Z. Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide–alkyne “click” chemistry. Adv. Drug Deliv. Rev., 2008, 60(9), 958-970.
[http://dx.doi.org/10.1016/j.addr.2008.02.004] [PMID: 18406491]
[75]
Mather, B.D.; Viswanathan, K.; Miller, K.M.; Long, T.E. Michael addition reactions in macromolecular design for emerging technologies. Prog. Polym. Sci., 2006, 31(5), 487-531.
[http://dx.doi.org/10.1016/j.progpolymsci.2006.03.001]
[76]
Rodrıguez-Cabello, J.C.; Fernandez-Colino, A.; Pina, M.; Alonso, M.; Santos, M.A. Testera; Bioactive and smart hydrogel surfaces; Biomaterials Surface Science, 2013.
[77]
Pereira, R.F.; Barrias, C.C.; Bártolo, P.J.; Granja, P.L. Cell-instructive pectin hydrogels crosslinked via thiol-norbornene photo-click chemistry for skin tissue engineering. Acta Biomater., 2018, 66, 282-293.
[http://dx.doi.org/10.1016/j.actbio.2017.11.016] [PMID: 29128530]
[78]
Wang, X.; Schmidt, F.; Hanaor, D.; Kamm, P.H.; Li, S.; Gurlo, A. Additive manufacturing of ceramics from preceramic polymers: A versatile stereolithographic approach assisted by thiol-ene click chemistry. Addit. Manuf., 2019, 27, 80-90.
[http://dx.doi.org/10.1016/j.addma.2019.02.012]
[79]
Arnfast, L.; Madsen, C.G.; Jorgensen, L.; Baldursdottir, S. Design and processing of nanogels as delivery systems for peptides and proteins. Ther. Deliv., 2014, 5(6), 691-708.
[http://dx.doi.org/10.4155/tde.14.38] [PMID: 25090282]
[80]
Wei, H.L.; Yao, K.; Yang, Z.; Chu, H.J.; Zhu, J.; Ma, C.C.; Zhao, Z.X. Preparation of thermosensitive hydrogels by means of tandem physical and chemical crosslinking. Macromol. Res., 2011, 19(3), 294-299.
[http://dx.doi.org/10.1007/s13233-011-0308-z]
[81]
Hu, W.; Wang, Z.; Xiao, Y.; Zhang, S.; Wang, J. Advances in crosslinking strategies of biomedical hydrogels. Biomater. Sci., 2019, 7(3), 843-855.
[http://dx.doi.org/10.1039/C8BM01246F] [PMID: 30648168]
[82]
Siqueira, N.M.; Cirne, M.F.; Immich, M.F.; Poletto, F. Stimuli-responsive polymeric hydrogels and nanogels for drug delivery applications, stimuli responsive polymeric nanocarriers for drug delivery applications; Elsevier, 2018, Vol. 1, pp. 343-374.
[http://dx.doi.org/10.1016/B978-0-08-101997-9.00017-5]
[83]
Russo, E.; Villa, C. Poloxamer hydrogels for biomedical applications. Pharmaceutics, 2019, 11(12), 671.
[http://dx.doi.org/10.3390/pharmaceutics11120671] [PMID: 31835628]
[84]
Kumar, A.; Han, S.S. PVA-based hydrogels for tissue engineering: a review, Int. J. Polymer. Mater. Polymer. Biomaterials, 2017, 66(4), 159-182.
[85]
Pennacchio, F.A.; Fedele, C.; De Martino, S.; Cavalli, S.; Vecchione, R.; Netti, P.A. Three-dimensional microstructured azobenzene-containing gelatin as a photoactuable cell confining system. ACS Appl. Mater. Interfaces, 2018, 10(1), 91-97.
[http://dx.doi.org/10.1021/acsami.7b13176] [PMID: 29260543]
[86]
Choi, J.R.; Yong, K.W.; Choi, J.Y.; Cowie, A.C. Recent advances in photo-crosslinkable hydrogels for biomedical applications. Biotechniques, 2019, 66(1), 40-53.
[http://dx.doi.org/10.2144/btn-2018-0083] [PMID: 30730212]
[87]
McHale, M.K.; Setton, L.A.; Chilkoti, A. Synthesis and in vitro evaluation of enzymatically cross-linked elastin-like polypeptide gels for cartilaginous tissue repair. Tissue Eng., 2005, 11(11-12), 1768-1779.
[http://dx.doi.org/10.1089/ten.2005.11.1768] [PMID: 16411822]
[88]
Liu, D.; Wang, S.; Xu, S.; Liu, H. Photocontrollable intermittent release of doxorubicin hydrochloride from liposomes embedded by azobenzene-contained glycolipid. Langmuir, 2017, 33(4), 1004-1012.
[http://dx.doi.org/10.1021/acs.langmuir.6b03051] [PMID: 27668306]
[89]
Cui, Z.K.; Phoeung, T.; Rousseau, P.A.; Rydzek, G.; Zhang, Q.; Bazuin, C.G.; Lafleur, M. Nonphospholipid fluid liposomes with switchable photocontrolled release. Langmuir, 2014, 30(36), 10818-10825.
[http://dx.doi.org/10.1021/la502131h] [PMID: 25149436]
[90]
Son, S.; Shin, E.; Kim, B.S. Light-responsive micelles of spiropyran initiated hyperbranched polyglycerol for smart drug delivery. Biomacromolecules, 2014, 15(2), 628-634.
[http://dx.doi.org/10.1021/bm401670t] [PMID: 24432713]
[91]
Brunelle, A.R.; Horner, C.B.; Low, K.; Ico, G.; Nam, J. Electrospun thermosensitive hydrogel scaffold for enhanced chondrogenesis of human mesenchymal stem cells. Acta Biomater., 2018, 66, 166-176.
[http://dx.doi.org/10.1016/j.actbio.2017.11.020] [PMID: 29128540]
[92]
op ’t Veld, R.C.; van den Boomen, O.I.; Lundvig, D.M.S.; Bronkhorst, E.M.; Kouwer, P.H.J.; Jansen, J.A.; Middelkoop, E.; Von den Hoff, J.W.; Rowan, A.E.; Wagener, F.A.D.T.G. Thermosensitive biomimetic polyisocyanopeptide hydrogels may facilitate wound repair. Biomaterials, 2018, 181, 392-401.
[http://dx.doi.org/10.1016/j.biomaterials.2018.07.038]
[93]
Zimoch, J.; Padial, J.S.; Klar, A.S.; Vallmajo-Martin, Q.; Meuli, M.; Biedermann, T.; Wilson, C.J.; Rowan, A.; Reichmann, E. Polyisocyanopeptide hydrogels: A novel thermo-responsive hydrogel supporting pre-vascularization and the development of organotypic structures. Acta Biomater., 2018, 70, 129-139.
[http://dx.doi.org/10.1016/j.actbio.2018.01.042] [PMID: 29454158]
[94]
Hsieh, F.Y.; Lin, H.H.; Hsu, S. 3D bioprinting of neural stem cell laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials, 2015, 71, 48-57.
[http://dx.doi.org/10.1016/j.biomaterials.2015.08.028] [PMID: 26318816]
[95]
Mouser, V.H.M.; Abbadessa, A.; Levato, R.; Hennink, W.E.; Vermonden, T.; Gawlitta, D.; Malda, J. Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs. Biofabrication, 2017, 9(1), 015026.
[http://dx.doi.org/10.1088/1758-5090/aa6265] [PMID: 28229956]
[96]
Shi, K.; Liu, Z.; Yang, C.; Li, X.Y.; Sun, Y.M.; Deng, Y.; Wang, W.; Ju, X.J.; Xie, R.; Chu, L.Y. Novel biocompatible thermoresponsive poly(n -vinyl caprolactam)/clay nanocomposite hydrogels with macroporous structure and improved mechanical characteristics. ACS Appl. Mater. Interfaces, 2017, 9(26), 21979-21990.
[http://dx.doi.org/10.1021/acsami.7b04552] [PMID: 28603958]
[97]
Bhullar, S.K.; Lala, N.L.; Ramkrishna, S. Smart biomaterials—A review. Rev. Adv. Mater. Sci., 2015, 40, 303-314.
[http://dx.doi.org/10.21315/tlsr2018.29.2.9]
[98]
Ruskowitz, E.R.; DeForest, C.A. Photoresponsive biomaterials for targeted drug delivery and 4D cell culture. Nat. Rev. Mater., 2018, 3(2), 17087-17104.
[http://dx.doi.org/10.1038/natrevmats.2017.87]
[99]
Leung, S.J.; Romanowski, M. Light-activated content release from liposomes. Theranostics, 2012, 2(10), 1020-1036.
[http://dx.doi.org/10.7150/thno.4847] [PMID: 23139729]
[100]
Jerca, F.A.; Jerca, V.; Stancu, I-C. Development and characterization of photoresponsive polymers. In: Polymer and Photonic Materials Towards Biomedical Breakthroughs; Springer International Publishing: Cham, Switzerland, 2018.
[101]
Ercole, F.; Davis, T.P.; Evans, R.A. Photo-responsive systems and biomaterials: Photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym. Chem., 2010, 1(1), 37-54.
[http://dx.doi.org/10.1039/B9PY00300B]
[102]
Wu, S.; Butt, H.J. Near-infrared-sensitive materials based on upconverting nanoparticles. Adv. Mater., 2016, 28(6), 1208-1226.
[http://dx.doi.org/10.1002/adma.201502843] [PMID: 26389516]
[103]
Linsley, C.S.; Wu, B.M. Recent advances in light-responsive on-demand drug-delivery systems. Ther. Deliv., 2017, 8(2), 89-107.
[http://dx.doi.org/10.4155/tde-2016-0060] [PMID: 28088880]
[104]
Bandara, H.M.D.; Burdette, S.C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev., 2012, 41(5), 1809-1825.
[http://dx.doi.org/10.1039/C1CS15179G] [PMID: 22008710]
[105]
Udayabhaskararao, T.; Kundu, P.K.; Ahrens, J.; Klajn, R. Reversible photoisomerization of spiropyran on the surfaces of Au 25 nanoclusters. ChemPhysChem, 2016, 17(12), 1805-1809.
[http://dx.doi.org/10.1002/cphc.201500897] [PMID: 26593975]
[106]
Ahmad, Z.; Shah, A.; Siddiq, M.; Kraatz, H.B. Polymeric micelles as drug delivery vehicles. RSC Advances, 2014, 4(33), 17028-17038.
[http://dx.doi.org/10.1039/C3RA47370H]
[107]
Pandita, D.; Madaan, K.; Kumar, S.; Poonia, N.; Lather, V. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J. Pharm. Bioallied Sci., 2014, 6(3), 139-150.
[http://dx.doi.org/10.4103/0975-7406.130965] [PMID: 25035633]
[108]
Alavi, M.; Karimi, N.; Safaei, M. Application of various types of liposomes in drug delivery systems. Adv. Pharm. Bull., 2017, 7(1), 3-9.
[http://dx.doi.org/10.15171/apb.2017.002] [PMID: 28507932]
[109]
Urban, P.; Pritzl, S.D.; Konrad, D.B.; Frank, J.A.; Pernpeintner, C.; Roeske, C.R.; Trauner, D.; Lohmüller, T. Light-controlled lipid interaction and membrane organization in photolipid bilayer vesicles. Langmuir, 2018, 34(44), 13368-13374.
[http://dx.doi.org/10.1021/acs.langmuir.8b03241] [PMID: 30346771]
[110]
Yao, C.; Wang, P.; Li, X.; Hu, X.; Hou, J.; Wang, L.; Zhang, F. Near-infrared-triggered azobenzene-liposome/upconversion nanoparticle hybrid vesicles for remotely controlled drug delivery to overcome cancer multidrug resistance. Adv. Mater., 2016, 28(42), 9341-9348.
[http://dx.doi.org/10.1002/adma.201503799] [PMID: 27578301]
[111]
Pearson, S.; Vitucci, D.; Khine, Y.Y.; Dag, A.; Lu, H.; Save, M.; Billon, L.; Stenzel, M.H. Light-responsive azobenzene-based glycopolymer micelles for targeted drug delivery to melanoma cells. Eur. Polym. J., 2015, 69, 616-627.
[http://dx.doi.org/10.1016/j.eurpolymj.2015.04.001]
[112]
Zhu, L.; Bratlie, K.M. pH sensitive methacrylated chitosan hydrogels with tunable physical and chemical properties. Biochem. Eng. J., 2018, 132, 38-46.
[http://dx.doi.org/10.1016/j.bej.2017.12.012]
[113]
You, J.O.; Rafat, M.; Almeda, D.; Maldonado, N.; Guo, P.; Nabzdyk, C.S.; Chun, M.; LoGerfo, F.W.; Hutchinson, J.W.; Pradhan-Nabzdyk, L.K.; Auguste, D.T. pH-responsive scaffolds generate a pro-healing response. Biomaterials, 2015, 57, 22-32.
[http://dx.doi.org/10.1016/j.biomaterials.2015.04.011] [PMID: 25956194]
[114]
Yang, C.; Guo, W.; Cui, L.; Xiang, D.; Cai, K.; Lin, H.; Qu, F. pH-responsive controlled-release system based on mesoporous bioglass materials capped with mineralized hydroxyapatite. Mater. Sci. Eng. C, 2014, 36, 237-243.
[http://dx.doi.org/10.1016/j.msec.2013.12.006] [PMID: 24433909]
[115]
Cicuéndez, M.; Doadrio, J.C.; Hernández, A.; Portolés, M.T.; Izquierdo-Barba, I.; Vallet-Regí, M. Multifunctional pH sensitive 3D scaffolds for treatment and prevention of bone infection. Acta Biomater., 2018, 65, 450-461.
[http://dx.doi.org/10.1016/j.actbio.2017.11.009] [PMID: 29127064]
[116]
Gulzar, A.; Gai, S.; Yang, P.; Li, C.; Ansari, M.B.; Lin, J. Stimuli responsive drug delivery application of polymer and silica in biomedicine. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(44), 8599-8622.
[http://dx.doi.org/10.1039/C5TB00757G] [PMID: 32262717]
[117]
Lennox, K.A.; Owczarzy, R.; Thomas, D.M.; Walder, J.A.; Behlke, M.A. Improved performance of anti-miRNA oligonucleotides using a novel non-nucleotide modifier. Mol. Ther. Nucleic Acids, 2013, 2(8), e117.
[http://dx.doi.org/10.1038/mtna.2013.46] [PMID: 23982190]
[118]
Makovitzki, A.; Fink, A.; Shai, Y. Suppression of human solid tumor growth in mice by intratumor and systemic inoculation of histidine-rich and pH-dependent host defense-like lytic peptides. Cancer Res., 2009, 69(8), 3458-3463.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3021] [PMID: 19351852]
[119]
Zhang, Q.; Ran, R.; Zhang, L.; Liu, Y.; Mei, L.; Zhang, Z.; Gao, H.; He, Q. Simultaneous delivery of therapeutic antagomirs with paclitaxel for the management of metastatic tumors by a pH-responsive anti-microbial peptide-mediated liposomal delivery system. J. Control. Release, 2015, 197, 208-218.
[http://dx.doi.org/10.1016/j.jconrel.2014.11.010] [PMID: 25445692]
[120]
Petriashvili, G.; Devadze, L.; Zurabishvili, T.; Sepashvili, N.; Chubinidze, K. Light controlled drug delivery containers based on spiropyran doped liquid crystal micro spheres. Biomed. Opt. Express, 2016, 7(2), 442-447.
[http://dx.doi.org/10.1364/BOE.7.000442] [PMID: 26977353]
[121]
Baroli, B. Photopolymerization of biomaterials: Issues and potentialities in drug delivery, tissue engineering, and cell encapsulation applications. J. Chem. Technol. Biotechnol., 2006, 81(4), 491-499.
[http://dx.doi.org/10.1002/jctb.1468]
[122]
Nguyen, K.T.; West, J.L. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials, 2002, 23(22), 4307-4314.
[http://dx.doi.org/10.1016/S0142-9612(02)00175-8] [PMID: 12219820]
[123]
Cao, Z.; Bian, Q.; Chen, Y.; Liang, F.; Wang, G. Light-responsive janus-particle-based coatings for cell capture and release. ACS Macro Lett., 2017, 6(10), 1124-1128.
[http://dx.doi.org/10.1021/acsmacrolett.7b00714] [PMID: 35650929]
[124]
Yu, L.; Schlaich, C.; Hou, Y.; Zhang, J.; Noeske, P.L.M.; Haag, R. Photoregulating antifouling and bioadhesion functional coating surface based on spiropyran. Chemistry, 2018, 24(30), 7742-7748.
[http://dx.doi.org/10.1002/chem.201801051] [PMID: 29578259]
[125]
Fedele, C.; Netti, P.A.; Cavalli, S. Azobenzene-based polymers: Emerging applications as cell culture platforms. Biomater. Sci., 2018, 6(5), 990-995.
[http://dx.doi.org/10.1039/C8BM00019K] [PMID: 29528057]
[126]
Shi, P.; Ju, E.; Yan, Z.; Gao, N.; Wang, J.; Hou, J.; Zhang, Y.; Ren, J.; Qu, X. Spatiotemporal control of cell–cell reversible interactions using molecular engineering. Nat. Commun., 2016, 7(1), 13088.
[http://dx.doi.org/10.1038/ncomms13088] [PMID: 27708265]
[127]
Andrade, F.; Roca-Melendres, M.M.; Durán-Lara, E.F.; Rafael, D.; Schwartz, S., Jr Stimuli-responsive hydrogels for cancer treatment: The role of pH, light, ionic strength and magnetic field. Cancers, 2021, 13(5), 1164.
[http://dx.doi.org/10.3390/cancers13051164] [PMID: 33803133]
[128]
Lee, I.N.; Dobre, O.; Richards, D.; Ballestrem, C.; Curran, J.M.; Hunt, J.A.; Richardson, S.M.; Swift, J.; Wong, L.S. Photoresponsive hydrogels with photoswitchable mechanical properties allow time-resolved analysis of cellular responses to matrix stiffening. ACS Appl. Mater. Interfaces, 2018, 10(9), 7765-7776.
[http://dx.doi.org/10.1021/acsami.7b18302] [PMID: 29430919]
[129]
O’Brien, P.; Thomas, P.J. Specialist periodical reports. In: Nanoscience Royal Society of Chemistry; Cambridge: UK, 2013
[130]
Chen, Y.; Li, H.; Deng, Y.; Sun, H.; Ke, X.; Ci, T. Near infrared light triggered drug delivery system for higher efficacy of combined chemo-photothermal treatment. Acta Biomater., 2017, 51, 374-392.
[http://dx.doi.org/10.1016/j.actbio.2016.12.004] [PMID: 28088668]
[131]
Guha, S.; Shaw, S.K.; Spence, G.T.; Roland, F.M.; Smith, B.D. Clean photothermal heating and controlled release from near-infrared dye doped nanoparticles without oxygen photosensitization. Langmuir, 2015, 31(28), 7826-7834.
[http://dx.doi.org/10.1021/acs.langmuir.5b01878] [PMID: 26149326]
[132]
Bao, Z.; Liu, X.; Liu, Y.; Liu, H.; Zhao, K. Near-infrared light-responsive inorganic nanomaterials for photothermal therapy. Asian Journal of Pharmaceutical Sciences, 2016, 11(3), 349-364.
[http://dx.doi.org/10.1016/j.ajps.2015.11.123]
[133]
Ou, Y.C.; Webb, J.A.; Faley, S.; Shae, D.; Talbert, E.M.; Lin, S.; Cutright, C.C.; Wilson, J.T.; Bellan, L.M.; Bardhan, R. Gold nanoantenna-mediated photothermal drug delivery from thermosensitive liposomes in breast cancer. ACS Omega, 2016, 1(2), 234-243.
[http://dx.doi.org/10.1021/acsomega.6b00079] [PMID: 27656689]
[134]
Zhang, J.; Huang, Q.; Du, J. Recent advances in magnetic hydrogels. Polym. Int., 2016, 65(12), 1365-1372.
[http://dx.doi.org/10.1002/pi.5170]
[135]
Luo, R.C.; Lim, Z.H.; Li, W.; Shi, P.; Chen, C.H. Near-infrared light triggerable deformation-free polysaccharide double network hydrogels. Chem. Commun., 2014, 50(53), 7052-7055.
[http://dx.doi.org/10.1039/C4CC02216E] [PMID: 24849317]
[136]
Lin, H.; Xiao, W.; Qin, S.Y.; Cheng, S.X.; Zhang, X.Z. Switch on/off microcapsules for controllable photosensitive drug release in a ‘release-cease-recommence’ mode. Polym. Chem., 2014, 5(15), 4396.
[http://dx.doi.org/10.1039/c4py00564c]
[137]
Wajs, E.; Nielsen, T.T.; Larsen, K.L.; Fragoso, A. Preparation of stimuli-responsive nano-sized capsules based on cyclodextrin polymers with redox or light switching properties. Nano Res., 2016, 9(7), 2070-2078.
[http://dx.doi.org/10.1007/s12274-016-1097-7]
[138]
Lo, C.W.; Zhu, D.; Jiang, H. An infrared-light responsive graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel nanocomposite. Soft Matter, 2011, 7(12), 5604-5609.
[http://dx.doi.org/10.1039/c1sm00011j]
[139]
Han, L.; Zhang, Y.; Lu, X.; Wang, K.; Wang, Z.; Zhang, H. Polydopamine nanoparticles modulating stimuli-responsive PNIPAM hydrogels with cell/tissue adhesiveness. ACS Appl. Mater. Interfaces, 2016, 8(42), 29088-29100.
[http://dx.doi.org/10.1021/acsami.6b11043] [PMID: 27709887]
[140]
Wu, Y.; Wang, K.; Huang, S.; Yang, C.; Wang, M. Near-infrared light-responsive semiconductor polymer composite hydrogels: Spatial/temporal-controlled release via a photothermal “sponge” effect. ACS Appl. Mater. Interfaces, 2017, 9(15), 13602-13610.
[http://dx.doi.org/10.1021/acsami.7b01016] [PMID: 28304158]
[141]
Wankar, J.; Kotla, N.G.; Gera, S.; Rasala, S.; Pandit, A.; Rochev, Y.A. Recent advances in host–guest self-assembled cyclodextrin carriers: Implications for responsive drug delivery and biomedical engineering. Adv. Funct. Mater., 2020, 30(44), 1909049.
[http://dx.doi.org/10.1002/adfm.201909049]
[142]
Zheng, Y.; Chen, Z.; Jiang, Q.; Feng, J.; Wu, S.; del Campo, A. Near-infrared-light regulated angiogenesis in a 4D hydrogel. Nanoscale, 2020, 12(25), 13654-13661.
[http://dx.doi.org/10.1039/D0NR02552F] [PMID: 32567640]
[143]
Chen, G.; Cao, Y.; Tang, Y.; Yang, X.; Liu, Y.; Huang, D.; Zhang, Y.; Li, C.; Wang, Q. Advanced near-infrared light for monitoring and modulating the spatiotemporal dynamics of cell functions in living systems. Adv. Sci., 2020, 7(8), 1903783.
[http://dx.doi.org/10.1002/advs.201903783] [PMID: 32328436]
[144]
Chen, S.; Weitemier, A.Z.; Zeng, X.; He, L.; Wang, X.; Tao, Y.; Huang, A.J.Y.; Hashimotodani, Y.; Kano, M.; Iwasaki, H.; Parajuli, L.K.; Okabe, S.; Teh, D.B.L.; All, A.H.; Tsutsui-Kimura, I.; Tanaka, K.F.; Liu, X.; McHugh, T.J. Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics. Science, 2018, 359(6376), 679-684.
[http://dx.doi.org/10.1126/science.aaq1144] [PMID: 29439241]
[145]
Chu, H.; Zhao, J.; Mi, Y.; Di, Z.; Li, L. NIR-light-mediated spatially selective triggering of anti-tumor immunity via upconversion nanoparticle-based immunodevices. Nat. Commun., 2019, 10(1), 2839.
[http://dx.doi.org/10.1038/s41467-019-10847-0] [PMID: 31253798]
[146]
Sasaki, Y.; Oshikawa, M.; Bharmoria, P.; Kouno, H.; Hayashi-Takagi, A.; Sato, M.; Ajioka, I.; Yanai, N.; Kimizuka, N. Near infrared optogenetic genome engineering based on photon upconversion hydrogels. Angew. Chem. Int. Ed., 2019, 58(49), 17827-17833.
[http://dx.doi.org/10.1002/anie.201911025] [PMID: 31544993]
[147]
Hamcerencu, M.; Desbrieres, J.; Popa, M.; Riess, G. Thermo sensitive gellan maleate/N-isopropylacrylamide hydrogels: initial “in vitro” and “in vivo” evaluation as ocular inserts. Polym. Bull., 2020, 77(2), 741-755.
[http://dx.doi.org/10.1007/s00289-019-02772-5]
[148]
Ghadban, A.; Ahmed, A.S.; Ping, Y.; Ramos, R.; Arfin, N.; Cantaert, B.; Ramanujan, R.V.; Miserez, A. Bioinspired pH and magnetic responsive catechol-functionalized chitosan hydrogels with tunable elastic properties. Chem. Commun., 2016, 52(4), 697-700.
[http://dx.doi.org/10.1039/C5CC08617E] [PMID: 26558317]
[149]
Satarkar, N.S.; Hilt, J.Z. Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. J. Contr. Release, 2008, 130(3), 246-251.
[150]
Hendawy, H.; Uemura, A.; Ma, D.; Namiki, R.; Samir, H.; Ahmed, M.F.; Elfadadny, A.; El-Husseiny, H.M.; Chieh-Jen, C.; Tanaka, R. Tissue harvesting site effect on the canine adipose stromal vascular fraction quantity and quality. Animals, 2021, 11(2), 460.
[http://dx.doi.org/10.3390/ani11020460] [PMID: 33572472]
[151]
Mehrali, M.; Thakur, A.; Pennisi, C.P.; Talebian, S.; Arpanaei, A.; Nikkhah, M.; Dolatshahi-Pirouz, A. Nanoreinforced hydrogels for tissue engineering: Biomaterials that are compatible with load bearing and electroactive tissues. Adv. Mater., 2017, 29(8), 1603612.
[http://dx.doi.org/10.1002/adma.201603612] [PMID: 27966826]
[152]
Frachini, E.; Petri, D. Magneto-responsive hydrogels: preparation, characterization, biotechnological and environmental applications. J. Braz. Chem. Soc., 2019, 30(10), 2010-2028.
[http://dx.doi.org/10.21577/0103-5053.20190074]
[153]
Guerrero, A.R.; Hassan, N.; Escobar, C.A.; Albericio, F.; Kogan, M.J.; Araya, E. Gold nanoparticles for photothermally controlled drug release. Nanomedicine, 2014, 9(13), 2023-2039.
[http://dx.doi.org/10.2217/nnm.14.126] [PMID: 25343351]
[154]
Häring, M.; Schiller, J.; Mayr, J.; Grijalvo, S.; Eritja, R.; Díaz, D. Magnetic gel composites for hyperthermia cancer therapy. Gels, 2015, 1(2), 135-161.
[http://dx.doi.org/10.3390/gels1020135] [PMID: 30674170]
[155]
Shin, M.K.; Kim, S.I.; Kim, S.J.; Park, S.Y.; Hyun, Y.H.; Lee, Y.; Lee, K.E.; Han, S.S.; Jang, D.P.; Kim, Y.B.; Cho, Z.H.; So, I.; Spinks, G.M. Controlled magnetic nanofiber hydrogels by clustering ferritin. Langmuir, 2008, 24(21), 12107-12111.
[http://dx.doi.org/10.1021/la802155a] [PMID: 18847290]
[156]
Beaune, G.; Ménager, C. In situ precipitation of magnetic fluid encapsulated in giant liposomes. J. Colloid Interface Sci., 2010, 343(1), 396-399.
[http://dx.doi.org/10.1016/j.jcis.2009.11.016] [PMID: 20022022]
[157]
Horst, M.F.; Ninago, M.D.; Lassalle, V. Magnetically responsive gels based on crosslinked gelatin: An overview on the synthesis, properties, and their potential in water remediation, Int. J. Polymer. Mater. Polymer. Biomaterials, 2018, 67(11), 647-659.
[158]
Glaser, T.; Bueno, V.B.; Cornejo, D.R.; Petri, D.F.S.; Ulrich, H. Neuronal adhesion, proliferation and differentiation of embryonic stem cells on hybrid scaffolds made of xanthan and magnetite nanoparticles. Biomed. Mater., 2015, 10(4), 045002.
[http://dx.doi.org/10.1088/1748-6041/10/4/045002] [PMID: 26154495]
[159]
Castro, P.S.; Bertotti, M.; Naves, A.F.; Catalani, L.H.; Cornejo, D.R.; Bloisi, G.D.; Petri, D.F.S. Hybrid magnetic scaffolds: The role of scaffolds charge on the cell proliferation and Ca2+ ions permeation. Colloids Surf. B Biointerfaces, 2017, 156, 388-396.
[http://dx.doi.org/10.1016/j.colsurfb.2017.05.046] [PMID: 28551573]
[160]
Thambi, T.; Park, J.H.; Lee, D.S. Stimuli-responsive polymersomes for cancer therapy. Biomater. Sci., 2016, 4(1), 55-69.
[http://dx.doi.org/10.1039/C5BM00268K] [PMID: 26456625]
[161]
Zhi, X.; Liu, P.; Li, Y.; Li, P.; Yuan, J.; Lin, J. One-step fabricated keratin nanoparticles as pH and redox-responsive drug nanocarriers. J. Biomater. Sci. Polym. Ed., 2018, 29(15), 1920-1934.
[http://dx.doi.org/10.1080/09205063.2018.1519987] [PMID: 30183550]
[162]
Li, Q.; Yang, S.; Zhu, L.; Kang, H.; Qu, X.; Liu, R.; Huang, Y. Dual-stimuli sensitive keratin graft PHPMA as physiological trigger responsive drug carriers. Polym. Chem., 2015, 6(15), 2869-2878.
[http://dx.doi.org/10.1039/C4PY01750A]
[163]
Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3(1), 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[164]
Huo, M.; Yuan, J.; Tao, L.; Wei, Y. Redox-responsive polymers for drug delivery: From molecular design to applications. Polym. Chem., 2014, 5(5), 1519-1528.
[http://dx.doi.org/10.1039/C3PY01192E]
[165]
Pietschnig, R. Polymers with pendant ferrocenes. Chem. Soc. Rev., 2016, 45(19), 5216-5231.
[http://dx.doi.org/10.1039/C6CS00196C] [PMID: 27156979]
[166]
Wu, J.; Wang, L.; Yu, H.; Zain-ul-Abdin; Khan, R.U.; Haroon, M. Ferrocene-based redox responsive polymer gels: Synthesis, structures and applications. J. Organomet. Chem., 2017, 828, 38-51.
[http://dx.doi.org/10.1016/j.jorganchem.2016.10.041]
[167]
Chen, J.; Huang, Y.; Ma, X.; Lei, Y. Functional self healing materials and their potential applications in biomedical engineering. Adv. Compos. Hybrid Mater., 2018, 1(1), 94-113.
[http://dx.doi.org/10.1007/s42114-017-0009-y]
[168]
Taylor, D.L. in het Panhuis, M. Self-healing hydrogels. Adv. Mater., 2016, 28(41), 9060-9093.
[http://dx.doi.org/10.1002/adma.201601613] [PMID: 27488822]
[169]
Nakahata, M.; Takashima, Y.; Yamaguchi, H.; Harada, A. Redox-responsive self-healing materials formed from host–guest polymers. Nat. Commun., 2011, 2(1), 511-517.
[http://dx.doi.org/10.1038/ncomms1521] [PMID: 22027591]
[170]
Fang, Y.; Wang, C.F.; Zhang, Z.H.; Shao, H.; Chen, S. Robust self-healing hydrogels assisted by cross-linked nanofiber networks. Sci. Rep., 2013, 3(1), 2811-2818.
[http://dx.doi.org/10.1038/srep02811] [PMID: 24091865]
[171]
Greene, A.F.; Danielson, M.K.; Delawder, A.O.; Liles, K.P.; Li, X.; Natraj, A.; Wellen, A.; Barnes, J.C. Redox-responsive artificial molecular muscles: reversible radical-based self-assembly for actuating hydrogels. Chem. Mater., 2017, 29(21), 9498-9508.
[http://dx.doi.org/10.1021/acs.chemmater.7b03635]
[172]
Qiao, Y.; Wan, J.; Zhou, L.; Ma, W.; Yang, Y.; Luo, W.; Yu, Z.; Wang, H. Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2019, 11(1), e1527.
[http://dx.doi.org/10.1002/wnan.1527]
[173]
Riba-Moliner, M.; Gómez-Rodríguez, A.; Amabilino, D.B.; Puigmartí-Luis, J.; González-Campo, A. Functional supramolecular tetrathiafulvalene-based films with mixed valences states. Polymer, 2016, 103, 251-260.
[http://dx.doi.org/10.1016/j.polymer.2016.09.039]
[174]
Schröder, H.V.; Schalley, C.A. Tetrathiafulvalene: A redox switchable building block to control motion in mechanically interlocked molecules. Beilstein J. Org. Chem., 2018, 14, 2163-2185.
[http://dx.doi.org/10.3762/bjoc.14.190] [PMID: 30202469]
[175]
Zhang, X.; Zeng, Y.; Yu, T.; Chen, J.; Yang, G.; Li, Y. Tetrathiafulvalene terminal-decorated PAMAM Dendrimers for triggered release synergistically stimulated by redox and CB[7]. Langmuir, 2014, 30(3), 718-726.
[http://dx.doi.org/10.1021/la404349w] [PMID: 24417726]
[176]
Bigot, J.; Charleux, B.; Cooke, G.; Delattre, F.; Fournier, D.; Lyskawa, J.; Sambe, L.; Stoffelbach, F.; Woisel, P. Tetrathiafulvalene end-functionalized poly(N-isopropylacrylamide): A new class of amphiphilic polymer for the creation of multistimuli responsive micelles. J. Am. Chem. Soc., 2010, 132(31), 10796-10801.
[http://dx.doi.org/10.1021/ja1027452] [PMID: 20681712]
[177]
Ning, C.; Zhou, Z.; Tan, G.; Zhu, Y.; Mao, C. Electroactive polymers for tissue regeneration: Developments and perspectives. Prog. Polym. Sci., 2018, 81, 144-162.
[http://dx.doi.org/10.1016/j.progpolymsci.2018.01.001] [PMID: 29983457]
[178]
Clancy, K.F.A.; Hardy, J.G. Gene delivery with organic electronic biomaterials. Curr. Pharm. Des., 2017, 23(24), 3614-3625.
[PMID: 28699530]
[179]
Svirskis, D.; Travas-Sejdic, J.; Rodgers, A.; Garg, S. Electrochemically controlled drug delivery based on intrinsically conducting polymers. J. Control. Release, 2010, 146(1), 6-15.
[http://dx.doi.org/10.1016/j.jconrel.2010.03.023] [PMID: 20359512]
[180]
Yang, Y-M.; Wang, H-B.; Zhao, Y-H.; Niu, C-M.; Shi, J-Q.; Wang, Y.Y. Novel conductive polypyrrole/silk fibroin scaffold for neural tissue repair. Neural Regen. Res., 2018, 13(8), 1455-1464.
[http://dx.doi.org/10.4103/1673-5374.235303] [PMID: 30106059]
[181]
Guex, A.G.; Puetzer, J.L.; Armgarth, A.; Littmann, E.; Stavrinidou, E.; Giannelis, E.P.; Malliaras, G.G.; Stevens, M.M. Highly porous scaffolds of PEDOT:PSS for bone tissue engineering. Acta Biomater., 2017, 62, 91-101.
[http://dx.doi.org/10.1016/j.actbio.2017.08.045] [PMID: 28865991]
[182]
Gelmi, A.; Ljunggren, M.K.; Rafat, M.; Jager, E.W.H. Influence of conductive polymer doping on the viability of cardiac progenitor cells. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(24), 3860-3867.
[http://dx.doi.org/10.1039/C4TB00142G] [PMID: 32261732]
[183]
Baumgartner, J.; Jönsson, J.I.; Jager, E.W.H. Switchable presentation of cytokines on electroactive polypyrrole surfaces for hematopoietic stem and progenitor cells. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(28), 4665-4675.
[http://dx.doi.org/10.1039/C8TB00782A] [PMID: 32254411]
[184]
Balint, R.; Cassidy, N.J.; Cartmell, S.H. Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomater., 2014, 10(6), 2341-2353.
[http://dx.doi.org/10.1016/j.actbio.2014.02.015] [PMID: 24556448]
[185]
Fortunato, G.M.; De Maria, C.; Eglin, D.; Serra, T.; Vozzi, G. An ink-jet printed electrical stimulation platform for muscle tissue regeneration. Bioprinting, 2018, 11, e00035.
[http://dx.doi.org/10.1016/j.bprint.2018.e00035]
[186]
Pires, F.; Ferreira, Q.; Rodrigues, C.A.V.; Morgado, J.; Ferreira, F.C. Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: Expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering. Biochim. Biophys. Acta, Gen. Subj., 2015, 1850(6), 1158-1168.
[http://dx.doi.org/10.1016/j.bbagen.2015.01.020] [PMID: 25662071]
[187]
Hoop, M.; Chen, X.Z.; Ferrari, A.; Mushtaq, F.; Ghazaryan, G.; Tervoort, T.; Poulikakos, D.; Nelson, B.; Pané, S. Ultrasound mediated piezoelectric differentiation of neuron-like PC12 cells on PVDF membranes. Sci. Rep., 2017, 7(1), 4028-4036.
[http://dx.doi.org/10.1038/s41598-017-03992-3] [PMID: 28642614]
[188]
Vannozzi, L.; Ricotti, L.; Filippeschi, C.; Sartini, S.; Coviello, V.; Piazza, V.; Pingue, P.; La Motta, C.; Dario, P.; Menciassi, A. Nanostructured ultra-thin patches for ultrasound-modulated delivery of anti-restenotic drug. Int. J. Nanomedicine, 2015, 11, 69-91.
[http://dx.doi.org/10.2147/IJN.S92031] [PMID: 26730191]
[189]
Kim, O.; Shin, T.J.; Park, M.J. Fast low-voltage electroactive actuators using nanostructured polymer electrolytes. Nat. Commun., 2013, 4(1), 2208.
[http://dx.doi.org/10.1038/ncomms3208] [PMID: 23896756]
[190]
Shin, S.R.; Jung, S.M.; Zalabany, M.; Kim, K.; Zorlutuna, P.; Kim, S.; Nikkhah, M.; Khabiry, M.; Azize, M.; Kong, J.; Wan, K.; Palacios, T.; Dokmeci, M.R.; Bae, H.; Tang, X.S.; Khademhosseini, A. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano, 2013, 7(3), 2369-2380.
[http://dx.doi.org/10.1021/nn305559j] [PMID: 23363247]
[191]
Chen, Z.; Wu, C.; Zhang, Z.; Wu, W.; Wang, X.; Yu, Z. Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles. Chin. Chem. Lett., 2018, 29(11), 1601-1608.
[http://dx.doi.org/10.1016/j.cclet.2018.08.007]
[192]
Tuttolomondo, M.V.; Villanueva, M.E.; Alvarez, G.S.; Desimone, M.F.; Díaz, L.E. Preparation of submicrometer monodispersed magnetic silica particles using a novel water in oil microemulsion: properties and application for enzyme immobilization. Biotechnol. Lett., 2013, 35(10), 1571-1577.
[http://dx.doi.org/10.1007/s10529-013-1259-6] [PMID: 23801114]
[193]
Zhao, Y.; Fan, T.; Chen, J.; Su, J.; Zhi, X.; Pan, P.; Zou, L.; Zhang, Q. Magnetic bioinspired micro/nanostructured composite scaffold for bone regeneration. Colloids Surf. B Biointerfaces, 2019, 174, 70-79.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.003] [PMID: 30439640]
[194]
Ridi, F.; Bonini, M.; Baglioni, P. Magneto-responsive nanocomposites: Preparation and integration of magnetic nanoparticles into films, capsules, and gels. Adv. Colloid Interface Sci., 2014, 207, 3-13.
[http://dx.doi.org/10.1016/j.cis.2013.09.006] [PMID: 24139510]
[195]
Abu-Dief, A.M.; Abdel-Fatah, S.M. Development and functionalization of magnetic nanoparticles as powerful and green catalysts for organic synthesis. Beni. Suef Univ. J. Basic Appl. Sci., 2018, 7(1), 55-67.
[http://dx.doi.org/10.1016/j.bjbas.2017.05.008]
[196]
Kayode, B.; Abdul, A. Journal of magnetism and magnetic materials recent advances in synthesis and surface modi fi cation of superparamagnetic iron oxide nanoparticles with silica. J. Magn. Magn. Mater., 2016, 416, 275-291.
[http://dx.doi.org/10.1016/j.jmmm.2016.05.019]
[197]
de Mendonça, E.S.D.T.; de Faria, A.C.B.; Dias, S.C.L.; Aragón, F.F.H.; Mantilla, J.C.; Coaquira, J.A.H.; Dias, J.A. Effects of silica coating on the magnetic properties of magnetite nanoparticles. Surf. Interfaces, 2019, 14, 34-43.
[http://dx.doi.org/10.1016/j.surfin.2018.11.005]
[198]
Zhang, Y.; Zhen, B.; Li, H.; Feng, Y. Preparation of water-soluble magnetic nanoparticles with controllable silica coating. Chin. J. Chem. Eng., 2018, 26(1), 213-217.
[http://dx.doi.org/10.1016/j.cjche.2017.05.017]
[199]
Bui, T.Q.; Ngo, H.T.M.; Tran, H.T. Surface-protective assistance of ultrasound in synthesis of superparamagnetic magnetite nanoparticles and in preparation of mono-core magnetite-silica nanocomposites. J. Sci. Adv. Mater. Devices, 2018, 3(3), 323-330.
[http://dx.doi.org/10.1016/j.jsamd.2018.07.002]
[200]
Hou, Y.; Sellmyer, D. J. Magnetic nanomaterials: Fundamentals, synthesis and applications; Wiley: Hoboken, NJ, USA, 2017.
[http://dx.doi.org/10.1002/9783527803255]
[201]
Basith, M.A.; Ngo, D.T.; Quader, A.; Rahman, M.A.; Sinha, B.L.; Ahmmad, B.; Hirose, F.; Mølhave, K. Simple top-down preparation of magnetic Bi 0.9 Gd 0.1 Fe 1−x Ti x O 3 nanoparticles by ultrasonication of multiferroic bulk material. Nanoscale, 2014, 6(23), 14336-14342.
[http://dx.doi.org/10.1039/C4NR03150D] [PMID: 25327219]
[202]
Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 2008, 108(6), 2064-2110.
[http://dx.doi.org/10.1021/cr068445e] [PMID: 18543879]
[203]
Liang, J.; Liu, B. ROS-responsive drug delivery systems. Bioeng. Transl. Med., 2016, 1(3), 239-251.
[http://dx.doi.org/10.1002/btm2.10014] [PMID: 29313015]
[204]
Xu, Q.; He, C.; Xiao, C.; Chen, X. Reactive oxygen species (ROS) responsive polymers for biomedical applications. Macromol. Biosci., 2016, 16(5), 635-646.
[http://dx.doi.org/10.1002/mabi.201500440] [PMID: 26891447]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy