Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Research Article

Integrated High-throughput Transcriptomic Data Identifies Survivin as a Potential Breast Cancer Therapeutic Biomarker

Author(s): Zeenat Mirza*

Volume 31, Issue 5, 2024

Published on: 19 June, 2023

Page: [649 - 663] Pages: 15

DOI: 10.2174/0929867330666230516102017

Price: $65

conference banner
Abstract

Background: Breast cancer is the leading cause of cancer-related mortality among women worldwide. Advanced stages are usually obstinate with chemotherapy, resulting in a poor prognosis; however, they are treatable if diagnosed early.

Objective: Identifying biomarkers that can detect cancer early or have therapeutic significance is imperative.

Methods: Herein, a comprehensive bioinformatics-based transcriptomics study of breast cancer for identifying differentially expressed genes (DEGs), followed by a screening of potential compounds by molecular docking, was performed. Genome-wide mRNA expression data of breast cancer patients (n=248) and controls (n=65) were retrieved from the GEO database for meta-analysis. Statistically significant DEGs were used for enrichment analysis based on ingenuity pathway analysis and protein-protein network analysis.

Results: A total of 3096 unique DEGs (965 up-regulated and 2131 down-regulated) were mapped as biologically relevant. The most upregulated genes were COL10A1, COL11A1, TOP2A, BIRC5 (survivin), MMP11, S100P, RARA, and the most downregulated genes were ADIPOQ, LEP, CFD, PCK1 and HBA2. Transcriptomic and molecular pathway analyses identified BIRC5/survivin as a significant DEG. Kinetochore metaphase signaling is recognized as a prominent dysregulated canonical pathway. Protein-protein interaction study revealed that KIF2C, KIF20A, KIF23, CDCA8, AURKA, AURKB, INCENP, CDK1, BUB1 and CENPA are BIRC5-associated proteins. Molecular docking was performed to exhibit binding interactions with multiple natural ligands.

Conclusion: BIRC5 is a promising predictive marker and a potential therapeutic target in breast cancer. Further large-scale studies are required to correlate the significance of BIRC5 in breast cancer, leading to a step toward the clinical translation of novel diagnostic and therapeutic options.

Keywords: Breast cancer, transcriptomics, biomarkers, docking, pathway analysis, survivin.

« Previous
[1]
WHO Cancer. 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer (Accessed on: Dec 19 2021).
[2]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[3]
American Cancer Society, I. Breast Cancer. 2021. Available from: https://www.cancer.org/cancer/breast- cancer.html# (Accessed on: 19 December 2021).
[4]
DeSantis, C.E.; Ma, J.; Gaudet, M.M.; Newman, L.A.; Miller, K.D.; Goding Sauer, A.; Jemal, A.; Siegel, R.L. Breast cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(6), 438-451.
[http://dx.doi.org/10.3322/caac.21583] [PMID: 31577379]
[5]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[6]
Wiseman, B.S.; Werb, Z. Stromal effects on mammary gland development and breast cancer. Science, 2002, 296(5570), 1046-1049.
[http://dx.doi.org/10.1126/science.1067431] [PMID: 12004111]
[7]
Viale, G. The current state of breast cancer classification. Ann. Oncol., 2012, 23(Suppl. 10), x207-x210.
[http://dx.doi.org/10.1093/annonc/mds326] [PMID: 22987963]
[8]
Nkondjock, A.; Ghadirian, P. Risk factors and risk reduction of breast cancer. Med. Sci., 2005, 21(2), 175-180.
[http://dx.doi.org/10.1051/medsci/2005212175] [PMID: 15691489]
[9]
Sørlie, T.; Tibshirani, R.; Parker, J.; Hastie, T.; Marron, J.S.; Nobel, A.; Deng, S.; Johnsen, H.; Pesich, R.; Geisler, S.; Demeter, J.; Perou, C.M.; Lønning, P.E.; Brown, P.O.; Børresen-Dale, A.L.; Botstein, D. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl. Acad. Sci. USA, 2003, 100(14), 8418-8423.
[http://dx.doi.org/10.1073/pnas.0932692100] [PMID: 12829800]
[10]
Hedenfalk, I.; Duggan, D.; Chen, Y.; Radmacher, M.; Bittner, M.; Simon, R.; Meltzer, P.; Gusterson, B.; Esteller, M.; Raffeld, M.; Yakhini, Z.; Ben-Dor, A.; Dougherty, E.; Kononen, J.; Bubendorf, L.; Fehrle, W.; Pittaluga, S.; Gruvberger, S.; Loman, N.; Johannsson, O.; Olsson, H.; Wilfond, B.; Sauter, G.; Kallioniemi, O-P.; Borg, Å.; Trent, J. Gene-expression profiles in hereditary breast cancer. N. Engl. J. Med., 2001, 344(8), 539-548.
[http://dx.doi.org/10.1056/NEJM200102223440801] [PMID: 11207349]
[11]
Chang, J.C.; Wooten, E.C.; Tsimelzon, A.; Hilsenbeck, S.G.; Gutierrez, M.C.; Elledge, R.; Mohsin, S.; Osborne, C.K.; Chamness, G.C.; Allred, D.C.; O’Connell, P. Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet, 2003, 362(9381), 362-369.
[http://dx.doi.org/10.1016/S0140-6736(03)14023-8] [PMID: 12907009]
[12]
Hartmann, A.; Blaszyk, H.; Saitoh, S.; Tsushima, K.; Tamura, Y.; Cunningham, J.M.; McGovern, R.M.; Schroeder, J.J.; Sommer, S.S.; Kovach, J.S. High frequency of p53 gene mutations in primary breast cancers in Japanese women, a low-incidence population. Br. J. Cancer, 1996, 73(8), 896-901.
[http://dx.doi.org/10.1038/bjc.1996.179] [PMID: 8611423]
[13]
Lai, F.M.; Chen, P.; Ku, H.C.; Lee, M.S.; Chang, S.C.; Chang, T.M.; Liou, S.H. A case-control study of parity, age at first full-term pregnancy, breast feeding and breast cancer in Taiwanese women. Proc. Natl. Sci. Counc. Repub. China B, 1996, 20(3), 71-77.
[PMID: 8956522]
[14]
Kulkoyluoglu-Cotul, E.; Arca, A.; Madak-Erdogan, Z. Crosstalk between estrogen signaling and breast cancer metabolism. Trends Endocrinol. Metab., 2019, 30(1), 25-38.
[http://dx.doi.org/10.1016/j.tem.2018.10.006] [PMID: 30471920]
[15]
Truong, T.H.; Lange, C.A. Deciphering steroid receptor crosstalk in hormone-driven cancers. Endocrinology, 2018, 159(12), 3897-3907.
[http://dx.doi.org/10.1210/en.2018-00831] [PMID: 30307542]
[16]
Lukong, K.E. Understanding breast cancer-the long and winding road. BBA Clin., 2017, 7, 64-77.
[http://dx.doi.org/10.1016/j.bbacli.2017.01.001] [PMID: 28194329]
[17]
Takeuchi, H.; Morton, D.L.; Elashoff, D.; Hoon, D.S.B. Survivin expression by metastatic melanoma predicts poor disease outcome in patients receiving adjuvant polyvalent vaccine. Int. J. Cancer, 2005, 117(6), 1032-1038.
[http://dx.doi.org/10.1002/ijc.21267] [PMID: 15986442]
[18]
Carrasco, R.A.; Stamm, N.B.; Marcusson, E.; Sandusky, G.; Iversen, P.; Patel, B.K.R. Antisense inhibition of survivin expression as a cancer therapeutic. Mol. Cancer Ther., 2011, 10(2), 221-232.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0756] [PMID: 21216939]
[19]
Altieri, D.C. Targeted therapy by disabling crossroad signaling networks: The survivin paradigm. Mol. Cancer Ther., 2006, 5(3), 478-482.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0436] [PMID: 16546961]
[20]
Altieri, D.C. Survivin, cancer networks and pathway-directed drug discovery. Nat. Rev. Cancer, 2008, 8(1), 61-70.
[http://dx.doi.org/10.1038/nrc2293] [PMID: 18075512]
[21]
Fukuda, S.; Pelus, L.M. Survivin, a cancer target with an emerging role in normal adult tissues. Mol. Cancer Ther., 2006, 5(5), 1087-1098.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0375] [PMID: 16731740]
[22]
Church, D.N.; Talbot, D.C. Survivin in solid tumors: Rationale for development of inhibitors. Curr. Oncol. Rep., 2012, 14(2), 120-128.
[http://dx.doi.org/10.1007/s11912-012-0215-2] [PMID: 22234703]
[23]
Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia, 2017, 19(8), 649-658.
[http://dx.doi.org/10.1016/j.neo.2017.05.002] [PMID: 28732212]
[24]
Jensen, L.J.; Kuhn, M.; Stark, M.; Chaffron, S.; Creevey, C.; Muller, J.; Doerks, T.; Julien, P.; Roth, A.; Simonovic, M.; Bork, P.; von Mering, C. STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res., 2009, 37(Database), D412-D416.
[http://dx.doi.org/10.1093/nar/gkn760] [PMID: 18940858]
[25]
Franceschini, A.; Szklarczyk, D.; Frankild, S.; Kuhn, M.; Simonovic, M.; Roth, A.; Lin, J.; Minguez, P.; Bork, P.; von Mering, C.; Jensen, L.J. STRING v9.1: Protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res., 2013, 41(Database issue), D808-D815.
[PMID: 23203871]
[26]
Mishra, S.; Singh, S. Identification of inhibitors against metastasis protein “Survivin:” In silico discovery using virtual screening and molecular docking studies. Pharmacogn. Mag., 2018, 13(Suppl. 4), S742-S748.
[PMID: 29491627]
[27]
Alhopuro, P.; Karhu, A.; Winqvist, R.; Waltering, K.; Visakorpi, T.; Aaltonen, L.A. Somatic mutation analysis of MYH11in breast and prostate cancer. BMC Cancer, 2008, 8(1), 263.
[http://dx.doi.org/10.1186/1471-2407-8-263] [PMID: 18796164]
[28]
IbolyaKiss; ÉvaKorpos; FerencDeák Matrilin-2, an extracellular adaptor protein, is needed for the regeneration of muscle, nerve and other tissues. Neural Regen. Res., 2015, 10(6), 866-869.
[http://dx.doi.org/10.4103/1673-5374.158332] [PMID: 26199591]
[29]
Noel, J.P.; Verdecia, M.A.; Huang, H.; Dutil, E.; Kaiser, D.A.; Hunter, T. Structure of the human anti-apoptotic protein survivin reveals a dimeric arrangement. Nat. Struct. Biol., 2000, 7(7), 602-608.
[http://dx.doi.org/10.1038/76838] [PMID: 10876248]
[30]
Jeyaprakash, A.A.; Klein, U.R.; Lindner, D.; Ebert, J.; Nigg, E.A.; Conti, E. Structure of a Survivin-Borealin-INCENP core complex reveals how chromosomal passengers travel together. Cell, 2007, 131(2), 271-285.
[http://dx.doi.org/10.1016/j.cell.2007.07.045] [PMID: 17956729]
[31]
Klein, U.R.; Nigg, E.A.; Gruneberg, U. Centromere targeting of the chromosomal passenger complex requires a ternary subcomplex of Borealin, Survivin, and the N-terminal domain of INCENP. Mol. Biol. Cell, 2006, 17(6), 2547-2558.
[http://dx.doi.org/10.1091/mbc.e05-12-1133] [PMID: 16571674]
[32]
Dai, J.; Zhu, B.; Lin, W.; Gao, H.; Dai, H.; Zheng, L.; Shi, W.; Chen, W. Identification of prognostic significance of BIRC5 in breast cancer using integrative bioinformatics analysis. Biosci. Rep., 2020, 40(2), BSR20193678.
[http://dx.doi.org/10.1042/BSR20193678] [PMID: 32043523]
[33]
Xu, L.; Yu, W.; Xiao, H.; Lin, K. BIRC5 is a prognostic biomarker associated with tumor immune cell infiltration. Sci. Rep., 2021, 11(1), 390.
[http://dx.doi.org/10.1038/s41598-020-79736-7] [PMID: 33431968]
[34]
Altznauer, F.; Martinelli, S.; Yousefi, S.; Thürig, C.; Schmid, I.; Conway, E.M.; Schöni, M.H.; Vogt, P.; Mueller, C.; Fey, M.F.; Zangemeister-Wittke, U.; Simon, H.U. Inflammation-associated cell cycle-independent block of apoptosis by survivin in terminally differentiated neutrophils. J. Exp. Med., 2004, 199(10), 1343-1354.
[http://dx.doi.org/10.1084/jem.20032033] [PMID: 15148334]
[35]
Wadegaonkar, V.P.; Wadegaonkar, P.A. Withanone as an inhibitor of survivin: A potential drug candidate for cancer therapy. J. Biotechnol., 2013, 168(2), 229-233.
[http://dx.doi.org/10.1016/j.jbiotec.2013.08.028] [PMID: 23994265]
[36]
Gao, R.; Shah, N.; Lee, J.S.; Katiyar, S.P.; Li, L.; Oh, E.; Sundar, D.; Yun, C.O.; Wadhwa, R.; Kaul, S.C. Withanone-rich combination of Ashwagandha withanolides restricts metastasis and angiogenesis through hnRNP-K. Mol. Cancer Ther., 2014, 13(12), 2930-2940.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0324] [PMID: 25236891]
[37]
Zhang, X.; Zhuang, T.; Liang, Z.; Li, L.; Xue, M.; Liu, J.; Liang, H. Breast cancer suppression by aplysin is associated with inhibition of PI3K/AKT/FOXO3a pathway. Oncotarget, 2017, 8(38), 63923-63934.
[http://dx.doi.org/10.18632/oncotarget.19209] [PMID: 28969041]
[38]
Liu, J.; Ma, L.; Wu, N.; Liu, G.; Zheng, L.; Lin, X. Aplysin sensitizes cancer cells to TRAIL by suppressing P38 MAPK/survivin pathway. Mar. Drugs, 2014, 12(9), 5072-5088.
[http://dx.doi.org/10.3390/md12095072] [PMID: 25257790]
[39]
Ashwaq, A.A.; Al-Qubaisi, M.; Rasedee, A.; Abdul, A.; Taufiq-Yap, Y.; Yeap, S. Inducing G2/M cell cycle arrest and apoptosis through generation reactive oxygen species (ROS)-mediated mitochondria pathway in HT-29 cells by dentatin (DEN) and Dentatin Incorporated in Hydroxypropyl-β-Cyclodextrin (DEN-HPβCD). Int. J. Mol. Sci., 2016, 17(10), 1653.
[http://dx.doi.org/10.3390/ijms17101653] [PMID: 27763535]
[40]
Ling, X.; Wu, W.; Fan, C.; Xu, C.; Liao, J.; Rich, L.J.; Huang, R.Y.; Repasky, E.A.; Wang, X.; Li, F. An ABCG2 non-substrate anticancer agent FL118 targets drug-resistant cancer stem-like cells and overcomes treatment resistance of human pancreatic cancer. J. Exp. Clin. Cancer Res., 2018, 37(1), 240.
[http://dx.doi.org/10.1186/s13046-018-0899-8] [PMID: 30285798]
[41]
Abdelhamed, S.; Yokoyama, S.; Refaat, A.; Ogura, K.; Yagita, H.; Awale, S.; Saiki, I. Piperine enhances the efficacy of TRAIL-based therapy for triple-negative breast cancer cells. Anticancer Res., 2014, 34(4), 1893-1899.
[PMID: 24692724]
[42]
Siegelin, M.D.; Reuss, D.E.; Habel, A.; Rami, A.; von Deimling, A. Quercetin promotes degradation of survivin and thereby enhances death-receptor mediated apoptosis in glioma cells. Neurooncol., 2009, 11(2), 122-131.
[http://dx.doi.org/10.1215/15228517-2008-085] [PMID: 18971417]
[43]
Erdogan, S.; Turkekul, K.; Dibirdik, I.; Doganlar, O.; Doganlar, Z.B.; Bilir, A.; Oktem, G. Midkine downregulation increases the efficacy of quercetin on prostate cancer stem cell survival and migration through PI3K/AKT and MAPK/ERK pathway. Biomed. Pharmacother., 2018, 107, 793-805.
[http://dx.doi.org/10.1016/j.biopha.2018.08.061] [PMID: 30142541]
[44]
Plescia, J.; Salz, W.; Xia, F.; Pennati, M.; Zaffaroni, N.; Daidone, M.G.; Meli, M.; Dohi, T.; Fortugno, P.; Nefedova, Y.; Gabrilovich, D.I.; Colombo, G.; Altieri, D.C. Rational design of shepherdin, a novel anticancer agent. Cancer Cell, 2005, 7(5), 457-468.
[http://dx.doi.org/10.1016/j.ccr.2005.03.035] [PMID: 15894266]
[45]
Liu, H.T.; Ho, Y.S. Anticancer effect of curcumin on breast cancer and stem cells. Food Sci. Hum. Wellness, 2018, 7(2), 134-137.
[http://dx.doi.org/10.1016/j.fshw.2018.06.001]
[46]
Zeng, Y.; Weng, G.; Fan, J.; Li, Z.; Wu, J.; Li, Y.; Zheng, R.; Xia, P.; Guo, K. Curcumin reduces the expression of survivin, leading to enhancement of arsenic trioxide-induced apoptosis in myelodysplastic syndrome and leukemia stem-like cells. Oncol. Rep., 2016, 36(3), 1233-1242.
[http://dx.doi.org/10.3892/or.2016.4944] [PMID: 27430728]
[47]
Poumpouridou, N.; Kroupis, C. Hereditary breast cancer: Beyond BRCA genetic analysis; PALB2 emerges. Clin. Chem. Lab. Med., 2011, 50(3), 423-434.
[PMID: 22505525]
[48]
Yamanaka, K.; Nakata, M.; Kaneko, N.; Fushiki, H.; Kita, A.; Nakahara, T.; Koutoku, H.; Sasamata, M. YM155, a selective survivin suppressant, inhibits tumor spread and prolongs survival in a spontaneous metastatic model of human triple negative breast cancer. Int. J. Oncol., 2011, 39(3), 569-575.
[http://dx.doi.org/10.3892/ijo.2011.1077] [PMID: 21674125]
[49]
Kaneko, N.; Yamanaka, K.; Kita, A.; Tabata, K.; Akabane, T.; Mori, M. Synergistic antitumor activities of sepantronium bromide (YM155), a survivin suppressant, in combination with microtubule-targeting agents in triple-negative breast cancer cells. Biol. Pharm. Bull., 2013, 36(12), 1921-1927.
[http://dx.doi.org/10.1248/bpb.b13-00515] [PMID: 24432379]
[50]
Sun, Y.; Giacalone, N.J.; Lu, B. Terameprocol (tetra-O-methyl nordihydroguaiaretic acid), an inhibitor of Sp1-mediated survivin transcription, induces radiosensitization in non-small cell lung carcinoma. J. Thorac. Oncol., 2011, 6(1), 8-14.
[http://dx.doi.org/10.1097/JTO.0b013e3181fa646a] [PMID: 21107289]
[51]
Lu, X.; Lu, X.; Wang, Z.C.; Iglehart, J.D.; Zhang, X.; Richardson, A.L. Predicting features of breast cancer with gene expression patterns. Breast Cancer Res. Treat., 2008, 108(2), 191-201.
[http://dx.doi.org/10.1007/s10549-007-9596-6] [PMID: 18297396]
[52]
Liu, R.; Wang, X.; Chen, G.Y.; Dalerba, P.; Gurney, A.; Hoey, T.; Sherlock, G.; Lewicki, J.; Shedden, K.; Clarke, M.F. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N. Engl. J. Med., 2007, 356(3), 217-226.
[http://dx.doi.org/10.1056/NEJMoa063994] [PMID: 17229949]
[53]
Tripathi, A.; King, C.; de la Morenas, A.; Perry, V.K.; Burke, B.; Antoine, G.A.; Hirsch, E.F.; Kavanah, M.; Mendez, J.; Stone, M.; Gerry, N.P.; Lenburg, M.E.; Rosenberg, C.L. Gene expression abnormalities in histologically normal breast epithelium of breast cancer patients. Int. J. Cancer, 2008, 122(7), 1557-1566.
[http://dx.doi.org/10.1002/ijc.23267] [PMID: 18058819]
[54]
Casey, T.; Bond, J.; Tighe, S.; Hunter, T.; Lintault, L.; Patel, O.; Eneman, J.; Crocker, A.; White, J.; Tessitore, J.; Stanley, M.; Harlow, S.; Weaver, D.; Muss, H.; Plaut, K. Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Res. Treat., 2009, 114(1), 47-62.
[http://dx.doi.org/10.1007/s10549-008-9982-8] [PMID: 18373191]
[55]
Pedraza, V.; Gomez-Capilla, J.A.; Escaramis, G.; Gomez, C.; Torné, P.; Rivera, J.M.; Gil, A.; Araque, P.; Olea, N.; Estivill, X.; Fárez-Vidal, M.E. Gene expression signatures in breast cancer distinguish phenotype characteristics, histologic subtypes, and tumor invasiveness. Cancer, 2010, 116(2), 486-496.
[http://dx.doi.org/10.1002/cncr.24805] [PMID: 20029976]
[56]
Emery, L.A.; Tripathi, A.; King, C.; Kavanah, M.; Mendez, J.; Stone, M.D.; de las Morenas, A.; Sebastiani, P.; Rosenberg, C.L. Early dysregulation of cell adhesion and extracellular matrix pathways in breast cancer progression. Am. J. Pathol., 2009, 175(3), 1292-1302.
[http://dx.doi.org/10.2353/ajpath.2009.090115] [PMID: 19700746]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy