Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

Survey of Denoising, Segmentation and Classification of Pancreatic Cancer Imaging

Author(s): Harjinder Kaur, Sumindar Kaur Saini, Niharika Thakur and Mamta Juneja*

Volume 20, 2024

Published on: 07 July, 2023

Article ID: e150523216892 Pages: 17

DOI: 10.2174/1573405620666230515090523

open_access

Open Access Journals Promotions 2
conference banner
Abstract

Background: Pancreatic cancer is one of the most serious problems that has taken many lives worldwide. The diagnostic procedure using the traditional approaches was manual by visually analyzing the large volumes of the dataset, making it time-consuming and prone to subjective errors. Hence the need for the computer-aided diagnosis system (CADs) emerged that comprises the machine and deep learning approaches for denoising, segmentation and classification of pancreatic cancer.

Introduction: There are different modalities used for the diagnosis of pancreatic cancer, such as Positron Emission Tomography/Computed Tomography (PET/CT), Magnetic Resonance Imaging (MRI), Multiparametric-MRI (Mp-MRI), Radiomics and Radio-genomics. Although these modalities gave remarkable results in diagnosis on the basis of different criteria. CT is the most commonly used modality that produces detailed and fine contrast images of internal organs of the body. However, it may also contain a certain amount of gaussian and rician noise that is necessary to be preprocessed before segmentation of the required region of interest (ROI) from the images and classification of cancer.

Methods: This paper analyzes different methodologies used for the complete diagnosis of pancreatic cancer, including the denoising, segmentation and classification, along with the challenges and future scope for the diagnosis of pancreatic cancer.

Results: Various filters are used for denoising and image smoothening and filters as gaussian scale mixture process, non-local means, median filter, adaptive filter and average filter have been used more for better results.

Conclusion: In terms of segmentation, atlas based region-growing method proved to give better results as compared to the state of the art whereas, for the classification, deep learning approaches outperformed other methodologies to classify the images as cancerous and non- cancerous. These methodologies have proved that CAD systems have become a better solution to the ongoing research proposals for the detection of pancreatic cancer worldwide.

Keywords: Pancreatic cancer, CT, Denoising, Segmentation, Classification, Deep learning.

[1]
Vrieling A, Bueno-de-Mesquita HB, Boshuizen HC, et al. Cigarette smoking, environmental tobacco smoke exposure and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition. Int J Cancer 2010; 126(10): 2394-403.
[http://dx.doi.org/10.1002/ijc.24907] [PMID: 19790196]
[2]
Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet 2011; 378(9791): 607-20.
[http://dx.doi.org/10.1016/S0140-6736(10)62307-0] [PMID: 21620466]
[3]
Yasuda K, Mukai H, Fujimoto S, Nakajima M, Kawai K. The diagnosis of pancreatic cancer by endoscopic ultrasonography. Gastrointest Endosc 1988; 34(1): 1-8.
[http://dx.doi.org/10.1016/S0016-5107(88)71220-1] [PMID: 3280392]
[4]
Warshaw AL, Gu ZY, Wittenberg J, Waltman AC. Preoperative staging and assessment of resectability of pancreatic cancer. Arch Surg 1990; 125(2): 230-3.
[http://dx.doi.org/10.1001/archsurg.1990.01410140108018] [PMID: 2154172]
[5]
Kurt M, Ozkan M, Cakiroglu M, et al. Age-based computer-aided diagnosis approach for pancreatic cancer on endoscopic ultrasound images. Endosc Ultrasound 2016; 5(2): 101-7.
[http://dx.doi.org/10.4103/2303-9027.180473] [PMID: 27080608]
[6]
Karmazanovsky G, Fedorov V, Kubyshkin V, Kotchatkov A. Pancreatic head cancer: Accuracy of CT in determination of resectability. Abdom Imaging 2005; 30(4): 488-500.
[http://dx.doi.org/10.1007/s00261-004-0279-z] [PMID: 15759205]
[7]
Adamek HE, Albert J, Breer H, Weitz M, Schilling D, Riemann JF. Pancreatic cancer detection with magnetic resonance cholangiopancreatography and endoscopic retrograde cholangiopancreatography: A prospective controlled study. Lancet 2000; 356(9225): 190-3.
[http://dx.doi.org/10.1016/S0140-6736(00)02479-X] [PMID: 10963196]
[8]
Agarwal B, Abu-Hamda E, Molke KL, Correa AM, Ho L. Endoscopic ultrasound-guided fine needle aspiration and multidetector spiral CT in the diagnosis of pancreatic cancer. Am J Gastroenterol 2004; 99(5): 844-50.
[http://dx.doi.org/10.1111/j.1572-0241.2004.04177.x]
[9]
Higashi T, Saga T, Nakamoto Y, et al. Diagnosis of pancreatic cancer using fluorine-18 fluorodeoxyglucose positron emission tomography (FDG PET) —Usefulness and limitations in “clinical reality”—. Ann Nucl Med 2003; 17(4): 261-79.
[http://dx.doi.org/10.1007/BF02988521] [PMID: 12932109]
[10]
Hocke M, Schulze E, Gottschalk P, Topalidis T, Dietrich CF. Contrast-enhanced endoscopic ultrasound in discrimination between focal pancreatitis and pancreatic cancer. World J Gastroenterol 2006; 12(2): 246-50.
[http://dx.doi.org/10.3748/wjg.v12.i2.246] [PMID: 16482625]
[11]
Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 2017; 14(12): 749-62.
[http://dx.doi.org/10.1038/nrclinonc.2017.141] [PMID: 28975929]
[12]
Macovski A. Noise in MRI. Magn Reson Med 1996; 36(3): 494-7.
[http://dx.doi.org/10.1002/mrm.1910360327] [PMID: 8875425]
[13]
Gudbjartsson H, Patz S. The rician distribution of noisy mri data. Magn Reson Med 1995; 34(6): 910-4.
[http://dx.doi.org/10.1002/mrm.1910340618] [PMID: 8598820]
[14]
Fu B, Zhao X, Song C, Li X, Wang X. A salt and pepper noise image denoising method based on the generative classification. Multimedia Tools Appl 2019; 78(9): 12043-53.
[http://dx.doi.org/10.1007/s11042-018-6732-8]
[15]
Sathua SK, Dash A, Behera A. Removal of salt and pepper noise from gray-scale and color images: An adaptive approach. J Comput Sci Technol 2017; 5(1)
[16]
Kirti T, Jitendra K, Ashok S. Poisson noise reduction from X-ray images by region classification and response median filtering. Sadhana 2017; 42(6): 855-63.
[http://dx.doi.org/10.1007/s12046-017-0654-4]
[17]
Huang T, Yang G, Tang G. A fast two-dimensional median filtering algorithm. IEEE Trans Acoust Speech Signal Process 1979; 27(1): 13-8.
[http://dx.doi.org/10.1109/TASSP.1979.1163188]
[18]
Lim JS. Two-dimensional signal and image processing. Englewood Clis, NJ: Prentice Hall 1990; p. 710.
[19]
Burrus CS, Gopinath RA, Guo H, Odegard JE, Selesnick IW. An Introduction to wavelets and wavelet transforms: A primer. New Jersey: Prentice Hall 1998.
[20]
Buades A, Coll B, Morel JM. A non-local algorithm for image denoising. IEEE Comput Soc Conf Comput Vision Pattern Recogn 2005; 2: 60-5.
[http://dx.doi.org/10.1109/CVPR.2005.38]
[21]
Roth S, Black MJ. Fields of experts: A framework for learning image priors. 2005 IEEE Comp Soc Conf Comp Vis and Patt Recog (CVPR'05). 2: 866-67.
[http://dx.doi.org/10.1109/CVPR.2005.160]
[22]
Aja-Fernandez S, Alberola-Lopez C, Westin CF. Noise and signal estimation in magnitude MRI and Rician distributed images: a LMMSE approach. IEEE Trans Image Process 2008; 17(8): 1383-98.
[http://dx.doi.org/10.1109/TIP.2008.925382] [PMID: 18632347]
[23]
Barbu A. Training an active random field for real-time image denoising. IEEE Trans Image Process 2009; 18(11): 2451-62.
[http://dx.doi.org/10.1109/TIP.2009.2028254] [PMID: 19635701]
[24]
Luisier F, Blu T, Wolfe PJ. A CURE for noisy magnetic resonance images: chi-square unbiased risk estimation. IEEE Trans Image Process 2012; 21(8): 3454-66.
[http://dx.doi.org/10.1109/TIP.2012.2191565] [PMID: 22491082]
[25]
Rajan J, Veraart J, Van Audekerke J, Verhoye M, Sijbers J. Nonlocal maximum likelihood estimation method for denoising multiple-coil magnetic resonance images. Magn Reson Imaging 2012; 30(10): 1512-8.
[http://dx.doi.org/10.1016/j.mri.2012.04.021] [PMID: 22819583]
[26]
Bhadauria HS, Dewal ML. Medical image denoising using adaptive fusion of curvelet transform and total variation. Comput Electr Eng 2013; 39(5): 1451-60.
[http://dx.doi.org/10.1016/j.compeleceng.2012.04.003]
[27]
Golshan HM, Hasanzadeh RPR, Yousefzadeh SC. An MRI denoising method using image data redundancy and local SNR estimation. Magn Reson Imaging 2013; 31(7): 1206-17.
[http://dx.doi.org/10.1016/j.mri.2013.04.004] [PMID: 23668996]
[28]
Mohan J, Krishnaveni V, Guo Y. MRI denoising using nonlocal neutrosophic set approach of Wiener filtering. Biomed Signal Process Control 2013; 8(6): 779-91.
[http://dx.doi.org/10.1016/j.bspc.2013.07.005]
[29]
Isa IS, Sulaiman SN, Mustapha M, Darus S. Evaluating denoising performances of fundamental filters for t2-weighted MRI images. Procedia Comput Sci 2015; 60: 760-8.
[http://dx.doi.org/10.1016/j.procs.2015.08.231]
[30]
Manjón JV, Coupé P, Buades A. MRI noise estimation and denoising using non-local PCA. Med Image Anal 2015; 22(1): 35-47.
[http://dx.doi.org/10.1016/j.media.2015.01.004] [PMID: 25725303]
[31]
Seetha J, Raja SS. Denoising of MRI images using filtering methods. 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). 765-9.
[http://dx.doi.org/10.1109/WiSPNET.2016.7566236]
[32]
Biswas R, Purkayastha D, Roy S. Denoising of MRI images using curvelet transform. Advances in Systems, Control and Automation. Singapore: Springer 2018; pp. 575-83.
[33]
Yuan J. An improved variational model for denoising magnetic resonance images. Comput Math Appl 2018; 76(9): 2212-22.
[http://dx.doi.org/10.1016/j.camwa.2018.05.044]
[34]
Sharma KK, Gurjar D, Jyotyana M, Kumari V. Denoising of Brain MRI Images Using a Hybrid Filter Method of Sylvester-Lyapunov Equation and Non Local Means InSmart Innovations in Communication and Computational Sciences. Singapore: Springer 2019; pp. 495-505.
[35]
Liu L, Yang H, Fan J, Liu RW, Duan Y. Rician noise and intensity nonuniformity correction (NNC) model for MRI data. Biomed Signal Process Control 2019; 49: 506-19.
[http://dx.doi.org/10.1016/j.bspc.2018.11.008]
[36]
Cabezas M, Oliver A, Lladó X, Freixenet J, Bach Cuadra M. A review of atlas-based segmentation for magnetic resonance brain images. Comput Methods Programs Biomed 2011; 104(3): e158-77.
[http://dx.doi.org/10.1016/j.cmpb.2011.07.015] [PMID: 21871688]
[37]
Wolz R, Chu C, Misawa K, Fujiwara M, Mori K, Rueckert D. Automated abdominal multi-organ segmentation with subject-specific atlas generation. IEEE Trans Med Imaging 2013; 32(9): 1723-30.
[http://dx.doi.org/10.1109/TMI.2013.2265805] [PMID: 23744670]
[38]
Chu C, Oda M, Kitasaka T, et al. Multi-organ segmentation based on spatially-divided probabilistic atlas from 3D abdominal CT images.International Conference on Medical Image Computing and Computer-Assisted Intervention . Springer: Berlin Heidelberg 2013; pp. 165-72.
[39]
Gibson E, Giganti F, Hu Y, et al. Automatic multi-organ segmentation on abdominal CT with dense v-networks. IEEE Trans Med Imaging 2018; 37(8): 1822-34.
[http://dx.doi.org/10.1109/TMI.2018.2806309] [PMID: 29994628]
[40]
Zhou Y, Xie L, Fishman EK, Yuille AL. Deep supervision for pancreatic cyst segmentation in abdominal CT scans. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer 2017; pp. 222-30.
[http://dx.doi.org/10.1007/978-3-319-66179-7_26]
[41]
Hussein S, Kandel P, Bolan CW, Wallace MB, Bagci U. Lung and pancreatic tumor characterization in the deep learning era: novel supervised and unsupervised learning approaches. IEEE Trans Med Imaging 2019; 38(8): 1777-87.
[http://dx.doi.org/10.1109/TMI.2019.2894349] [PMID: 30676950]
[42]
Joshi AA, Hu HH, Leahy RM, Goran MI, Nayak KS. Automatic intra-subject registration-based segmentation of abdominal fat from water-fat MRI. J Magn Reson Imaging 2013; 37(2): 423-30.
[http://dx.doi.org/10.1002/jmri.23813] [PMID: 23011805]
[43]
Raju PD, Neelima G. Image segmentation by using histogram thresholding. Int J Comput Sci Eng Technol 2012; 2(1): 776-9.
[44]
Jiang H, Tan H, Fujita H. A hybrid method for pancreas extraction from CT image based on level set methods. Comput Math Methods Med 2013; 2013: 479516.
[http://dx.doi.org/10.1155/2013/479516]
[45]
Okada T, Linguraru MG, Hori M, Summers RM, Tomiyama N, Sato Y. Abdominal multi-organ CT segmentation using organ correlation graph and prediction-based shape and location priors. International Conference on Medical Image Computing and Computer-Assisted Intervention.
[http://dx.doi.org/10.1007/978-3-642-40760-4_35]
[46]
Shimizu A, Kimoto T, Kobatake H, Nawano S, Shinozaki K. Automated pancreas segmentation from three-dimensional contrast-enhanced computed tomography. Int J CARS 2010; 5(1): 85-98.
[http://dx.doi.org/10.1007/s11548-009-0384-0] [PMID: 20033509]
[47]
Zanaty EA. Improved region growing method for magnetic resonance images (MRIs) segmentation. American J Remote Sens 2013; 1(2): 53-60.
[http://dx.doi.org/10.11648/j.ajrs.20130102.16]
[48]
Ali H, Elmogy M, El-Daydamony E, Atwan A. Multi-resolution mri brain image segmentation based on morphological pyramid and fuzzy c-mean clustering. Arab J Sci Eng 2015; 40(11): 3173-85.
[http://dx.doi.org/10.1007/s13369-015-1791-x]
[49]
Karasawa K, Oda M, Kitasaka T, et al. Multi-atlas pancreas segmentation: Atlas selection based on vessel structure. Med Image Anal 2017; 39: 18-28.
[http://dx.doi.org/10.1016/j.media.2017.03.006] [PMID: 28410505]
[50]
Madzak A, Olesen SS, Haldorsen IS, Drewes AM, Frøkjær JB. Secretin-stimulated MRI characterization of pancreatic morphology and function in patients with chronic pancreatitis. Pancreatology 2017; 17(2): 228-36.
[http://dx.doi.org/10.1016/j.pan.2017.01.009] [PMID: 28162928]
[51]
Havaei M, Dutil F, Pal C, Larochelle H, Jodoin PM. A convolutional neural network approach to brain tumor segmentation. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. 195-208.
[52]
Koyuncu H, Ceylan R. A hybrid tool on denoising and enhancement of abdominal CT images before organ & tumour segmentation. 2017 IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO). 2017; pp. 249-54.
[http://dx.doi.org/10.1109/ELNANO.2017.7939757]
[53]
Ruf J, Lopez Hänninen E, Böhmig M, et al. Impact of FDG-PET/MRI image fusion on the detection of pancreatic cancer. Pancreatology 2006; 6(6): 512-9.
[http://dx.doi.org/10.1159/000096993] [PMID: 17106215]
[54]
Săftoiu A, Vilmann P, Gorunescu F, et al. Neural network analysis of dynamic sequences of EUS elastography used for the differential diagnosis of chronic pancreatitis and pancreatic cancer. Gastrointest Endosc 2008; 68(6): 1086-94.
[http://dx.doi.org/10.1016/j.gie.2008.04.031] [PMID: 18656186]
[55]
Ge G, Wong GW. Classification of premalignant pancreatic cancer mass-spectrometry data using decision tree ensembles. BMC Bioinformatics 2008; 9(1): 275.
[http://dx.doi.org/10.1186/1471-2105-9-275] [PMID: 18547427]
[56]
Hayward J, Alvarez SA, Ruiz C, Sullivan M, Tseng J, Whalen G. Machine learning of clinical performance in a pancreatic cancer database. Artif Intell Med 2010; 49(3): 187-95.
[http://dx.doi.org/10.1016/j.artmed.2010.04.009] [PMID: 20483571]
[57]
Chang YH, Thibault G, Madin O, et al. Deep learning based nucleus classification in pancreas histological images. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2017; pp. 672-75.
[http://dx.doi.org/10.1109/EMBC.2017.8036914]
[58]
Cheng PM, Malhi HS. Transfer learning with convolutional neural networks for classification of abdominal ultrasound images. J Digit Imaging 2017; 30(2): 234-43.
[http://dx.doi.org/10.1007/s10278-016-9929-2] [PMID: 27896451]
[59]
Zhao L, Zhao H, Yan H. Gene expression profiling of 1200 pancreatic ductal adenocarcinoma reveals novel subtypes. BMC Cancer 2018; 18(1): 603.
[http://dx.doi.org/10.1186/s12885-018-4546-8] [PMID: 29843660]

© 2024 Bentham Science Publishers | Privacy Policy