General Research Article

综合高通量转录组学数据确定存活蛋白作为潜在的乳腺癌治疗生物标志物

卷 31, 期 5, 2024

发表于: 19 June, 2023

页: [649 - 663] 页: 15

弟呕挨: 10.2174/0929867330666230516102017

价格: $65

conference banner
摘要

背景:乳腺癌是全世界妇女癌症相关死亡的主要原因。晚期通常顽固性化疗,导致预后不良;然而,如果早期诊断,它们是可以治疗的。 目的:寻找能够早期发现肿瘤或具有治疗意义的生物标志物势在必行。 方法:在此,一项全面的基于生物信息学的乳腺癌转录组学研究用于鉴定差异表达基因(DEGs),随后通过分子对接筛选潜在化合物。从GEO数据库中检索乳腺癌患者(n=248)和对照组(n=65)的全基因组mRNA表达数据进行meta分析。在独创性通路分析和蛋白质网络分析的基础上,使用具有统计学意义的DEG进行富集分析。 结果:共有3096个独特的DGE(965个上调,2131个下调)被定位为生物学相关。上调最多的基因为COL10A1、COL11A1、TOP2A、BIRC5 (生存素)、MMP11、S100P、RARA,下调最多的基因为ADIPOQ、LEP、CFD、PCK1和HBA2。转录组学和分子途径分析发现BIRC5/生存素是一个重要的DEG。着丝粒中期信号被认为是一个显著的失调的典型途径。蛋白-蛋白相互作用研究发现,KIF2C、KIF20A、KIF23、CDCA8、AURKA、AURKB、INCENP、CDK1、BUB1和CENPA是BIRC-5相关蛋白。进行分子对接以展示与多种天然配体的结合相互作用。 结论:BIRC5是一种很有前景的乳腺癌预测标志物和潜在的治疗靶点。需要进一步的大规模研究来关联BIRC5在乳腺癌中的意义,从而向新的诊断和治疗选择的临床转化迈出一步。

关键词: 乳腺癌,转录组学,生物标志物,对接,通路分析,生存素。

« Previous
[1]
WHO Cancer. 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer (Accessed on: Dec 19 2021).
[2]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[3]
American Cancer Society, I. Breast Cancer. 2021. Available from: https://www.cancer.org/cancer/breast- cancer.html# (Accessed on: 19 December 2021).
[4]
DeSantis, C.E.; Ma, J.; Gaudet, M.M.; Newman, L.A.; Miller, K.D.; Goding Sauer, A.; Jemal, A.; Siegel, R.L. Breast cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(6), 438-451.
[http://dx.doi.org/10.3322/caac.21583] [PMID: 31577379]
[5]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[6]
Wiseman, B.S.; Werb, Z. Stromal effects on mammary gland development and breast cancer. Science, 2002, 296(5570), 1046-1049.
[http://dx.doi.org/10.1126/science.1067431] [PMID: 12004111]
[7]
Viale, G. The current state of breast cancer classification. Ann. Oncol., 2012, 23(Suppl. 10), x207-x210.
[http://dx.doi.org/10.1093/annonc/mds326] [PMID: 22987963]
[8]
Nkondjock, A.; Ghadirian, P. Risk factors and risk reduction of breast cancer. Med. Sci., 2005, 21(2), 175-180.
[http://dx.doi.org/10.1051/medsci/2005212175] [PMID: 15691489]
[9]
Sørlie, T.; Tibshirani, R.; Parker, J.; Hastie, T.; Marron, J.S.; Nobel, A.; Deng, S.; Johnsen, H.; Pesich, R.; Geisler, S.; Demeter, J.; Perou, C.M.; Lønning, P.E.; Brown, P.O.; Børresen-Dale, A.L.; Botstein, D. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl. Acad. Sci. USA, 2003, 100(14), 8418-8423.
[http://dx.doi.org/10.1073/pnas.0932692100] [PMID: 12829800]
[10]
Hedenfalk, I.; Duggan, D.; Chen, Y.; Radmacher, M.; Bittner, M.; Simon, R.; Meltzer, P.; Gusterson, B.; Esteller, M.; Raffeld, M.; Yakhini, Z.; Ben-Dor, A.; Dougherty, E.; Kononen, J.; Bubendorf, L.; Fehrle, W.; Pittaluga, S.; Gruvberger, S.; Loman, N.; Johannsson, O.; Olsson, H.; Wilfond, B.; Sauter, G.; Kallioniemi, O-P.; Borg, Å.; Trent, J. Gene-expression profiles in hereditary breast cancer. N. Engl. J. Med., 2001, 344(8), 539-548.
[http://dx.doi.org/10.1056/NEJM200102223440801] [PMID: 11207349]
[11]
Chang, J.C.; Wooten, E.C.; Tsimelzon, A.; Hilsenbeck, S.G.; Gutierrez, M.C.; Elledge, R.; Mohsin, S.; Osborne, C.K.; Chamness, G.C.; Allred, D.C.; O’Connell, P. Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet, 2003, 362(9381), 362-369.
[http://dx.doi.org/10.1016/S0140-6736(03)14023-8] [PMID: 12907009]
[12]
Hartmann, A.; Blaszyk, H.; Saitoh, S.; Tsushima, K.; Tamura, Y.; Cunningham, J.M.; McGovern, R.M.; Schroeder, J.J.; Sommer, S.S.; Kovach, J.S. High frequency of p53 gene mutations in primary breast cancers in Japanese women, a low-incidence population. Br. J. Cancer, 1996, 73(8), 896-901.
[http://dx.doi.org/10.1038/bjc.1996.179] [PMID: 8611423]
[13]
Lai, F.M.; Chen, P.; Ku, H.C.; Lee, M.S.; Chang, S.C.; Chang, T.M.; Liou, S.H. A case-control study of parity, age at first full-term pregnancy, breast feeding and breast cancer in Taiwanese women. Proc. Natl. Sci. Counc. Repub. China B, 1996, 20(3), 71-77.
[PMID: 8956522]
[14]
Kulkoyluoglu-Cotul, E.; Arca, A.; Madak-Erdogan, Z. Crosstalk between estrogen signaling and breast cancer metabolism. Trends Endocrinol. Metab., 2019, 30(1), 25-38.
[http://dx.doi.org/10.1016/j.tem.2018.10.006] [PMID: 30471920]
[15]
Truong, T.H.; Lange, C.A. Deciphering steroid receptor crosstalk in hormone-driven cancers. Endocrinology, 2018, 159(12), 3897-3907.
[http://dx.doi.org/10.1210/en.2018-00831] [PMID: 30307542]
[16]
Lukong, K.E. Understanding breast cancer-the long and winding road. BBA Clin., 2017, 7, 64-77.
[http://dx.doi.org/10.1016/j.bbacli.2017.01.001] [PMID: 28194329]
[17]
Takeuchi, H.; Morton, D.L.; Elashoff, D.; Hoon, D.S.B. Survivin expression by metastatic melanoma predicts poor disease outcome in patients receiving adjuvant polyvalent vaccine. Int. J. Cancer, 2005, 117(6), 1032-1038.
[http://dx.doi.org/10.1002/ijc.21267] [PMID: 15986442]
[18]
Carrasco, R.A.; Stamm, N.B.; Marcusson, E.; Sandusky, G.; Iversen, P.; Patel, B.K.R. Antisense inhibition of survivin expression as a cancer therapeutic. Mol. Cancer Ther., 2011, 10(2), 221-232.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0756] [PMID: 21216939]
[19]
Altieri, D.C. Targeted therapy by disabling crossroad signaling networks: The survivin paradigm. Mol. Cancer Ther., 2006, 5(3), 478-482.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0436] [PMID: 16546961]
[20]
Altieri, D.C. Survivin, cancer networks and pathway-directed drug discovery. Nat. Rev. Cancer, 2008, 8(1), 61-70.
[http://dx.doi.org/10.1038/nrc2293] [PMID: 18075512]
[21]
Fukuda, S.; Pelus, L.M. Survivin, a cancer target with an emerging role in normal adult tissues. Mol. Cancer Ther., 2006, 5(5), 1087-1098.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0375] [PMID: 16731740]
[22]
Church, D.N.; Talbot, D.C. Survivin in solid tumors: Rationale for development of inhibitors. Curr. Oncol. Rep., 2012, 14(2), 120-128.
[http://dx.doi.org/10.1007/s11912-012-0215-2] [PMID: 22234703]
[23]
Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia, 2017, 19(8), 649-658.
[http://dx.doi.org/10.1016/j.neo.2017.05.002] [PMID: 28732212]
[24]
Jensen, L.J.; Kuhn, M.; Stark, M.; Chaffron, S.; Creevey, C.; Muller, J.; Doerks, T.; Julien, P.; Roth, A.; Simonovic, M.; Bork, P.; von Mering, C. STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res., 2009, 37(Database), D412-D416.
[http://dx.doi.org/10.1093/nar/gkn760] [PMID: 18940858]
[25]
Franceschini, A.; Szklarczyk, D.; Frankild, S.; Kuhn, M.; Simonovic, M.; Roth, A.; Lin, J.; Minguez, P.; Bork, P.; von Mering, C.; Jensen, L.J. STRING v9.1: Protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res., 2013, 41(Database issue), D808-D815.
[PMID: 23203871]
[26]
Mishra, S.; Singh, S. Identification of inhibitors against metastasis protein “Survivin:” In silico discovery using virtual screening and molecular docking studies. Pharmacogn. Mag., 2018, 13(Suppl. 4), S742-S748.
[PMID: 29491627]
[27]
Alhopuro, P.; Karhu, A.; Winqvist, R.; Waltering, K.; Visakorpi, T.; Aaltonen, L.A. Somatic mutation analysis of MYH11in breast and prostate cancer. BMC Cancer, 2008, 8(1), 263.
[http://dx.doi.org/10.1186/1471-2407-8-263] [PMID: 18796164]
[28]
IbolyaKiss; ÉvaKorpos; FerencDeák Matrilin-2, an extracellular adaptor protein, is needed for the regeneration of muscle, nerve and other tissues. Neural Regen. Res., 2015, 10(6), 866-869.
[http://dx.doi.org/10.4103/1673-5374.158332] [PMID: 26199591]
[29]
Noel, J.P.; Verdecia, M.A.; Huang, H.; Dutil, E.; Kaiser, D.A.; Hunter, T. Structure of the human anti-apoptotic protein survivin reveals a dimeric arrangement. Nat. Struct. Biol., 2000, 7(7), 602-608.
[http://dx.doi.org/10.1038/76838] [PMID: 10876248]
[30]
Jeyaprakash, A.A.; Klein, U.R.; Lindner, D.; Ebert, J.; Nigg, E.A.; Conti, E. Structure of a Survivin-Borealin-INCENP core complex reveals how chromosomal passengers travel together. Cell, 2007, 131(2), 271-285.
[http://dx.doi.org/10.1016/j.cell.2007.07.045] [PMID: 17956729]
[31]
Klein, U.R.; Nigg, E.A.; Gruneberg, U. Centromere targeting of the chromosomal passenger complex requires a ternary subcomplex of Borealin, Survivin, and the N-terminal domain of INCENP. Mol. Biol. Cell, 2006, 17(6), 2547-2558.
[http://dx.doi.org/10.1091/mbc.e05-12-1133] [PMID: 16571674]
[32]
Dai, J.; Zhu, B.; Lin, W.; Gao, H.; Dai, H.; Zheng, L.; Shi, W.; Chen, W. Identification of prognostic significance of BIRC5 in breast cancer using integrative bioinformatics analysis. Biosci. Rep., 2020, 40(2), BSR20193678.
[http://dx.doi.org/10.1042/BSR20193678] [PMID: 32043523]
[33]
Xu, L.; Yu, W.; Xiao, H.; Lin, K. BIRC5 is a prognostic biomarker associated with tumor immune cell infiltration. Sci. Rep., 2021, 11(1), 390.
[http://dx.doi.org/10.1038/s41598-020-79736-7] [PMID: 33431968]
[34]
Altznauer, F.; Martinelli, S.; Yousefi, S.; Thürig, C.; Schmid, I.; Conway, E.M.; Schöni, M.H.; Vogt, P.; Mueller, C.; Fey, M.F.; Zangemeister-Wittke, U.; Simon, H.U. Inflammation-associated cell cycle-independent block of apoptosis by survivin in terminally differentiated neutrophils. J. Exp. Med., 2004, 199(10), 1343-1354.
[http://dx.doi.org/10.1084/jem.20032033] [PMID: 15148334]
[35]
Wadegaonkar, V.P.; Wadegaonkar, P.A. Withanone as an inhibitor of survivin: A potential drug candidate for cancer therapy. J. Biotechnol., 2013, 168(2), 229-233.
[http://dx.doi.org/10.1016/j.jbiotec.2013.08.028] [PMID: 23994265]
[36]
Gao, R.; Shah, N.; Lee, J.S.; Katiyar, S.P.; Li, L.; Oh, E.; Sundar, D.; Yun, C.O.; Wadhwa, R.; Kaul, S.C. Withanone-rich combination of Ashwagandha withanolides restricts metastasis and angiogenesis through hnRNP-K. Mol. Cancer Ther., 2014, 13(12), 2930-2940.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0324] [PMID: 25236891]
[37]
Zhang, X.; Zhuang, T.; Liang, Z.; Li, L.; Xue, M.; Liu, J.; Liang, H. Breast cancer suppression by aplysin is associated with inhibition of PI3K/AKT/FOXO3a pathway. Oncotarget, 2017, 8(38), 63923-63934.
[http://dx.doi.org/10.18632/oncotarget.19209] [PMID: 28969041]
[38]
Liu, J.; Ma, L.; Wu, N.; Liu, G.; Zheng, L.; Lin, X. Aplysin sensitizes cancer cells to TRAIL by suppressing P38 MAPK/survivin pathway. Mar. Drugs, 2014, 12(9), 5072-5088.
[http://dx.doi.org/10.3390/md12095072] [PMID: 25257790]
[39]
Ashwaq, A.A.; Al-Qubaisi, M.; Rasedee, A.; Abdul, A.; Taufiq-Yap, Y.; Yeap, S. Inducing G2/M cell cycle arrest and apoptosis through generation reactive oxygen species (ROS)-mediated mitochondria pathway in HT-29 cells by dentatin (DEN) and Dentatin Incorporated in Hydroxypropyl-β-Cyclodextrin (DEN-HPβCD). Int. J. Mol. Sci., 2016, 17(10), 1653.
[http://dx.doi.org/10.3390/ijms17101653] [PMID: 27763535]
[40]
Ling, X.; Wu, W.; Fan, C.; Xu, C.; Liao, J.; Rich, L.J.; Huang, R.Y.; Repasky, E.A.; Wang, X.; Li, F. An ABCG2 non-substrate anticancer agent FL118 targets drug-resistant cancer stem-like cells and overcomes treatment resistance of human pancreatic cancer. J. Exp. Clin. Cancer Res., 2018, 37(1), 240.
[http://dx.doi.org/10.1186/s13046-018-0899-8] [PMID: 30285798]
[41]
Abdelhamed, S.; Yokoyama, S.; Refaat, A.; Ogura, K.; Yagita, H.; Awale, S.; Saiki, I. Piperine enhances the efficacy of TRAIL-based therapy for triple-negative breast cancer cells. Anticancer Res., 2014, 34(4), 1893-1899.
[PMID: 24692724]
[42]
Siegelin, M.D.; Reuss, D.E.; Habel, A.; Rami, A.; von Deimling, A. Quercetin promotes degradation of survivin and thereby enhances death-receptor mediated apoptosis in glioma cells. Neurooncol., 2009, 11(2), 122-131.
[http://dx.doi.org/10.1215/15228517-2008-085] [PMID: 18971417]
[43]
Erdogan, S.; Turkekul, K.; Dibirdik, I.; Doganlar, O.; Doganlar, Z.B.; Bilir, A.; Oktem, G. Midkine downregulation increases the efficacy of quercetin on prostate cancer stem cell survival and migration through PI3K/AKT and MAPK/ERK pathway. Biomed. Pharmacother., 2018, 107, 793-805.
[http://dx.doi.org/10.1016/j.biopha.2018.08.061] [PMID: 30142541]
[44]
Plescia, J.; Salz, W.; Xia, F.; Pennati, M.; Zaffaroni, N.; Daidone, M.G.; Meli, M.; Dohi, T.; Fortugno, P.; Nefedova, Y.; Gabrilovich, D.I.; Colombo, G.; Altieri, D.C. Rational design of shepherdin, a novel anticancer agent. Cancer Cell, 2005, 7(5), 457-468.
[http://dx.doi.org/10.1016/j.ccr.2005.03.035] [PMID: 15894266]
[45]
Liu, H.T.; Ho, Y.S. Anticancer effect of curcumin on breast cancer and stem cells. Food Sci. Hum. Wellness, 2018, 7(2), 134-137.
[http://dx.doi.org/10.1016/j.fshw.2018.06.001]
[46]
Zeng, Y.; Weng, G.; Fan, J.; Li, Z.; Wu, J.; Li, Y.; Zheng, R.; Xia, P.; Guo, K. Curcumin reduces the expression of survivin, leading to enhancement of arsenic trioxide-induced apoptosis in myelodysplastic syndrome and leukemia stem-like cells. Oncol. Rep., 2016, 36(3), 1233-1242.
[http://dx.doi.org/10.3892/or.2016.4944] [PMID: 27430728]
[47]
Poumpouridou, N.; Kroupis, C. Hereditary breast cancer: Beyond BRCA genetic analysis; PALB2 emerges. Clin. Chem. Lab. Med., 2011, 50(3), 423-434.
[PMID: 22505525]
[48]
Yamanaka, K.; Nakata, M.; Kaneko, N.; Fushiki, H.; Kita, A.; Nakahara, T.; Koutoku, H.; Sasamata, M. YM155, a selective survivin suppressant, inhibits tumor spread and prolongs survival in a spontaneous metastatic model of human triple negative breast cancer. Int. J. Oncol., 2011, 39(3), 569-575.
[http://dx.doi.org/10.3892/ijo.2011.1077] [PMID: 21674125]
[49]
Kaneko, N.; Yamanaka, K.; Kita, A.; Tabata, K.; Akabane, T.; Mori, M. Synergistic antitumor activities of sepantronium bromide (YM155), a survivin suppressant, in combination with microtubule-targeting agents in triple-negative breast cancer cells. Biol. Pharm. Bull., 2013, 36(12), 1921-1927.
[http://dx.doi.org/10.1248/bpb.b13-00515] [PMID: 24432379]
[50]
Sun, Y.; Giacalone, N.J.; Lu, B. Terameprocol (tetra-O-methyl nordihydroguaiaretic acid), an inhibitor of Sp1-mediated survivin transcription, induces radiosensitization in non-small cell lung carcinoma. J. Thorac. Oncol., 2011, 6(1), 8-14.
[http://dx.doi.org/10.1097/JTO.0b013e3181fa646a] [PMID: 21107289]
[51]
Lu, X.; Lu, X.; Wang, Z.C.; Iglehart, J.D.; Zhang, X.; Richardson, A.L. Predicting features of breast cancer with gene expression patterns. Breast Cancer Res. Treat., 2008, 108(2), 191-201.
[http://dx.doi.org/10.1007/s10549-007-9596-6] [PMID: 18297396]
[52]
Liu, R.; Wang, X.; Chen, G.Y.; Dalerba, P.; Gurney, A.; Hoey, T.; Sherlock, G.; Lewicki, J.; Shedden, K.; Clarke, M.F. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N. Engl. J. Med., 2007, 356(3), 217-226.
[http://dx.doi.org/10.1056/NEJMoa063994] [PMID: 17229949]
[53]
Tripathi, A.; King, C.; de la Morenas, A.; Perry, V.K.; Burke, B.; Antoine, G.A.; Hirsch, E.F.; Kavanah, M.; Mendez, J.; Stone, M.; Gerry, N.P.; Lenburg, M.E.; Rosenberg, C.L. Gene expression abnormalities in histologically normal breast epithelium of breast cancer patients. Int. J. Cancer, 2008, 122(7), 1557-1566.
[http://dx.doi.org/10.1002/ijc.23267] [PMID: 18058819]
[54]
Casey, T.; Bond, J.; Tighe, S.; Hunter, T.; Lintault, L.; Patel, O.; Eneman, J.; Crocker, A.; White, J.; Tessitore, J.; Stanley, M.; Harlow, S.; Weaver, D.; Muss, H.; Plaut, K. Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Res. Treat., 2009, 114(1), 47-62.
[http://dx.doi.org/10.1007/s10549-008-9982-8] [PMID: 18373191]
[55]
Pedraza, V.; Gomez-Capilla, J.A.; Escaramis, G.; Gomez, C.; Torné, P.; Rivera, J.M.; Gil, A.; Araque, P.; Olea, N.; Estivill, X.; Fárez-Vidal, M.E. Gene expression signatures in breast cancer distinguish phenotype characteristics, histologic subtypes, and tumor invasiveness. Cancer, 2010, 116(2), 486-496.
[http://dx.doi.org/10.1002/cncr.24805] [PMID: 20029976]
[56]
Emery, L.A.; Tripathi, A.; King, C.; Kavanah, M.; Mendez, J.; Stone, M.D.; de las Morenas, A.; Sebastiani, P.; Rosenberg, C.L. Early dysregulation of cell adhesion and extracellular matrix pathways in breast cancer progression. Am. J. Pathol., 2009, 175(3), 1292-1302.
[http://dx.doi.org/10.2353/ajpath.2009.090115] [PMID: 19700746]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy