Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Review Article

A Global Perspective on Medicinal Plants and Phytochemicals with Antiviral Potentials in the Respiratory System

Author(s): Neda Mohamadi, Fariba Sharififar*, Maryam Rameshk* and Shahram Kalantari Khandani

Volume 21, Issue 3, 2023

Published on: 17 May, 2023

Article ID: e280323215055 Pages: 23

DOI: 10.2174/2211352521666230328123222

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Introduction: Drug development has a great deal to gain from the therapeutic and preventative actions of medicinal plants and their derivatives. In order to introduce active medicinal herbs and phytochemicals against viral infections of the respiratory system, we tried to focus on a vast amount of data.

Methods: From 2000 to the present, articles from Web of Science, Scopus, ScienceDirect, Pub- Med, and Google Scholar were taken into consideration. A combination of respiratory viral infection with keywords of medicinal plants, phytochemicals, flavonoids, saponins, phenolics, terpenoids, alkaloids, and natural products has been used, as well as keywords of antiviral medicinal plants, and antiviral phytochemicals. Pure antiviral compounds and plants with activity against viruses other than respiratory viruses were disregarded and excluded from consideration.

Results: More than eighty phytochemicals and sixty herbs that were subjected to in vitro and in vivo investigations were documented. The current study collects information on multiple medicinal plants, including Camellia sinensis, Sambucus nigra, Pelargonium sidoides, Echinacea purpurea, and Glycyrrhiza glabra, which have been shown to have effective antiviral properties through experimental research. The main antiviral phytochemicals were terpenoids, alkaloids, and flavonoids. Additionally, chemicals including resveratrol, quercetin, chlorogenic acid, amentoflavone A, biochanin, and glycyrrhizin demonstrated efficacy against many viral infections.

Conclusion: For the management of viral infections, the current review on the development of novel antiviral medications is strongly advised. It also provides a possibility to discover anti- COVID-19 lead compounds and can offer supportive treatment in this pandemic situation.

Keywords: Respiratory viral, infection, medicinal plant, phytochemicals, mechanism, drug development.

[1]
Lin, L.T.; Hsu, W.C.; Lin, C.C. Antiviral natural products and herbal medicines. J. Tradit. Complement. Med., 2014, 4(1), 24-35.
[http://dx.doi.org/10.4103/2225-4110.124335] [PMID: 24872930]
[2]
Cascio, A.; Bosilkovski, M.; Rodriguez-Morales, A.J.; Pappas, G. The socio-ecology of zoonotic infections. Clin. Microbiol. Infect., 2011, 17(3), 336-342.
[http://dx.doi.org/10.1111/j.1469-0691.2010.03451.x] [PMID: 21175957]
[3]
Jacobs, S.E.; Lamson, D.M.; St George, K.; Walsh, T.J. Human rhinoviruses. Clin. Microbiol. Rev., 2013, 26(1), 135-162.
[http://dx.doi.org/10.1128/CMR.00077-12] [PMID: 23297263]
[4]
Christou, L. The global burden of bacterial and viral zoonotic infections. Clin. Microbiol. Infect., 2011, 17(3), 326-330.
[http://dx.doi.org/10.1111/j.1469-0691.2010.03441.x] [PMID: 21129102]
[5]
Dasaraju, P.V.; Liu, C. Infections of the respiratory system, Medical Microbiology, 4th ed; University of Texas Medical Branch at Galveston: Galveston, USA, 1996.
[6]
Aboubakr, H.A.; Sharafeldin, T.A.; Goyal, S.M. Stability of SARS‐CoV‐2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: A review. Transbound. Emerg. Dis., 2021, 68(2), 296-312.
[http://dx.doi.org/10.1111/tbed.13707] [PMID: 32603505]
[7]
Anand, A.V.; Balamuralikrishnan, B.; Kaviya, M.; Bharathi, K.; Parithathvi, A.; Arun, M.; Senthilkumar, N.; Velayuthaprabhu, S.; Saradhadevi, M.; Al-Dhabi, N.A.; Arasu, M.V.; Yatoo, M.I.; Tiwari, R.; Dhama, K. Medicinal plants, phytochemicals, and herbs to combat viral pathogens including SARS-CoV-2. Molecules, 2021, 26(6), 1775.
[http://dx.doi.org/10.3390/molecules26061775] [PMID: 33809963]
[8]
Adhikari, B.; Marasini, B.P.; Rayamajhee, B.; Bhattarai, B.R.; Lamichhane, G.; Khadayat, K.; Adhikari, A.; Khanal, S.; Parajuli, N. Potential roles of medicinal plants for the treatment of viral diseases focusing on COVID‐19: A review. Phytother. Res., 2021, 35(3), 1298-1312.
[http://dx.doi.org/10.1002/ptr.6893] [PMID: 33037698]
[9]
Tapparel, C.; Siegrist, F.; Petty, T.J.; Kaiser, L. Picornavirus and enterovirus diversity with associated human diseases. Infect. Genet. Evol., 2013, 14, 282-293.
[http://dx.doi.org/10.1016/j.meegid.2012.10.016] [PMID: 23201849]
[10]
Poovorawan, Y.; Pyungporn, S.; Prachayangprecha, S.; Makkoch, J. Global alert to avian influenza virus infection: From H5N1 to H7N9. Pathog. Glob. Health, 2013, 107(5), 217-223.
[http://dx.doi.org/10.1179/2047773213Y.0000000103] [PMID: 23916331]
[11]
Gasparini, R.; Amicizia, D.; Lai, P.L.; Panatto, D. Clinical and socioeconomic impact of seasonal and pandemic influenza in adults and the elderly. Hum. Vaccin. Immunother., 2012, 8(1), 21-28.
[http://dx.doi.org/10.4161/hv.8.1.17622] [PMID: 22252007]
[12]
Rüdiger, S.; Plietzsch, A.; Sagués, F.; Sokolov, I.M.; Kurths, J. Epidemics with mutating infectivity on small-world networks. Sci. Rep., 2020, 10(1), 5919.
[http://dx.doi.org/10.1038/s41598-020-62597-5] [PMID: 32246023]
[13]
Kilbourne, E.D. Influenza pandemics of the 20th century. Emerg. Infect. Dis., 2006, 12(1), 9-14.
[http://dx.doi.org/10.3201/eid1201.051254] [PMID: 16494710]
[14]
Pizzorno, A.; Padey, B.; Terrier, O.; Rosa-Calatrava, M. Drug repurposing approaches for the treatment of influenza viral infection: reviving old drugs to fight against a long-lived enemy. Front. Immunol., 2019, 10, 531.
[http://dx.doi.org/10.3389/fimmu.2019.00531] [PMID: 30941148]
[15]
Kamali, A.; Holodniy, M. Influenza treatment and prophylaxis with neuraminidase inhibitors: a review. Infect. Drug Resist., 2013, 6, 187-198.
[PMID: 24277988]
[16]
Mahony, J.B. Detection of respiratory viruses by molecular methods. Clin. Microbiol. Rev., 2008, 21(4), 716-747.
[http://dx.doi.org/10.1128/CMR.00037-07] [PMID: 18854489]
[17]
Piedimonte, G.; Perez, M.K. Respiratory syncytial virus infection and bronchiolitis. Pediatr. Rev., 2014, 35(12), 519-530.
[http://dx.doi.org/10.1542/pir.35.12.519] [PMID: 25452661]
[18]
Oshansky, C.M.; Barber, J.P.; Crabtree, J.; Tripp, R.A. Respiratory syncytial virus F and G proteins induce interleukin 1α, CC, and CXC chemokine responses by normal human bronchoepithelial cells. J. Infect. Dis., 2010, 201(8), 1201-1207.
[http://dx.doi.org/10.1086/651431] [PMID: 20205592]
[19]
Domachowske, J.B.; Rosenberg, H.F. Respiratory syncytial virus infection: immune response, immunopathogenesis, and treatment. Clin. Microbiol. Rev., 1999, 12(2), 298-309.
[http://dx.doi.org/10.1128/CMR.12.2.298] [PMID: 10194461]
[20]
Royston, L.; Tapparel, C. Rhinoviruses and respiratory enteroviruses: not as simple as ABC. Viruses, 2016, 8(1), 16.
[http://dx.doi.org/10.3390/v8010016] [PMID: 26761027]
[21]
Kelly, J.T.; Busse, W.W. Host immune responses to rhinovirus: Mechanisms in asthma. J. Allergy Clin. Immunol., 2008, 122(4), 671-682.
[http://dx.doi.org/10.1016/j.jaci.2008.08.013] [PMID: 19014757]
[22]
Miller, E.K. New human rhinovirus species and their significance in asthma exacerbation and airway remodeling. Immunol. Allergy Clin. North Am., 2010, 30(4), 541-552. vii.
[http://dx.doi.org/10.1016/j.iac.2010.08.007] [PMID: 21029937]
[23]
Magden, J.; Kääriäinen, L.; Ahola, T. Inhibitors of virus replication: recent developments and prospects. Appl. Microbiol. Biotechnol., 2005, 66(6), 612-621.
[http://dx.doi.org/10.1007/s00253-004-1783-3] [PMID: 15592828]
[24]
Sharma, M.; Arnason, J.T.; Burt, A.; Hudson, J.B.; Derivatives, T.E.N.P. Echinacea extracts modulate the pattern of chemokine and cytokine secretion in rhinovirus-infected and uninfected epithelial cells. Phytother. Res., 2006, 20(2), 147-152.
[http://dx.doi.org/10.1002/ptr.1824] [PMID: 16444669]
[25]
Senchina, D.; Wu, L.; Flinn, G.; Konopka, D.; McCoy, J.A.; Widrelechner, M.; Wurtele, E.; Kohut, M. Year-and-a-half old, dried Echina-cea roots retain cytokine-modulating capabilities in an in vitro human older adult model of influenza vaccination. Planta Med., 2006, 72(13), 1207-1215.
[http://dx.doi.org/10.1055/s-2006-947254] [PMID: 17021999]
[26]
Vickers, N.J. Animal communication: When i’m calling you, will you answer too? Curr. Biol., 2017, 27(14), R713-R715.
[http://dx.doi.org/10.1016/j.cub.2017.05.064] [PMID: 28743020]
[27]
Lin, T.J.; Wang, K.C.; Lin, C.C.; Chiang, L.C.; Chang, J.S. Antiviral activity of water extract of Paeonia lactiflora pallas against human respiratory syncytial virus in human respiratory tract cell lines. Am. J. Chin. Med., 2013, 41(3), 585-599.
[http://dx.doi.org/10.1142/S0192415X13500419] [PMID: 23711143]
[28]
Vimalanathan, S.; Schoop, R.; Hudson, J. High-potency anti-influenza therapy by a combination of Echinacea purpurea fresh herb and root tinctures. J. Appl. Pharm. Sci., 2013, 3(12), 001-005.
[29]
Pleschka, S.; Stein, M.; Schoop, R.; Hudson, J.B. Anti-viral properties and mode of action of standardized Echinacea purpurea extract against highly pathogenic avian Influenza virus (H5N1, H7N7) and swine-origin H1N1 (S-OIV). Virol. J., 2009, 6(1), 197.
[http://dx.doi.org/10.1186/1743-422X-6-197] [PMID: 19912623]
[30]
Vimalanathan, S.; Kang, L.; Amiguet, V.T.; Livesey, J.; Arnason, J.T.; Hudson, J. Echinacea purpurea. aerial parts contain multiple antiviral compounds. Pharm. Biol., 2005, 43(9), 740-745.
[http://dx.doi.org/10.1080/13880200500406354]
[31]
Fusco, D.; Liu, X.; Savage, C.; Taur, Y.; Xiao, W.; Kennelly, E.; Yuan, J.; Cassileth, B.; Salvatore, M.; Papanicolaou, G.A. Echinacea purpurea aerial extract alters course of influenza infection in mice. Vaccine, 2010, 28(23), 3956-3962.
[http://dx.doi.org/10.1016/j.vaccine.2010.03.047] [PMID: 20382242]
[32]
Wen, S.; Huifu, X.; Hao, H. In vitro anti-influenza A H1N1 effect of extract of Bupleuri radix. Immunopharmacol. Immunotoxicol., 2011, 33(3), 433-437.
[http://dx.doi.org/10.3109/08923973.2010.527985] [PMID: 21039315]
[33]
Michaelis, M.; Doerr, H.W.; Cinatl, J., Jr. Investigation of the influence of EPs® 7630, a herbal drug preparation from Pelargonium sidoides, on replication of a broad panel of respiratory viruses. Phytomedicine, 2011, 18(5), 384-386.
[http://dx.doi.org/10.1016/j.phymed.2010.09.008] [PMID: 21036571]
[34]
Theisen, L.L.; Muller, C.P. EPs® 7630 (Umckaloabo®), an extract from Pelargonium sidoides roots, exerts anti-influenza virus activity in vitro and in vivo. Antiviral Res., 2012, 94(2), 147-156.
[http://dx.doi.org/10.1016/j.antiviral.2012.03.006] [PMID: 22475498]
[35]
Pourghanbari, G.; Nili, H.; Moattari, A.; Mohammadi, A.; Iraji, A. Antiviral activity of the oseltamivir and Melissa officinalis L. essential oil against avian influenza A virus (H9N2). Virusdisease, 2016, 27(2), 170-178.
[http://dx.doi.org/10.1007/s13337-016-0321-0] [PMID: 27366768]
[36]
Shayeganmehr, A.; Vasfi Marandi, M.; Karimi, V.; Barin, A.; Ghalyanchilangeroudi, A. Zataria multiflora essential oil reduces replication rate of avian influenza virus (H9N2 subtype) in challenged broiler chicks. Br. Poult. Sci., 2018, 59(4), 389-395.
[http://dx.doi.org/10.1080/00071668.2018.1478064] [PMID: 29768944]
[37]
Ehrhardt, C.; Hrincius, E.; Korte, V.; Mazur, I.; Droebner, K.; Poetter, A.; Dreschers, S.; Schmolke, M.; Planz, O.; Ludwig, S. A polyphenol rich plant extract, CYSTUS052, exerts anti influenza virus activity in cell culture without toxic side effects or the tendency to induce viral resistance. Antiviral Res., 2007, 76(1), 38-47.
[http://dx.doi.org/10.1016/j.antiviral.2007.05.002] [PMID: 17572513]
[38]
Imanishi, N.; Andoh, T.; Mantani, N.; Sakai, S.; Terasawa, K.; Shimada, Y.; Sato, M.; Katada, Y.; Ueda, K.; Ochiai, H. Macrophage-mediated inhibitory effect of Zingiber officinale Rosc, a traditional oriental herbal medicine, on the growth of influenza A/Aichi/2/68 virus. Am. J. Chin. Med., 2006, 34(1), 157-169.
[http://dx.doi.org/10.1142/S0192415X06003722] [PMID: 16437748]
[39]
Yu, C.; Yan, Y.; Wu, X.; Zhang, B.; Wang, W.; Wu, Q. Anti-influenza virus effects of the aqueous extract from Mosla scabra. J. Ethnopharmacol., 2010, 127(2), 280-285.
[http://dx.doi.org/10.1016/j.jep.2009.11.008] [PMID: 19914366]
[40]
Yu, C.H.; Yu, W.Y.; Fang, J.; Zhang, H.H.; Ma, Y.; Yu, B.; Wu, F.; Wu, X.N. Mosla scabra flavonoids ameliorate the influenza A virus-induced lung injury and water transport abnormality via the inhibition of PRR and AQP signaling pathways in mice. J. Ethnopharmacol., 2016, 179, 146-155.
[http://dx.doi.org/10.1016/j.jep.2015.12.034] [PMID: 26719287]
[41]
Wu, Q.; Yu, C.; Yan, Y.; Chen, J.; Zhang, C.; Wen, X. Antiviral flavonoids from Mosla scabra. Fitoterapia, 2010, 81(5), 429-433.
[http://dx.doi.org/10.1016/j.fitote.2009.12.005] [PMID: 20006976]
[42]
Zhang, X.; Wu, Q.; Yan, Y.; Zhang, F. Inhibitory effects and related molecular mechanisms of total flavonoids in Mosla chinensis Maxim against H1N1 influenza virus. Inflamm. Res., 2018, 67(2), 179-189.
[http://dx.doi.org/10.1007/s00011-017-1109-4] [PMID: 29177921]
[43]
Zhang, R.; Ai, X.; Duan, Y.; Xue, M.; He, W.; Wang, C.; Xu, T.; Xu, M.; Liu, B.; Li, C.; Wang, Z.; Zhang, R.; Wang, G.; Tian, S.; Liu, H. Kaempferol ameliorates H9N2 swine influenza virus-induced acute lung injury by inactivation of TLR4/MyD88-mediated NF-κB and MAPK signaling pathways. Biomed. Pharmacother., 2017, 89, 660-672.
[http://dx.doi.org/10.1016/j.biopha.2017.02.081] [PMID: 28262619]
[44]
Dehghan-Noudeh, G.; Moshafi, M.H.; Ohadi, M.; Zaman-Basir, M.; Yazdanpanah, E.; Yusefian, S.; Sharififar, F. Antimutagenic activity of major fractions of Zataria multiflora Boiss by Ames method. Asian J. Pharm., 2015, 9(3), 195-199.
[http://dx.doi.org/10.4103/0973-8398.160316]
[45]
Hashemipour, M.A.; Lotfi, S.; Torabi, M.; Sharifi, F.; Ansari, M.; Ghassemi, A.; Sheikhshoaie, S. Evaluation of the effects of three plant species (Myrtus Communis L., Camellia Sinensis L., Zataria Multiflora Boiss.) on the healing process of intraoral ulcers in rats. J. Dent., 2017, 18(2), 127-135.
[PMID: 28620637]
[46]
Oxford, J.S.; Lambkin, R.; Guralnik, M.; Rosenbloom, R.A.; Petteruti, M.P.; DiGian, K.; LeFante, C. Preclinical in vitro activity of QR-435 against influenza A virus as a virucide and in paper masks for prevention of viral transmission. Am. J. Ther., 2007, 14(5), 455-461.
[http://dx.doi.org/10.1097/MJT.0b013e3180a6f9c2] [PMID: 17890935]
[47]
Xu, M.; Liu, B.; Wang, C.; Wang, G.; Tian, Y.; Wang, S.; Li, J.; Li, P.; Zhang, R.; Wei, D.; Tian, S.; Xu, T. Epigallocatechin-3-gallate inhibits TLR4 signaling through the 67-kDa laminin receptor and effectively alleviates acute lung injury induced by H9N2 swine influenza virus. Int. Immunopharmacol., 2017, 52, 24-33.
[http://dx.doi.org/10.1016/j.intimp.2017.08.023] [PMID: 28858723]
[48]
Kaihatsu, K.; Yamabe, M.; Ebara, Y. Antiviral mechanism of action of epigallocatechin-3-O-gallate and its fatty acid esters. Molecules, 2018, 23(10), 2475.
[http://dx.doi.org/10.3390/molecules23102475] [PMID: 30262731]
[49]
Song, J.M.; Lee, K.H.; Seong, B.L. Antiviral effect of catechins in green tea on influenza virus. Antiviral Res., 2005, 68(2), 66-74.
[http://dx.doi.org/10.1016/j.antiviral.2005.06.010] [PMID: 16137775]
[50]
Ide, K.; Kawasaki, Y.; Kawakami, K.; Yamada, H. Anti-influenza virus effects of catechins: A molecular and clinical review. Curr. Med. Chem., 2016, 23(42), 4773-4783.
[http://dx.doi.org/10.2174/0929867324666161123091010] [PMID: 27881069]
[51]
Ge, M.; Xiao, Y.; Chen, H.; Luo, F.; Du, G.; Zeng, F. Multiple antiviral approaches of (–)-epigallocatechin-3-gallate (EGCG) against porcine reproductive and respiratory syndrome virus infection in vitro. Antiviral Res., 2018, 158, 52-62.
[http://dx.doi.org/10.1016/j.antiviral.2018.07.012] [PMID: 30048655]
[52]
Yang, Z.F.; Bai, L.P.; Huang, W.; Li, X.Z.; Zhao, S.S.; Zhong, N.S.; Jiang, Z.H. Comparison of in vitro antiviral activity of tea polyphenols against influenza A and B viruses and structure–activity relationship analysis. Fitoterapia, 2014, 93, 47-53.
[http://dx.doi.org/10.1016/j.fitote.2013.12.011] [PMID: 24370660]
[53]
Bartak, M.; Lange, A.; Słonska, A.; Cymerys, J. Antiviral and healing potential of Sambucus nigra extracts. Bionatura, 2020, 5(3), 1264-1270.
[http://dx.doi.org/10.21931/RB/2020.05.03.18]
[54]
Choi, J.G.; Jin, Y.H.; Lee, H.; Oh, T.W.; Yim, N.H.; Cho, W.K.; Ma, J.Y. Protective effect of Panax notoginseng root water extract against influenza a virus infection by enhancing antiviral interferonmediated immune responses and natural killer cell activity. Front. Immunol., 2017, 8, 1542.
[http://dx.doi.org/10.3389/fimmu.2017.01542] [PMID: 29181006]
[55]
Roschek, B., Jr; Fink, R.C.; McMichael, M.D.; Li, D.; Alberte, R.S. Elderberry flavonoids bind to and prevent H1N1 infection in vitro. Phytochemistry, 2009, 70(10), 1255-1261.
[http://dx.doi.org/10.1016/j.phytochem.2009.06.003] [PMID: 19682714]
[56]
He, W.; Han, H.; Wang, W.; Gao, B. Anti-influenza virus effect of aqueous extracts from dandelion. Virol. J., 2011, 8(1), 538.
[http://dx.doi.org/10.1186/1743-422X-8-538] [PMID: 22168277]
[57]
Lee, S.M.Y.; Du, G-H. In vitro anti-influenza viral activities of constituents from Caesalpinia sappan. Planta, 2009, 75(4), 337-339.
[58]
Shin, H.B.; Choi, M.S.; Yi, C.M.; Lee, J.; Kim, N.J.; Inn, K.S. Inhibition of respiratory syncytial virus replication and virus-induced p38 kinase activity by berberine. Int. Immunopharmacol., 2015, 27(1), 65-68.
[http://dx.doi.org/10.1016/j.intimp.2015.04.045] [PMID: 25939536]
[59]
Jeong, H.J.; Kim, Y.M.; Kim, J.H.; Kim, J.Y.; Park, J.Y.; Park, S.J.; Ryu, Y.B.; Lee, W.S. Homoisoflavonoids from Caesalpinia sappan displaying viral neuraminidases inhibition. Biol. Pharm. Bull., 2012, 35(5), 786-790.
[http://dx.doi.org/10.1248/bpb.35.786] [PMID: 22687418]
[60]
Jiang, R.W.; Ma, S.C.; He, Z.D.; Huang, X.S.; But, P.P.H.; Wang, H.; Chan, S.P.; Ooi, V.E.C.; Xu, H.X.; Mak, T.C.W. Molecular structures and antiviral activities of naturally occurring and modified cassane furanoditerpenoids and friedelane triterpenoids from Caesalpinia minax. Bioorg. Med. Chem., 2002, 10(7), 2161-2170.
[http://dx.doi.org/10.1016/S0968-0896(02)00072-X] [PMID: 11983512]
[61]
Mahmoudvand, H.; Sharififar, F.; Sharifi, I.; Ezatpour, B.; Harandi, M.F.; Makki, M.S.; Naser, Z.A.; Jahanbakhsh, S., In vitro inhibitory effect of Berberis vulgaris (Berberidaceae) and its main component, berberine against different Leishmania species. Iran. J. Parasitol., 2014, 9(1), 28.
[PMID: 25642257]
[62]
Mahmoudvand, H.; Saedi Dezaki, E.; Sharififar, F.; Ezatpour, B.; Jahanbakhsh, S.; Fasihi Harandi, M. Protoscolecidal effect of Berberis vulgaris root extract and its main compound, berberine in cystic echinococcosis. Iran. J. Parasitol., 2014, 9(4), 503-510.
[PMID: 25759731]
[63]
Mahmoudvand, H.; Sharififar, F.; Rahmat, M.S.; Tavakoli, R.; Dezaki, E.S.; Jahanbakhsh, S.; Sharifi, I. Evaluation of antileishmanial activity and cytotoxicity of the extracts of Berberis vulgaris and Nigella sativa against Leishmania tropica. J. Vector Borne Dis., 2014, 51(4), 294-299.
[PMID: 25540961]
[64]
Dao, T.T.; Nguyen, P.H.; Lee, H.S.; Kim, E.; Park, J.; Lim, S.I.; Oh, W.K. Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata. Bioorg. Med. Chem. Lett., 2011, 21(1), 294-298.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.016] [PMID: 21123068]
[65]
Grienke, U.; Braun, H.; Seidel, N.; Kirchmair, J.; Richter, M.; Krumbholz, A.; von Grafenstein, S.; Liedl, K.R.; Schmidtke, M.; Rollinger, J.M. Computer-guided approach to access the anti-influenza activity of licorice constituents. J Nat Prod, 2014, 77(3), 563-570.
[66]
Liu, Y.; Tong, J.; Tong, Y.; Li, P.; Cui, X.; Cao, H. In vitro antiinfluenza virus effect of total flavonoid from Trollius ledebouri Reichb. J. Int. Med. Res., 2018, 46(4), 1380-1390.
[http://dx.doi.org/10.1177/0300060517750284] [PMID: 29444614]
[67]
Lin, C.; Lin, H.J.; Chen, T.H.; Hsu, Y.A.; Liu, C.S.; Hwang, G.Y.; Wan, L. Polygonum cuspidatum and its active components inhibit replication of the influenza virus through toll-like receptor 9-induced interferon beta expression. PLoS One, 2015, 10(2), e0117602.
[http://dx.doi.org/10.1371/journal.pone.0117602] [PMID: 25658356]
[68]
Palamara, A.; Nencioni, L.; Aquilano, K.; De Chiara, G.; Hernandez, L.; Cozzolino, F.; Ciriolo, M.; Garaci, E. Resveratrol inhibits Influenza A virus replication in vitro and in vivo. J. Infect. Dis., 2005, 191, 1719-1729.
[http://dx.doi.org/10.1086/429694] [PMID: 15838800]
[69]
Haidari, M.; Ali, M.; Ward Casscells, S., III; Madjid, M. Pomegranate (Punica granatum) purified polyphenol extract inhibits influenza virus and has a synergistic effect with oseltamivir. Phytomedicine, 2009, 16(12), 1127-1136.
[http://dx.doi.org/10.1016/j.phymed.2009.06.002] [PMID: 19586764]
[70]
Song, J.H.; Choi, H.J. Silymarin efficacy against influenza A virus replication. Phytomedicine, 2011, 18(10), 832-835.
[http://dx.doi.org/10.1016/j.phymed.2011.01.026] [PMID: 21377857]
[71]
Pan, Q.M.; Li, Y.H.; Hua, J.; Huang, F.P.; Wang, H.S.; Liang, D. Antiviral matrine-type alkaloids from the rhizomes of Sophora tonkinensis. J. Nat. Prod., 2015, 78(7), 1683-1688.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00325] [PMID: 26132528]
[72]
Wu, W.; Li, R.; Li, X.; He, J.; Jiang, S.; Liu, S.; Yang, J. Quercetin as an antiviral agent inhibits influenza A virus (IAV) entry. Viruses, 2015, 8(1), 6.
[http://dx.doi.org/10.3390/v8010006] [PMID: 26712783]
[73]
Chen, X.; Wang, Z.; Yang, Z.; Wang, J.; Xu, Y.; Tan, R.; Li, E. Houttuynia cordata blocks HSV infection through inhibition of NF-κB activation. Antiviral Res., 2011, 92(2), 341-345.
[http://dx.doi.org/10.1016/j.antiviral.2011.09.005] [PMID: 21951655]
[74]
Ding, Y.; Cao, Z.; Cao, L.; Ding, G.; Wang, Z.; Xiao, W. Antiviral activity of chlorogenic acid against influenza A (H1N1/H3N2) virus and its inhibition of neuraminidase. Sci. Rep., 2017, 7(1), 45723.
[http://dx.doi.org/10.1038/srep45723] [PMID: 28393840]
[75]
Guan, W.; Li, J.; Chen, Q.; Jiang, Z.; Zhang, R.; Wang, X.; Yang, Z.; Pan, X. Pterodontic acid isolated from laggera pterodonta inhibits viral replication and inflammation induced by influenza A virus. Molecules, 2017, 22(10), 1738.
[http://dx.doi.org/10.3390/molecules22101738] [PMID: 29035328]
[76]
Zhang, X.; He, J.; Huang, W.; Huang, H.; Zhang, Z.; Wang, J.; Yang, L.; Wang, G.; Wang, Y.; Li, Y. Antiviral activity of the sesquiterpene lactones from centipeda minima against influenza a virus in vitro. Natural Product Communications, 2018, 13(2), 115-119.
[77]
Sun, Z.; Yu, C.; Wang, W.; Yu, G.; Zhang, T.; Zhang, L.; Zhang, J.; Wei, K. Aloe Polysaccharides inhibit influenza a virus infection-a promising natural anti-flu drug. Front. Microbiol., 2018, 9, 2338.
[http://dx.doi.org/10.3389/fmicb.2018.02338] [PMID: 30319596]
[78]
Aggarwal, M.; Leser, G.P.; Lamb, R.A. Repurposing papaverine as an antiviral agent against influenza viruses and paramyxoviruses. J. Virol., 2020, 94(6), e01888-19.
[http://dx.doi.org/10.1128/JVI.01888-19] [PMID: 31896588]
[79]
Li, J.; Yang, X.; Huang, L. Anti-Influenza virus activity and constituents characterization of Paeonia delavayi extracts. Molecules, 2016, 21(9), 1133.
[http://dx.doi.org/10.3390/molecules21091133] [PMID: 27571059]
[80]
Zhang, T.; Lo, C.Y.; Xiao, M.; Cheng, L.; Pun Mok, C.K.; Shaw, P.C. Anti-influenza virus phytochemicals from Radix Paeoniae Alba and characterization of their neuraminidase inhibitory activities. J. Ethnopharmacol., 2020, 253, 112671.
[http://dx.doi.org/10.1016/j.jep.2020.112671] [PMID: 32081739]
[81]
Zhong, M.; Wang, H.Q.; Yan, H.Y.; Wu, S.; Gu, Z.Y.; Li, Y.H. Santin inhibits influenza A virus replication through regulating MAPKs and NF-κB pathways. J. Asian Nat. Prod. Res., 2019, 21(12), 1205-1214.
[http://dx.doi.org/10.1080/10286020.2018.1520221] [PMID: 30417663]
[82]
Talactac, M.R.; Chowdhury, M.Y.E.; Park, M.E.; Weeratunga, P.; Kim, T.H.; Cho, W.K.; Kim, C.J.; Ma, J.Y.; Lee, J.S. Antiviral effects of novel herbal medicine KIOM-C, on diverse viruses. PLoS One, 2015, 10(5), e0125357.
[http://dx.doi.org/10.1371/journal.pone.0125357] [PMID: 25942440]
[83]
Umar, S.; Shah, M.A.A.; Munir, M.T.; Yaqoob, M.; Fiaz, M.; Anjum, S.; Kaboudi, K.; Bouzouaia, M.; Younus, M.; Nisa, Q.; Iqbal, M.; Umar, W. RETRACTED: Synergistic effects of thymoquinone and curcumin on immune response and anti-viral activity against avian influenza virus (H9N2) in turkeys. Poult. Sci., 2016, 95(7), 1513-1520.
[http://dx.doi.org/10.3382/ps/pew069] [PMID: 26944958]
[84]
Zandi, K.; Teoh, B.T.; Sam, S.S.; Wong, P.F.; Mustafa, M.R.; Abu-Bakar, S. Novel antiviral activity of baicalein against dengue virus. BMC Complement. Altern. Med., 2012, 12(1), 214.
[http://dx.doi.org/10.1186/1472-6882-12-214] [PMID: 23140177]
[85]
Xu, H.; He, L.; Chen, J.; Hou, X.; Fan, F.; Wu, H.; Zhu, H.; Guo, Y. Different types of effective fractions from Radix Isatidis revealed a multiple-target synergy effect against respiratory syncytial virus through RIG-I and MDA5 signaling pathways, a pilot study to testify the theory of superposition of traditional Chinese medicine efficacy. J. Ethnopharmacol., 2019, 239, 111901.
[http://dx.doi.org/10.1016/j.jep.2019.111901] [PMID: 31051218]
[86]
Shi, H.; Ren, K.; Lv, B.; Zhang, W.; Zhao, Y.; Tan, R.X.; Li, E. Baicalin from Scutellaria baicalensis blocks Respiratory Syncytial Virus (RSV) infection and reduces inflammatory cell infiltration and lung injury in mice. Sci. Rep., 2016, 6(1), 35851.
[http://dx.doi.org/10.1038/srep35851] [PMID: 27767097]
[87]
Ma, L.Y.; Ma, S.C.; Wei, F.; Lin, R.C.; But, P.P.H.; Lee, S.H.S.; Lee, S.F.; Uncinoside, A. Uncinoside A and B, two new antiviral chromone glycosides from Selaginella uncinata. Chem. Pharm. Bull., 2003, 51(11), 1264-1267.
[http://dx.doi.org/10.1248/cpb.51.1264] [PMID: 14600370]
[88]
Huang, W.; Zhang, X.; Wang, Y.; Ye, W.; Ooi, V.E.C.; Chung, H.Y.; Li, Y. Antiviral biflavonoids from Radix wikstroemiae (Liaogewanggen). Chin. Med., 2010, 5(1), 23.
[http://dx.doi.org/10.1186/1749-8546-5-23] [PMID: 20565950]
[89]
Ho, W.S.; Xue, J.Y.; Sun, S.S.M.; Ooi, V.E.C.; Li, Y.L. Antiviral activity of daphnoretin isolated from Wikstroemia indica. Phytother. Res., 2010, 24(5), 657-661.
[http://dx.doi.org/10.1002/ptr.2935] [PMID: 19610034]
[90]
Zang, N.; Xie, X.; Deng, Y.; Wu, S.; Wang, L.; Peng, C.; Li, S.; Ni, K.; Luo, Y.; Liu, E. Resveratrol-mediated gamma interferon reduction prevents airway inflammation and airway hyperresponsiveness in respiratory syncytial virus-infected immunocompromised mice. J. Virol., 2011, 85(24), 13061-13068.
[http://dx.doi.org/10.1128/JVI.05869-11] [PMID: 21937650]
[91]
Esimone, C.O.; Eck, G.; Duong, T.N.; Überla, K.; Proksch, P.; Grunwald, T. Potential anti-respiratory syncytial virus lead compounds from Aglaia species. Pharmazie, 2008, 63(10), 768-773.
[PMID: 18972843]
[92]
But, P.P.H.; He, Z.D.; Ma, S.C.; Chan, Y.M.; Shaw, P.C.; Ye, W.C.; Jiang, R.W. Antiviral constituents against respiratory viruses from Mikania micrantha. J. Nat. Prod., 2009, 72(5), 925-928.
[http://dx.doi.org/10.1021/np800542t] [PMID: 19267453]
[93]
Ojwang, J.O.; Wang, Y.H.; Wyde, P.R.; Fischer, N.H.; Schuehly, W.; Appleman, J.R.; Hinds, S.; Shimasaki, C.D. A novel inhibitor of respiratory syncytial virus isolated from ethnobotanicals. Antiviral Res., 2005, 68(3), 163-172.
[http://dx.doi.org/10.1016/j.antiviral.2005.09.003] [PMID: 16280176]
[94]
Li, Y.; But, P.P.H.; Ooi, V.E.C. Antiviral activity and mode of action of caffeoylquinic acids from Schefflera heptaphylla (L.) Frodin. Antiviral Res., 2005, 68(1), 1-9.
[http://dx.doi.org/10.1016/j.antiviral.2005.06.004] [PMID: 16140400]
[95]
Xu, J.J.; Liu, Z.; Tang, W.; Wang, G.C.; Chung, H.Y.; Liu, Q.Y.; Zhuang, L.; Li, M.M.; Li, Y.L. Tangeretin from citrus reticulate inhibits respiratory syncytial virus replication and associated inflammation in vivo. J. Agric. Food Chem., 2015, 63(43), 9520-9527.
[http://dx.doi.org/10.1021/acs.jafc.5b03482] [PMID: 26468759]
[96]
Feng Yeh, C.; Chih Wang, K.; Chai Chiang, L.; Shieh, D.E.; Hong Yen, M.; San Chang, J. Water extract of licorice had anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J. Ethnopharmacol., 2013, 148(2), 466-473.
[http://dx.doi.org/10.1016/j.jep.2013.04.040] [PMID: 23643542]
[97]
Yeh, C.F.; Chang, J.S.; Wang, K.C.; Shieh, D.E.; Chiang, L.C. Water extract of Cinnamomum cassia Blume inhibited human respiratory syncytial virus by preventing viral attachment, internalization, and syncytium formation. J. Ethnopharmacol., 2013, 147(2), 321-326.
[http://dx.doi.org/10.1016/j.jep.2013.03.010] [PMID: 23518419]
[98]
Ma, S.C.; Du, J.; But, P.P.H.; Deng, X.L.; Zhang, Y.W.; Ooi, V.E.C.; Xu, H.X.; Lee, S.H.S.; Lee, S.F. Antiviral Chinese medicinal herbs against respiratory syncytial virus. J. Ethnopharmacol., 2002, 79(2), 205-211.
[http://dx.doi.org/10.1016/S0378-8741(01)00389-0] [PMID: 11801383]
[99]
Chen, R.F.; Lee, C.Y. Adenoviruses types, cell receptors and local innate cytokines in adenovirus infection. Int. Rev. Immunol., 2014, 33(1), 45-53.
[http://dx.doi.org/10.3109/08830185.2013.823420] [PMID: 24127823]
[100]
Payne, S. Family coronaviridae. Viruses, 2017, 149-158. PMCID = PMC 7149805.
[101]
Choi, K.H. Viral polymerases, Viral Molecular Machines; Springer, 2012, pp. 267-304.
[http://dx.doi.org/10.1007/978-1-4614-0980-9_12]
[102]
Chan, J.F.W.; Yuan, S.; Kok, K.H.; To, K.K.W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.Y.; Poon, R.W.S.; Tsoi, H.W.; Lo, S.K.F.; Chan, K.H.; Poon, V.K.M.; Chan, W.M.; Ip, J.D.; Cai, J.P.; Cheng, V.C.C.; Chen, H.; Hui, C.K.M.; Yuen, K.Y. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet, 2020, 395(10223), 514-523.
[http://dx.doi.org/10.1016/S0140-6736(20)30154-9] [PMID: 31986261]
[103]
Yang, Y.; Peng, F.; Wang, R.; Guan, K.; Jiang, T.; Xu, G.; Sun, J.; Chang, C.; Chang, C. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J. Autoimmun., 2020, 109, 102434.
[http://dx.doi.org/10.1016/j.jaut.2020.102434] [PMID: 32143990]
[104]
Abed, Y.; Boivin, G. Treatment of respiratory virus infections. Antiviral Res., 2006, 70(2), 1-16.
[http://dx.doi.org/10.1016/j.antiviral.2006.01.006] [PMID: 16513187]
[105]
Zhao, G. SARS molecular epidemiology: a Chinese fairy tale of controlling an emerging zoonotic disease in the genomics era. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2007, 362(1482), 1063-1081.
[http://dx.doi.org/10.1098/rstb.2007.2034] [PMID: 17327210]
[106]
Ren, S.Y.; Wang, W.B.; Hao, Y.G.; Zhang, H.R.; Wang, Z.C.; Chen, Y.L.; Gao, R.D. WJCC. WORLD, 2020, 8(4), 652-657.
[107]
Castro, F.; Cardoso, A.P.; Gonçalves, R.M.; Serre, K.; Oliveira, M.J. Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front. Immunol., 2018, 9, 847.
[http://dx.doi.org/10.3389/fimmu.2018.00847] [PMID: 29780381]
[108]
Yamai, M.; Tsumura, K.; Kimura, M.; Fukuda, S.; Murakami, T.; Kimura, Y. Antiviral activity of a hot water extract of black soybean against a human respiratory illness virus. Biosci. Biotechnol. Biochem., 2003, 67(5), 1071-1079.
[http://dx.doi.org/10.1271/bbb.67.1071] [PMID: 12834285]
[109]
Gauntt, C.J.; Wood, H.J.; McDaniel, H.R.; McAnalley, B.H. Aloe polymannose enhances anti-coxsackievirus antibody titres in mice. Phytother. Res., 2000, 14(4), 261-266.
[http://dx.doi.org/10.1002/1099-1573(200006)14:4<261::AID-PTR579>3.0.CO;2-A] [PMID: 10861969]
[110]
Edziri, H.L.; Smach, M.A.; Ammar, S.; Mahjoub, M.A.; Mighri, Z.; Aouni, M.; Mastouri, M. Antioxidant, antibacterial, and antiviral effects of Lactuca sativa extracts. Ind. Crops Prod., 2011, 34(1), 1182-1185.
[http://dx.doi.org/10.1016/j.indcrop.2011.04.003]
[111]
Wang, J.; Chen, X.; Wang, W.; Zhang, Y.; Yang, Z.; Jin, Y.; Ge, H.M.; Li, E.; Yang, G. Glycyrrhizic acid as the antiviral component of Glycyrrhiza uralensis Fisch. against coxsackievirus A16 and enterovirus 71 of hand foot and mouth disease. J. Ethnopharmacol., 2013, 147(1), 114-121.
[http://dx.doi.org/10.1016/j.jep.2013.02.017] [PMID: 23454684]
[112]
Zhang, H.; Song, Y.; Zhang, Z. Glycyrrhizin administration ameliorates coxsackievirus B3-induced myocarditis in mice. Am. J. Med. Sci., 2012, 344(3), 206-210.
[http://dx.doi.org/10.1097/MAJ.0b013e31823e2867] [PMID: 22197982]
[113]
Chiang, L.C.; Ng, L.T.; Cheng, P.W.; Chiang, W.; Lin, C.C. Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clin. Exp. Pharmacol. Physiol., 2005, 32(10), 811-816.
[http://dx.doi.org/10.1111/j.1440-1681.2005.04270.x] [PMID: 16173941]
[114]
Cheng, P.W.; Chiang, L.C.; Yen, M.H.; Lin, C.C. Bupleurum kaoi inhibits Coxsackie B virus type 1 infection of CCFS-1 cells by induction of type I interferons expression. Food Chem. Toxicol., 2007, 45(1), 24-31.
[http://dx.doi.org/10.1016/j.fct.2006.06.007] [PMID: 17052829]
[115]
Choi, H.J.; Lim, C.H.; Song, J.H.; Baek, S.H.; Kwon, D.H. Antiviral activity of raoulic acid from Raoulia australis against Picornaviruses. Phytomedicine, 2009, 16(1), 35-39.
[http://dx.doi.org/10.1016/j.phymed.2008.10.012] [PMID: 19097770]
[116]
Ma, S.G.; Gao, R.M.; Li, Y.H.; Jiang, J.D.; Gong, N.B.; Li, L.; Lü, Y.; Tang, W.Z.; Liu, Y.B.; Qu, J.; Lü, H.N.; Li, Y.; Yu, S.S. Antiviral spirooliganones A and B with unprecedented skeletons from the roots of Illicium oligandrum. Org. Lett., 2013, 15(17), 4450-4453.
[http://dx.doi.org/10.1021/ol401992s] [PMID: 23937631]
[117]
Karoly, P.; Ruehlman, L.S. Psychological “resilience” and its correlates in chronic pain: Findings from a national community sample. Pain, 2006, 123(1), 90-97.
[http://dx.doi.org/10.1016/j.pain.2006.02.014] [PMID: 16563626]
[118]
Chiang, L.C.; Chiang, W.; Chang, M.Y.; Ng, L.T.; Lin, C.C. Antiviral activity of Plantago major extracts and related compounds in vitro. Antiviral Res., 2002, 55(1), 53-62.
[http://dx.doi.org/10.1016/S0166-3542(02)00007-4] [PMID: 12076751]
[119]
Liu, L.; Wei, F.; Qu, Z.; Wang, S.; Chen, G.; Gao, H.; Zhang, H.; Shang, L.; Yuan, X.; Wang, Y. The antiadenovirus activities of cinnamaldehyde in vitro. Lab. Med., 2009, 40(11), 669-674.
[http://dx.doi.org/10.1309/LMF0U47XNDKBZTRQ]
[120]
Chiang, L.C.; Chiang, W.; Chang, M.Y.; Lin, C.C. In vitro cytotoxic, antiviral and immunomodulatory effects of Plantago major and Plantago asiatica. Am. J. Chin. Med., 2003, 31(2), 225-234.
[http://dx.doi.org/10.1142/S0192415X03000874] [PMID: 12856861]
[121]
Yu, M.S.; Lee, J.; Lee, J.M.; Kim, Y.; Chin, Y.W.; Jee, J.G.; Keum, Y.S.; Jeong, Y.J. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg. Med. Chem. Lett., 2012, 22(12), 4049-4054.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.081] [PMID: 22578462]
[122]
Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J.Y.; Kim, D.; Naguyen, T.T.H.; Park, S.J.; Chang, J.S.; Park, K.H.; Rho, M.C.; Lee, W.S. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorg. Med. Chem., 2010, 18(22), 7940-7947.
[http://dx.doi.org/10.1016/j.bmc.2010.09.035] [PMID: 20934345]
[123]
Zhuang, M.; Jiang, H.; Suzuki, Y.; Li, X.; Xiao, P.; Tanaka, T.; Ling, H.; Yang, B.; Saitoh, H.; Zhang, L. Procyanidins and butanol extract of cinnamomi cortex inhibit SARS-CoV infection. Antiviral Res, 2009, 82(1), 73-81.
[124]
Walters, W.P. Going further than lipinski’s rule in drug design. Expert Opin. Drug Discov., 2012, 7(2), 99-107.
[http://dx.doi.org/10.1517/17460441.2012.648612] [PMID: 22468912]
[125]
Ho, T.; Wu, S.; Chen, J.; Li, C.; Hsiang, C. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res., 2007, 74(2), 92-101.
[http://dx.doi.org/10.1016/j.antiviral.2006.04.014] [PMID: 16730806]
[126]
Li, S.; Chen, C.; Zhang, H.; Guo, H.; Wang, H.; Wang, L.; Zhang, X.; Hua, S.; Yu, J.; Xiao, P.; Li, R.S.; Tan, X. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res., 2005, 67(1), 18-23.
[http://dx.doi.org/10.1016/j.antiviral.2005.02.007] [PMID: 15885816]
[127]
Cheng, P.W.; Ng, L.T.; Chiang, L.C.; Lin, C.C. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin. Exp. Pharmacol. Physiol., 2006, 33(7), 612-616.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04415.x] [PMID: 16789928]
[128]
Chen, C.J.; Michaelis, M.; Hsu, H.K.; Tsai, C.C.; Yang, K.D.; Wu, Y.C.; Cinatl, J., Jr; Doerr, H.W. Toona sinensis Roem tender leaf extract inhibits SARS coronavirus replication. J. Ethnopharmacol., 2008, 120(1), 108-111.
[http://dx.doi.org/10.1016/j.jep.2008.07.048] [PMID: 18762235]
[129]
Wen, C.C.; Kuo, Y.H.; Jan, J.T.; Liang, P.H.; Wang, S.Y.; Liu, H.G.; Lee, C.K.; Chang, S.T.; Kuo, C.J.; Lee, S.S.; Hou, C.C.; Hsiao, P.W.; Chien, S.C.; Shyur, L.F.; Yang, N.S. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem., 2007, 50(17), 4087-4095.
[http://dx.doi.org/10.1021/jm070295s] [PMID: 17663539]
[130]
Zahedipour, F.; Hosseini, S.A.; Sathyapalan, T.; Majeed, M.; Jamialahmadi, T.; Al-Rasadi, K.; Banach, M.; Sahebkar, A. Potential effects of curcumin in the treatment of COVID‐19 infection. Phytother. Res., 2020, 34(11), 2911-2920.
[http://dx.doi.org/10.1002/ptr.6738] [PMID: 32430996]
[131]
Russo, M.; Moccia, S.; Spagnuolo, C.; Tedesco, I.; Russo, G.L. Roles of flavonoids against coronavirus infection. Chem. Biol. Interact., 2020, 328, 109211.
[http://dx.doi.org/10.1016/j.cbi.2020.109211] [PMID: 32735799]
[132]
Nicolussi, S.; Ardjomand-Woelkart, K.; Stange, R.; Gancitano, G.; Klein, P.; Ogal, M. Echinacea as a potential force against coronavirus infections? a mini-review of randomized controlled trials in adults and children. Microorganisms, 2022, 10(2), 211.
[http://dx.doi.org/10.3390/microorganisms10020211] [PMID: 35208665]
[133]
Sharma, M.; Anderson, S.A.; Schoop, R.; Hudson, J.B. Induction of multiple pro-inflammatory cytokines by respiratory viruses and reversal by standardized Echinacea, a potent antiviral herbal extract. Antiviral Res., 2009, 83(2), 165-170.
[http://dx.doi.org/10.1016/j.antiviral.2009.04.009] [PMID: 19409931]
[134]
Glatthaar-Saalmüller, B.; Sacher, F.; Esperester, A. Antiviral activity of an extract derived from roots of Eleutherococcus senticosus. Antiviral Res., 2001, 50(3), 223-228.
[http://dx.doi.org/10.1016/S0166-3542(01)00143-7] [PMID: 11397509]
[135]
Vimalanathan, S.; Shehata, M.; Sadasivam, K.; Delbue, S.; Dolci, M.; Pariani, E.; D’Alessandro, S.; Pleschka, S. Broad antiviral effects of Echinacea purpurea against SARS-CoV-2 variants of concern and potential mechanism of action BioRxiv, 2021.
[http://dx.doi.org/10.1101/2021.12.12.472255]
[136]
Vimalanathan, S.; Schoop, R.; Suter, A.; Hudson, J. Prevention of influenza virus induced bacterial superinfection by standardized Echinacea purpurea, via regulation of surface receptor expression in human bronchial epithelial cells. Virus Res., 2017, 233, 51-59.
[http://dx.doi.org/10.1016/j.virusres.2017.03.006] [PMID: 28279802]
[137]
Wang, L.; Yang, R.; Yuan, B.; Liu, Y.; Liu, C. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm. Sin. B, 2015, 5(4), 310-315.
[http://dx.doi.org/10.1016/j.apsb.2015.05.005] [PMID: 26579460]
[138]
Huan, C.; Xu, Y.; Zhang, W.; Guo, T.; Pan, H.; Gao, S. Research progress on the antiviral activity of glycyrrhizin and its derivatives in liquorice. Front. Pharmacol., 2021, 12, 680674.
[http://dx.doi.org/10.3389/fphar.2021.680674] [PMID: 34295250]
[139]
Hudson, J.; Vimalanathan, S. Echinacea-A source of potent antivirals for respiratory virus infections. Pharmaceuticals, 2011, 4(7), 1019-1031.
[http://dx.doi.org/10.3390/ph4071019]
[140]
Xu, J.; Xu, Z.; Zheng, W. A review of the antiviral role of green tea catechins. Molecules, 2017, 22(8), 1337.
[http://dx.doi.org/10.3390/molecules22081337] [PMID: 28805687]
[141]
Ooi, L.S.M.; Wang, H.; Luk, C.W.; Ooi, V.E.C. Anticancer and antiviral activities of Youngia japonica (L.) DC (Asteraceae, Compositae). J. Ethnopharmacol., 2004, 94(1), 117-122.
[http://dx.doi.org/10.1016/j.jep.2004.05.004] [PMID: 15261971]
[142]
Lee, N.K.; Lee, J.H.; Lim, S.M.; Lee, K.A.; Kim, Y.B.; Chang, P.S.; Paik, H.D. Short communication: Antiviral activity of subcritical water extract of Brassica juncea against influenza virus A/H1N1 in nonfat milk. J. Dairy Sci., 2014, 97(9), 5383-5386.
[http://dx.doi.org/10.3168/jds.2014-8016] [PMID: 25022686]
[143]
Kirchmair, A.; Liedl, R.; Rollinger, M.; Spitzer, M. Development of anti-viral agents using molecular modeling and virtual screening techniques. Infect Disord Drug Targets, 2020, 11(1), 64-93.
[144]
Wei, Z.Y.; Wang, X.B.; Zhang, H.Y.; Yang, C.H.; Wang, Y.B.; Xu, D.H.; Chen, H.Y.; Cui, B.A. Inhibitory effects of indigowoad root polysaccharides on porcine reproductive and respiratory syndrome virus replication in vitro. Antivir. Ther., 2011, 16(3), 357-363.
[http://dx.doi.org/10.3851/IMP1755] [PMID: 21555818]
[145]
del Valle Mendoza, J.; Pumarola, T.; Gonzales, L.A.; del Valle, L.J. Antiviral activity of maca (Lepidium meyenii) against human influenza virus. Asian Pac. J. Trop. Med., 2014, 7, S415-S420.
[http://dx.doi.org/10.1016/S1995-7645(14)60268-6] [PMID: 25312160]
[146]
Krawitz, C.; Mraheil, M.A.; Stein, M.; Imirzalioglu, C.; Domann, E.; Pleschka, S.; Hain, T. Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses. BMC Complement. Altern. Med., 2011, 11(1), 16.
[http://dx.doi.org/10.1186/1472-6882-11-16] [PMID: 21352539]
[147]
Wen, C.C.; Shyur, L.F.; Jan, J.T.; Liang, P.H.; Kuo, C.J.; Arulselvan, P.; Wu, J.B.; Kuo, S.C.; Yang, N.S. Traditional Chinese medicine herbal extracts of Cibotium barometz, Gentiana scabra, Dioscorea batatas, Cassia tora, and Taxillus chinensis inhibit SARS-CoV replication. J. Tradit. Complement. Med., 2011, 1(1), 41-50.
[http://dx.doi.org/10.1016/S2225-4110(16)30055-4] [PMID: 24716104]
[148]
Wei, W.; Wan, H.; Peng, X.; Zhou, H.; Lu, Y.; He, Y. Antiviral effects of Ma Huang Tang against H1N1 influenza virus infection in vitro and in an ICR pneumonia mouse model. Biomed. Pharmacother., 2018, 102, 1161-1175.
[http://dx.doi.org/10.1016/j.biopha.2018.03.161] [PMID: 29710534]
[149]
Forero, J.E.; Avila, L.; Taborda, N.; Tabares, P.; López, A.; Torres, F.; Quiñones, W.; Bucio, M.A.; Mora-Pérez, Y.; Rugeles, M.T.; Joseph-Nathan, P.; Echeverri, F. In vitro anti-influenza screening of several Euphorbiaceae species: Structure of a bioactive Cyanoglucoside from Codiaeum variegatum. Phytochemistry, 2008, 69(16), 2815-2819.
[http://dx.doi.org/10.1016/j.phytochem.2008.09.003] [PMID: 18851862]
[150]
Du, C.Y.Q.; Zheng, K.Y.Z.; Bi, C.W.C.; Dong, T.T.X.; Lin, H.; Tsim, K.W.K.; Feng San, Y.P. an ancient Chinese herbal decoction, induces gene expression of anti‐viral proteins and inhibits neuraminidase activity. Phytother. Res., 2015, 29(5), 656-661.
[http://dx.doi.org/10.1002/ptr.5290] [PMID: 25586308]
[151]
Lin, T.J.; Yeh, C.F.; Wang, K.C.; Chiang, L.C.; Tsai, J.J.; Chang, J.S. Water extract of Pueraria lobata Ohwi has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. Kaohsiung J. Med. Sci., 2013, 29(12), 651-657.
[http://dx.doi.org/10.1016/j.kjms.2013.06.001] [PMID: 24296052]
[152]
Zhang, L.; Li, F.; Wei, Y.; He, J.; Chen, H.; Hu, T.; Liao, L. Effects of Sophora subprostrate polysaccharide on cell viabilities and inflammatory cytokines of RAW264. 7 cells infected with porcine reproductive and respiratory syndrome virus (PRRSV). Nanfang Nongye Xuebao, 2016, 47(12), 2151-2156.
[153]
Chiang, L.C.; Cheng, H.Y.; Liu, M.C.; Chiang, W.; Lin, C.C. Antiviral activity of eight commonly used medicinal plants in Taiwan. Am. J. Chin. Med., 2003, 31(6), 897-905.
[http://dx.doi.org/10.1142/S0192415X03001582] [PMID: 14992542]
[154]
Chi, T-T. Bamboo extract for acute and chronic respiratory conditions, nutritional perspectives. J. Council Nutrition, 2014, 37, 5-13.
[155]
Cermelli, C.; Fabio, A.; Fabio, G.; Quaglio, P. Effect of eucalyptus essential oil on respiratory bacteria and viruses. Curr. Microbiol., 2008, 56(1), 89-92.
[http://dx.doi.org/10.1007/s00284-007-9045-0] [PMID: 17972131]
[156]
Yang, C.H.; Tan, D.H.; Hsu, W.L.; Jong, T.T.; Wen, C.L.; Hsu, S.L.; Chang, P.C. Anti-influenza virus activity of the ethanolic extract from Peperomia sui. J. Ethnopharmacol., 2014, 155(1), 320-325.
[http://dx.doi.org/10.1016/j.jep.2014.05.035] [PMID: 24882727]
[157]
Chen, L.F.; Zhong, Y.L.; Luo, D.; Liu, Z.; Tang, W.; Cheng, W.; Xiong, S.; Li, Y.L.; Li, M.M. Antiviral activity of ethanol extract of Lophatherum gracile against respiratory syncytial virus infection. J. Ethnopharmacol., 2019, 242, 111575.
[http://dx.doi.org/10.1016/j.jep.2018.10.036] [PMID: 30391397]
[158]
Li, Y.H.; Lai, C.Y.; Su, M.C.; Cheng, J.C.; Chang, Y.S. Antiviral activity of Portulaca oleracea L. against influenza A viruses. J. Ethnopharmacol., 2019, 241, 112013.
[http://dx.doi.org/10.1016/j.jep.2019.112013] [PMID: 31170517]
[159]
Hossan, M.S.; Fatima, A.; Rahmatullah, M.; Khoo, T.J.; Nissapatorn, V.; Galochkina, A.V.; Slita, A.V.; Shtro, A.A.; Nikolaeva, Y.; Zarubaev, V.V.; Wiart, C. Antiviral activity of Embelia ribes Burm. f. against influenza virus in vitro. Arch. Virol., 2018, 163(8), 2121-2131.
[http://dx.doi.org/10.1007/s00705-018-3842-6] [PMID: 29633078]
[160]
Wang, K.C.; Chang, J.S.; Chiang, L.C.; Lin, C.C. Cimicifuga foetida L. inhibited human respiratory syncytial virus in HEp-2 and A549 cell lines. Am. J. Chin. Med., 2012, 40(1), 151-162.
[http://dx.doi.org/10.1142/S0192415X12500127] [PMID: 22298455]
[161]
Lee, B.H.; Chathuranga, K.; Uddin, M.B.; Weeratunga, P.; Kim, M.S.; Cho, W.K.; Kim, H.I.; Ma, J.Y.; Lee, J.S. Coptidis Rhizoma extract inhibits replication of respiratory syncytial virus in vitro and in vivo by inducing antiviral state. J. Microbiol., 2017, 55(6), 488-498.
[http://dx.doi.org/10.1007/s12275-017-7088-x] [PMID: 28551874]
[162]
Tj, L.; Kc, W.; Cc, L.; Lc, C.; Js, C. Anti-viral activity of water extract of Paeonia lactiflora pallas against human respiratory syncytial virus in human respiratory tract cell. Am. J. Chin. Med., 2013, 41(3), 585-99.
[163]
Sawai-Kuroda, R.; Kikuchi, S.; Shimizu, Y.K.; Sasaki, Y.; Kuroda, K.; Tanaka, T.; Yamamoto, T.; Sakurai, K.; Shimizu, K. A polyphenol-rich extract from Chaenomeles sinensis (Chinese quince) inhibits influenza A virus infection by preventing primary transcription in vitro. J. Ethnopharmacol., 2013, 146(3), 866-872.
[http://dx.doi.org/10.1016/j.jep.2013.02.020] [PMID: 23439031]
[164]
Chen, M.Y.; Li, H.; Lu, X.X.; Ling, L.J.; Weng, H.B.; Sun, W.; Chen, D.F.; Zhang, Y.Y. Houttuynia cordata polysaccharide alleviated intestinal injury and modulated intestinal microbiota in H1N1 virus infected mice. Chin. J. Nat. Med., 2019, 17(3), 187-197.
[http://dx.doi.org/10.1016/S1875-5364(19)30021-4] [PMID: 30910055]
[165]
Lau, K.M.; Lee, K.M.; Koon, C.M.; Cheung, C.S.F.; Lau, C.P.; Ho, H.M.; Lee, M.Y.H.; Au, S.W.N.; Cheng, C.H.K.; Lau, C.B.S.; Tsui, S.K.W.; Wan, D.C.C.; Waye, M.M.Y.; Wong, K.B.; Wong, C.K.; Lam, C.W.K.; Leung, P.C.; Fung, K.P. Immunomodulatory and anti-SARS activities of Houttuynia cordata. J. Ethnopharmacol., 2008, 118(1), 79-85.
[http://dx.doi.org/10.1016/j.jep.2008.03.018] [PMID: 18479853]
[166]
Rajbhandari, M.; Wegner, U.; Schöpke, T.; Lindequist, U.; Mentel, R. Inhibitory effect of Bergenia ligulata on influenza virus A. Pharmazie, 2003, 58(4), 268-271.
[PMID: 12749411]
[167]
Chang, J.S.; Wang, K.C.; Yeh, C.F.; Shieh, D.E.; Chiang, L.C. Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J. Ethnopharmacol., 2013, 145(1), 146-151.
[http://dx.doi.org/10.1016/j.jep.2012.10.043] [PMID: 23123794]
[168]
Ma, S.C.; But, P.P.H.; Ooi, V.E.C.; He, Y.H.; Lee, S.H.S.; Lee, S.F.; Lin, R.C. Antiviral amentoflavone from Selaginella sinensis. Biol. Pharm. Bull., 2001, 24(3), 311-312.
[http://dx.doi.org/10.1248/bpb.24.311] [PMID: 11256492]
[169]
Li, Y.L.; Ma, S.C.; Yang, Y.T.; Ye, S.M.; But, P.P.H. Antiviral activities of flavonoids and organic acid from Trollius chinensis Bunge. J. Ethnopharmacol., 2002, 79(3), 365-368.
[http://dx.doi.org/10.1016/S0378-8741(01)00410-X] [PMID: 11849843]
[170]
Lin, C.W.; Tsai, F.J.; Tsai, C.H.; Lai, C.C.; Wan, L.; Ho, T.Y.; Hsieh, C.C.; Chao, P.D.L. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res., 2005, 68(1), 36-42.
[http://dx.doi.org/10.1016/j.antiviral.2005.07.002] [PMID: 16115693]
[171]
Hayashi, K.; Imanishi, N.; Kashiwayama, Y.; Kawano, A.; Terasawa, K.; Shimada, Y.; Ochiai, H. Inhibitory effect of cinnamaldehyde, derived from Cinnamomi cortex, on the growth of influenza A/PR/8 virus in vitro and in vivo. Antiviral Res., 2007, 74(1), 1-8.
[http://dx.doi.org/10.1016/j.antiviral.2007.01.003] [PMID: 17303260]
[172]
Schwarz, S.; Wang, K.; Yu, W.; Sun, B.; Schwarz, W.; Unit, M.V.; Biology, C.; Sciences, B. Emodin inhibits current through SARS-associated coronavirus 3a protein. Antiviral Res., 2011, 90(1), 64-69.
[http://dx.doi.org/10.1016/j.antiviral.2011.02.008] [PMID: 21356245]
[173]
Wang, K.C.; Chang, J.S.; Chiang, L.C.; Lin, C.C. 4-Methoxycinnamaldehyde inhibited human respiratory syncytial virus in a human larynx carcinoma cell line. Phytomedicine, 2009, 16(9), 882-886.
[http://dx.doi.org/10.1016/j.phymed.2009.02.016] [PMID: 19303275]
[174]
Chen, J.X.; Xue, H.J.; Ye, W.C.; Fang, B.H.; Liu, Y.H.; Yuan, S.H.; Yu, P.; Wang, Y.Q. Activity of andrographolide and its derivatives against influenza virus in vivo and in vitro. Biol. Pharm. Bull., 2009, 32(8), 1385-1391.
[http://dx.doi.org/10.1248/bpb.32.1385] [PMID: 19652378]
[175]
Choi, H.J.; Bae, E.Y.; Song, J.H.; Baek, S.H.; Kwon, D.H.; Kwon, D.H.; Modulator, I. Inhibitory effects of orobol 7-O-d-glucoside from banaba (Lagerstroemia speciosa L.) on human rhinoviruses replication. Lett. Appl. Microbiol., 2010, 51(1), no.
[http://dx.doi.org/10.1111/j.1472-765X.2010.02845.x] [PMID: 20497313]
[176]
Choi, H.J.; Song, J.H.; Lim, C.H.; Baek, S.H.; Kwon, D.H. Antihuman rhinovirus activity of raoulic acid from Raoulia australis. J. Med. Food, 2010, 13(2), 326-328.
[http://dx.doi.org/10.1089/jmf.2009.1149] [PMID: 20412019]
[177]
Ganesan, S.; Faris, A.N.; Comstock, A.T.; Wang, Q.; Nanua, S.; Hershenson, M.B.; Sajjan, U.S. Quercetin inhibits rhinovirus replication in vitro and in vivo. Antiviral Res., 2012, 94(3), 258-271.
[http://dx.doi.org/10.1016/j.antiviral.2012.03.005] [PMID: 22465313]
[178]
Wu, Y.; Li, J.; Kim, Y.; Wu, J.; Wang, Q.; Hao, Y. In vivo and in vitro antiviral effects of berberine on influenza virus. Chin. J. Integr. Med., 2011, 17(6), 444-452.
[http://dx.doi.org/10.1007/s11655-011-0640-3] [PMID: 21660679]
[179]
Shi, D.; Chen, M.; Liu, L.; Wang, Q.; Liu, S.; Wang, L.; Wang, R. Anti-influenza A virus mechanism of three representative compounds from Flos trollii via TLRs signaling pathways. J. Ethnopharmacol., 2020, 253, 112634.
[http://dx.doi.org/10.1016/j.jep.2020.112634] [PMID: 32004628]
[180]
Zhuang, L.; Chen, L.F.; Zhang, Y.B.; Liu, Z.; Xiao, X.H.; Tang, W.; Wang, G.C.; Song, W.J.; Li, Y.L.; Li, M.M. Watsonianone A from Rhodomyrtus tomentosa fruit attenuates respiratory-syncytial-virus-induced inflammation in vitro. J. Agric. Food Chem., 2017, 65(17), 3481-3489.
[http://dx.doi.org/10.1021/acs.jafc.7b00537] [PMID: 28436225]
[181]
Wang, Y.; Li, J.; Yan, W.; Chen, Q.; Jiang, Z.; Zhang, R.; Pan, X.; Wang, X. An active component containing pterodontic acid and pterodondiol isolated from Laggera pterodonta inhibits influenza A virus infection through the TLR7/MyD88/TRAF6/NF-κB signaling pathway. Mol. Med. Rep., 2018, 18(1), 523-531.
[http://dx.doi.org/10.3892/mmr.2018.8947] [PMID: 29749442]
[182]
Shen, C.; Zhang, Z.; Xie, T.; Ji, J.; Xu, J.; Lin, L.; Yan, J.; Kang, A.; Dai, Q.; Dong, Y.; Shan, J.; Wang, S.; Zhao, X. Rhein suppresses lung inflammatory injury induced by human respiratory syncytial virus through inhibiting NLRP3 inflammasome activation via NF-κB pathway in mice. Front. Pharmacol., 2020, 10, 1600.
[http://dx.doi.org/10.3389/fphar.2019.01600] [PMID: 32047436]
[183]
Lopes, B.R.P.; da Costa, M.F.; Genova Ribeiro, A.; da Silva, T.F.; Lima, C.S.; Caruso, I.P.; de Araujo, G.C.; Kubo, L.H.; Iacovelli, F.; Falconi, M.; Desideri, A.; de Oliveira, J.; Regasini, L.O.; de Souza, F.P.; Toledo, K.A. Quercetin pentaacetate inhibits in vitro human respiratory syncytial virus adhesion. Virus Res., 2020, 276, 197805.
[http://dx.doi.org/10.1016/j.virusres.2019.197805] [PMID: 31712123]
[184]
Dayem, A.A.; Choi, H.Y.; Kim, Y.B.; Cho, S.G. Antiviral effect of methylated flavonol isorhamnetin against influenza. PLoS One, 2015, 10(3), e0121610.
[http://dx.doi.org/10.1371/journal.pone.0121610] [PMID: 25806943]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy