Review Article

以PIWI蛋白和PiRNA失调为生物标志物的妇科癌症诊断和治疗的新视角

卷 31, 期 4, 2024

发表于: 24 March, 2023

页: [453 - 463] 页: 11

弟呕挨: 10.2174/0929867330666230214101837

价格: $65

conference banner
摘要

术语“妇科癌症”用于女性生殖系统中发生的一组癌症。其中一些癌症在发达国家和发展中国家被列为主要死亡原因。缺乏适当的诊断策略是使它们致命的最重要原因之一。PIWI相互作用RNA或piRNA是一类小的非编码RNA,含有24-32个核苷酸。这些RNA参与一些细胞机制,它们在各种癌症中的作用被累积的证据证实。在本综述中,我们收集了一些关于这些RNA和PIWI蛋白家族成员的作用的信息,为准确的诊断生物标志物和更有效的抗癌药物提供了新的见解,副作用更少。

关键词: PIWI蛋白,piRNA,PIWIL2,卵巢癌,宫颈癌,抗癌药物。

[1]
Crick, F. Central dogma of molecular biology. Nature, 1970, 227(5258), 561-563.
[http://dx.doi.org/10.1038/227561a0] [PMID: 4913914]
[2]
Yang, J.X.; Rastetter, R.H.; Wilhelm, D. Non-coding RNAs: An introduction. Adv. Exp. Med. Biol., 2016, 886, 13-32.
[http://dx.doi.org/10.1007/978-94-017-7417-8_2] [PMID: 26659485]
[3]
Elgar, G.; Vavouri, T. Tuning in to the signals: Noncoding sequence conservation in vertebrate genomes. Trends Genet., 2008, 24(7), 344-352.
[http://dx.doi.org/10.1016/j.tig.2008.04.005] [PMID: 18514361]
[4]
Romano, G.; Veneziano, D.; Acunzo, M.; Croce, C.M. Small non-coding RNA and cancer. Carcinogenesis, 2017, 38(5), 485-491.
[http://dx.doi.org/10.1093/carcin/bgx026] [PMID: 28449079]
[5]
Palazzo, A.F.; Lee, E.S. Non-coding RNA: What is functional and what is junk? Front. Genet., 2015, 6, 2.
[http://dx.doi.org/10.3389/fgene.2015.00002] [PMID: 25674102]
[6]
Siomi, M.C.; Sato, K.; Pezic, D.; Aravin, A.A. PIWI-interacting small RNAs: The vanguard of genome defence. Nat. Rev. Mol. Cell Biol., 2011, 12(4), 246-258.
[http://dx.doi.org/10.1038/nrm3089] [PMID: 21427766]
[7]
Ghildiyal, M.; Zamore, P.D. Small silencing RNAs: An expanding universe. Nat. Rev. Genet., 2009, 10(2), 94-108.
[http://dx.doi.org/10.1038/nrg2504] [PMID: 19148191]
[8]
Han, Y.N.; Li, Y.; Xia, S.Q.; Zhang, Y.Y.; Zheng, J.H.; Li, W. PIWI proteins and PIWI-interacting RNA: Emerging roles in cancer. Cell. Physiol. Biochem., 2017, 44(1), 1-20.
[http://dx.doi.org/10.1159/000484541] [PMID: 29130960]
[9]
Bartel, DP MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2), 281-97.
[10]
Mercer, T.R.; Dinger, M.E.; Mattick, J.S. Long non-coding RNAs: Insights into functions. Nat. Rev. Genet., 2009, 10(3), 155-159.
[http://dx.doi.org/10.1038/nrg2521] [PMID: 19188922]
[11]
Iwasaki, Y.W.; Siomi, M.C.; Siomi, H. PIWI-Interacting RNA: Its Biogenesis and Functions. Annu. Rev. Biochem., 2015, 84(1), 405-433.
[http://dx.doi.org/10.1146/annurev-biochem-060614-034258] [PMID: 25747396]
[12]
Aravin, A.A.; Naumova, N.M.; Tulin, A.V.; Vagin, V.V.; Rozovsky, Y.M.; Gvozdev, V.A. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr. Biol., 2001, 11(13), 1017-1027.
[http://dx.doi.org/10.1016/S0960-9822(01)00299-8] [PMID: 11470406]
[13]
Ozata, D.M.; Gainetdinov, I.; Zoch, A.; O’Carroll, D.; Zamore, P.D. PIWI-interacting RNAs: Small RNAs with big functions. Nat. Rev. Genet., 2019, 20(2), 89-108.
[http://dx.doi.org/10.1038/s41576-018-0073-3] [PMID: 30446728]
[14]
Aravin, A.; Gaidatzis, D.; Pfeffer, S.; Lagos-Quintana, M.; Landgraf, P.; Iovino, N.; Morris, P.; Brownstein, M.J.; Kuramochi-Miyagawa, S.; Nakano, T.; Chien, M.; Russo, J.J.; Ju, J.; Sheridan, R.; Sander, C.; Zavolan, M.; Tuschl, T. A novel class of small RNAs bind to MILI protein in mouse testes. Nature, 2006, 442(7099), 203-207.
[http://dx.doi.org/10.1038/nature04916] [PMID: 16751777]
[15]
Cheng, J.; Guo, J.M.; Xiao, B.X.; Miao, Y.; Jiang, Z.; Zhou, H.; Li, Q.N. piRNA, the new non-coding RNA, is aberrantly expressed in human cancer cells. Clin. Chim. Acta, 2011, 412(17-18), 1621-1625.
[http://dx.doi.org/10.1016/j.cca.2011.05.015] [PMID: 21616063]
[16]
Cheng, J.; Deng, H.; Xiao, B.; Zhou, H.; Zhou, F.; Shen, Z.; Guo, J. piR-823, a novel non-coding small RNA, demonstrates in vitro and in vivo tumor suppressive activity in human gastric cancer cells. Cancer Lett., 2012, 315(1), 12-17.
[http://dx.doi.org/10.1016/j.canlet.2011.10.004] [PMID: 22047710]
[17]
Hashim, A.; Rizzo, F.; Marchese, G.; Ravo, M.; Tarallo, R.; Nassa, G.; Giurato, G.; Santamaria, G.; Cordella, A.; Cantarella, C.; Weisz, A. RNA sequencing identifies specific PIWI-interacting small non-coding RNA expression patterns in breast cancer. Oncotarget, 2014, 5(20), 9901-9910.
[http://dx.doi.org/10.18632/oncotarget.2476] [PMID: 25313140]
[18]
Li, Y.; Wu, X.; Gao, H.; Jin, J.M.; Li, A.X.; Kim, Y.S.; Pal, S.K.; Nelson, R.A.; Lau, C.M.; Guo, C.; Mu, B.; Wang, J.; Wang, F.; Wang, J.; Zhao, Y.; Chen, W.; Rossi, J.J.; Weiss, L.M.; Wu, H. Piwi-interacting RNAs (piRNAs)are dysregulated in renal cell carcinoma and associated with tumor metastasis and cancer-specific survival. Mol. Med., 2015, 21(1), 381-388.
[http://dx.doi.org/10.2119/molmed.2014.00203] [PMID: 25998508]
[19]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[20]
World cancer research fund. Global cancer incidence: Both sexes. 2018. Available from: https://www.wcrf.org/dietandcancer/cancer-trends/worldwide-cancer-data
[21]
Cohen, P.A.; Jhingran, A.; Oaknin, A.; Denny, L. Cervical cancer. Lancet, 2019, 393(10167), 169-182.
[http://dx.doi.org/10.1016/S0140-6736(18)32470-X] [PMID: 30638582]
[22]
Crosbie, E.J.; Einstein, M.H.; Franceschi, S.; Kitchener, H.C. Human papillomavirus and cervical cancer. Lancet, 2013, 382(9895), 889-899.
[http://dx.doi.org/10.1016/S0140-6736(13)60022-7] [PMID: 23618600]
[23]
Hosseini, E.S.; Meryet-Figuiere, M.; Sabzalipoor, H.; Kashani, H.H.; Nikzad, H.; Asemi, Z. Dysregulated expression of long noncoding RNAs in gynecologic cancers. Mol Cancer., 2017, 16(1), 107.
[http://dx.doi.org/10.1186/s12943-017-0671-2]
[24]
Goodman, A. HPV testing as a screen for cervical cancer. BMJ, 2015, 350, h2372.
[http://dx.doi.org/10.1136/bmj.h2372] [PMID: 26126623]
[25]
Tsikouras, P.; Zervoudis, S.; Manav, B.; Tomara, E.; Iatrakis, G.; Romanidis, C.; Bothou, A.; Galazios, G. Cervical cancer: Screening, diagnosis and staging. J. BUON, 2016, 21(2), 320-325.
[PMID: 27273940]
[26]
Hanley, K.Z.; Birdsong, G.G.; Mosunjac, M.B. Recent developments in surgical pathology of the uterine corpus. Arch. Pathol. Lab. Med., 2017, 141(4), 528-541.
[http://dx.doi.org/10.5858/arpa.2016-0284-SA] [PMID: 28353387]
[27]
Braun, M.M.; Overbeek-Wager, E.A.; Grumbo, R.J. Diagnosis and management of endometrial cancer. Am. Fam. Physician, 2016, 93(6), 468-474.
[PMID: 26977831]
[28]
Rizzo, S.; Femia, M.; Buscarino, V.; Franchi, D.; Garbi, A.; Zanagnolo, V.; Del Grande, M.; Manganaro, L.; Alessi, S.; Giannitto, C.; Ruju, F.; Bellomi, M. Endometrial cancer: An overview of novelties in treatment and related imaging keypoints for local staging. Cancer Imaging, 2018, 18(1), 45.
[http://dx.doi.org/10.1186/s40644-018-0180-6] [PMID: 30514387]
[29]
Kossaï, M.; Leary, A.; Scoazec, J.Y.; Genestie, C. Ovarian cancer: A heterogeneous disease. Pathobiology, 2018, 85(1-2), 41-49.
[http://dx.doi.org/10.1159/000479006] [PMID: 29020678]
[30]
Scaletta, G.; Plotti, F.; Luvero, D.; Capriglione, S.; Montera, R.; Miranda, A.; Lopez, S.; Terranova, C.; De Cicco Nardone, C.; Angioli, R. The role of novel biomarker HE4 in the diagnosis, prognosis and follow-up of ovarian cancer: A systematic review. Expert Rev. Anticancer Ther., 2017, 17(9), 827-839.
[http://dx.doi.org/10.1080/14737140.2017.1360138] [PMID: 28756722]
[31]
Doubeni, C.A.; Doubeni, A.R.; Myers, A.E. Diagnosis and management of ovarian cancer. Am. Fam. Physician, 2016, 93(11), 937-944.
[PMID: 27281838]
[32]
Brett M, R.; Brett M, R.; Jennifer B, P.; Thomas A, S.; Jennifer B, P.; Thomas A, S. Epidemiology of ovarian cancer: A review. Cancer Biol. Med., 2017, 14(1), 9-32.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2016.0084] [PMID: 28443200]
[33]
Allemani, C.; Weir, H.K.; Carreira, H.; Harewood, R.; Spika, D.; Wang, X.S.; Bannon, F.; Ahn, J.V.; Johnson, C.J.; Bonaventure, A.; Marcos-Gragera, R.; Stiller, C.; Azevedo e Silva, G.; Chen, W.Q.; Ogunbiyi, O.J.; Rachet, B.; Soeberg, M.J.; You, H.; Matsuda, T.; Bielska-Lasota, M.; Storm, H.; Tucker, T.C.; Coleman, M.P. Global surveillance of cancer survival 1995-2009: Analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet, 2015, 385(9972), 977-1010.
[http://dx.doi.org/10.1016/S0140-6736(14)62038-9] [PMID: 25467588]
[34]
Zhang, W.; Lei, P.; Dong, X.; Men, X. Advances in tumor markers of ovarian cancer for early diagnosis. Indian J. Cancer, 2014, 51(7)(Suppl. 3), 72.
[http://dx.doi.org/10.4103/0019-509X.154049] [PMID: 25818738]
[35]
Shetty, A.S.; Menias, C.O. MR imaging of vulvar and vaginal cancer. Magn. Reson. Imaging Clin. N. Am., 2017, 25(3), 481-502.
[http://dx.doi.org/10.1016/j.mric.2017.03.013] [PMID: 28668156]
[36]
Rajaram, S.; Gupta, B. Management of vulvar cancer. Rev. Recent Clin. Trials, 2015, 10(4), 282-288.
[http://dx.doi.org/10.2174/1574887110666150923112723] [PMID: 26411953]
[37]
Rogers, L.J.; Cuello, M.A. Cancer of the vulva. Int. J. Gynaecol. Obstet., 2018, 143(Suppl. 2), 4-13.
[http://dx.doi.org/10.1002/ijgo.12609] [PMID: 30306583]
[38]
Hacker, N.F.; Barlow, E.L. Staging for vulvar cancer. Best Pract. Res. Clin. Obstet. Gynaecol., 2015, 29(6), 802-811.
[http://dx.doi.org/10.1016/j.bpobgyn.2015.01.004] [PMID: 25842047]
[39]
Weinberg, D.; Gomez-Martinez, R.A. Vulvar cancer. Obstet. Gynecol. Clin. North Am., 2019, 46(1), 125-135.
[http://dx.doi.org/10.1016/j.ogc.2018.09.008] [PMID: 30683259]
[40]
Queiroz, M.A.; Kubik-Huch, R.A.; Hauser, N.; Freiwald-Chilla, B.; von Schulthess, G.; Froehlich, J.M.; Veit-Haibach, P. PET/MRI and PET/CT in advanced gynaecological tumours: Initial experience and comparison. Eur. Radiol., 2015, 25(8), 2222-2230.
[http://dx.doi.org/10.1007/s00330-015-3657-8] [PMID: 26017734]
[41]
Adams, T.S.; Cuello, M.A. Cancer of the vagina. Int. J. Gynaecol. Obstet., 2018, 143(Suppl. 2), 14-21.
[http://dx.doi.org/10.1002/ijgo.12610] [PMID: 30306589]
[42]
Huang, X.; Fejes Tóth, K.; Aravin, A.A. piRNA Biogenesis in Drosophila melanogaster. Trends Genet., 2017, 33(11), 882-894.
[http://dx.doi.org/10.1016/j.tig.2017.09.002] [PMID: 28964526]
[43]
Brennecke, J.; Aravin, A.A.; Stark, A.; Dus, M.; Kellis, M.; Sachidanandam, R.; Hannon, G.J. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell, 2007, 128(6), 1089-1103.
[http://dx.doi.org/10.1016/j.cell.2007.01.043] [PMID: 17346786]
[44]
Yu, Y.; Xiao, J.; Hann, S.S. The emerging roles of PIWI-interacting RNA in human cancers. Cancer Manag. Res., 2019, 11, 5895-5909.
[http://dx.doi.org/10.2147/CMAR.S209300] [PMID: 31303794]
[45]
Clark, J.P.; Lau, N.C. Piwi Proteins and piRNAs step onto the systems biology stage. Adv. Exp. Med. Biol., 2014, 825, 159-197.
[http://dx.doi.org/10.1007/978-1-4939-1221-6_5] [PMID: 25201106]
[46]
Hirakata, S.; Siomi, M.C. piRNA biogenesis in the germline: From transcription of piRNA genomic sources to piRNA maturation. Biochim. Biophys. Acta. Gene Regul. Mech., 2016, 1859(1), 82-92.
[http://dx.doi.org/10.1016/j.bbagrm.2015.09.002] [PMID: 26348412]
[47]
Nishida, K.M.; Sakakibara, K.; Iwasaki, Y.W.; Yamada, H.; Murakami, R.; Murota, Y.; Kawamura, T.; Kodama, T.; Siomi, H.; Siomi, M.C. Hierarchical roles of mitochondrial Papi and Zucchini in Bombyx germline piRNA biogenesis. Nature, 2018, 555(7695), 260-264.
[http://dx.doi.org/10.1038/nature25788] [PMID: 29489748]
[48]
Gunawardane, L.S.; Saito, K.; Nishida, K.M.; Miyoshi, K.; Kawamura, Y.; Nagami, T. A slicer-mediated mechanism for repeat-associated siRNA 5'end formation in Drosophila. Science, 2007, 315(5818), 1587-90.
[49]
Ross, R.J.; Weiner, M.M.; Lin, H. PIWI proteins and PIWI-interacting RNAs in the soma. Nature, 2014, 505(7483), 353-359.
[http://dx.doi.org/10.1038/nature12987] [PMID: 24429634]
[50]
Czech, B.; Munafò, M.; Ciabrelli, F.; Eastwood, E.L.; Fabry, M.H.; Kneuss, E.; Hannon, G.J. piRNA-guided genome defense: From biogenesis to silencing. Annu. Rev. Genet., 2018, 52(1), 131-157.
[http://dx.doi.org/10.1146/annurev-genet-120417-031441] [PMID: 30476449]
[51]
Schoeberl, U.E.; Mochizuki, K. Keeping the soma free of transposons: Programmed DNA elimination in ciliates. J. Biol. Chem., 2011, 286(43), 37045-37052.
[http://dx.doi.org/10.1074/jbc.R111.276964] [PMID: 21914793]
[52]
Kazazian, H.H., J.r. Mobile elements: Drivers of genome evolution. Science, 2004, 303(5664), 1626-1632.
[http://dx.doi.org/10.1126/science.1089670] [PMID: 15016989]
[53]
Cordaux, R.; Batzer, M.A. The impact of retrotransposons on human genome evolution. Nat. Rev. Genet., 2009, 10(10), 691-703.
[http://dx.doi.org/10.1038/nrg2640] [PMID: 19763152]
[54]
Ng, K.W.; Anderson, C.; Marshall, E.A.; Minatel, B.C.; Enfield, K.S.S.; Saprunoff, H.L.; Lam, W.L.; Martinez, V.D. PIWI-interacting RNAs in cancer: Emerging functions and clinical utility. Mol. Cancer, 2016, 15(1), 5.
[http://dx.doi.org/10.1186/s12943-016-0491-9] [PMID: 26768585]
[55]
Chénais, B. Transposable elements and human cancer: A causal relationship? Biochim. Biophys. Acta (BBA)-. Rev. Can., 2013, 1835(1), 28-35.
[56]
Mani, S.R.; Juliano, C.E. Untangling the web: The diverse functions of the PIWI/piRNA pathway. Mol. Reprod. Dev., 2013, 80(8), 632-664.
[http://dx.doi.org/10.1002/mrd.22195] [PMID: 23712694]
[57]
Huang, X.A.; Yin, H.; Sweeney, S.; Raha, D.; Snyder, M.; Lin, H. A major epigenetic programming mechanism guided by piRNAs. Dev. Cell, 2013, 24(5), 502-516.
[http://dx.doi.org/10.1016/j.devcel.2013.01.023] [PMID: 23434410]
[58]
A novel epigenetic mechanism in Drosophila somatic cells mediated by PIWI and piRNAs. In: Cold Spring Harbor symposia on quantitative biology; Lin, H.; Yin, H., Eds.; Cold Spring Harbor Laboratory Press, 2008.
[59]
Chalbatani, G.M.; Dana, H.; Memari, F.; Gharagozlou, E.; Ashjaei, S.; Kheirandish, P.; Marmari, V.; Mahmoudzadeh, H.; Mozayani, F.; Maleki, A.R.; Sadeghian, E.; Nia, E.Z.; Miri, S.R.; Nia, N.; Rezaeian, O.; Eskandary, A.; Razavi, N.; Shirkhoda, M.; Rouzbahani, F.N. Biological function and molecular mechanism of piRNA in cancer. Pract. Lab. Med., 2019, 13, e00113.
[http://dx.doi.org/10.1016/j.plabm.2018.e00113] [PMID: 30705933]
[60]
Liu, Y.; Dou, M.; Song, X.; Dong, Y.; Liu, S.; Liu, H.; Tao, J.; Li, W.; Yin, X.; Xu, W. The emerging role of the piRNA/PIWI complex in cancer. Mol. Cancer, 2019, 18(1), 123.
[http://dx.doi.org/10.1186/s12943-019-1052-9] [PMID: 31399034]
[61]
Tian, Y.; Simanshu, D.K.; Ma, J.B.; Patel, D.J. Structural basis for piRNA 2′-O-methylated 3′-end recognition by PIWI PAZ (PIWI/Argonaute/Zwille) domains. Proc. Natl. Acad. Sci. USA, 2011, 108(3), 903-910.
[http://dx.doi.org/10.1073/pnas.1017762108] [PMID: 21193640]
[62]
Lim, S.L.; Ricciardelli, C.; Oehler, M.K.; De Arao Tan, I.M.D.; Russell, D.; Grützner, F. Overexpression of piRNA pathway genes in epithelial ovarian cancer. PLoS One, 2014, 9(6), e99687.
[http://dx.doi.org/10.1371/journal.pone.0099687] [PMID: 24932571]
[63]
Lee, J.H.; Schütte, D.; Wulf, G.; Füzesi, L.; Radzun, H.J.; Schweyer, S.; Engel, W.; Nayernia, K. Stem-cell protein PIWIl2 is widely expressed in tumors and inhibits apoptosis through activation of Stat3/Bcl-XL pathway. Hum. Mol. Genet., 2006, 15(2), 201-211.
[http://dx.doi.org/10.1093/hmg/ddi430] [PMID: 16377660]
[64]
Ye, Y.; Yin, D.T.; Chen, L.; Zhou, Q.; Shen, R.; He, G.; Yan, Q.; Tong, Z.; Issekutz, A.C.; Shapiro, C.L.; Barsky, S.H.; Lin, H.; Li, J.J.; Gao, J.X. Identification of PIWIl2- like (PL2L) proteins that promote tumorigenesis. PLoS One, 2010, 5(10), e13406.
[http://dx.doi.org/10.1371/journal.pone.0013406] [PMID: 20975993]
[65]
Yao, Y.; Li, C.; Zhou, X.; Zhang, Y.; Lu, Y.; Chen, J.; Zheng, X.; Tao, D.; Liu, Y.; Ma, Y. PIWIL2 induces c-Myc expression by interacting with NME2 and regulates c-Myc-mediated tumor cell proliferation. Oncotarget, 2014, 5(18), 8466-8477.
[http://dx.doi.org/10.18632/oncotarget.2327] [PMID: 25193865]
[66]
Klattenhoff, C.; Theurkauf, W. Biogenesis and germline functions of piRNAs. Development, 2008, 135(1), 3-9.
[http://dx.doi.org/10.1242/dev.006486] [PMID: 18032451]
[67]
Wang, Q.E.; Han, C.; Milum, K.; Wani, A.A. Stem cell protein PIWIl2 modulates chromatin modifications upon cisplatin treatment. Mutat. Res., 2011, 708(1-2), 59-68.
[http://dx.doi.org/10.1016/j.mrfmmm.2011.02.001] [PMID: 21310163]
[68]
Liu, W.; Gao, Q.; Chen, K.; Xue, X.; Li, M.; Chen, Q.; Zhu, G.; Gao, Y. Hiwi facilitates chemoresistance as a cancer stem cell marker in cervical cancer. Oncol. Rep., 2014, 32(5), 1853-1860.
[http://dx.doi.org/10.3892/or.2014.3401] [PMID: 25119492]
[69]
Cox, D.N.; Chao, A.; Baker, J.; Chang, L.; Qiao, D.; Lin, H. A novel class of evolutionarily conserved genes defined by PIWI are essential for stem cell self-renewal. Genes Dev., 1998, 12(23), 3715-3727.
[http://dx.doi.org/10.1101/gad.12.23.3715] [PMID: 9851978]
[70]
Liu, W.K.; Jiang, X.Y.; Zhang, Z.X. Expression of PSCA, PIWIL1 and TBX2 and its correlation with HPV16 infection in formalin-fixed, paraffin-embedded cervical squamous cell carcinoma specimens. Arch. Virol., 2010, 155(5), 657-663.
[http://dx.doi.org/10.1007/s00705-010-0635-y] [PMID: 20229117]
[71]
He, G.; Chen, L.; Ye, Y.; Xiao, Y.; Hua, K.; Jarjoura, D.; Nakano, T.; Barsky, S.H.; Shen, R.; Gao, J.X. PIWIl2 expressed in various stages of cervical neoplasia is a potential complementary marker for p16. Am. J. Transl. Res., 2010, 2(2), 156-169.
[PMID: 20407605]
[72]
Dang, C.V. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol. Cell. Biol., 1999, 19(1), 1-11.
[http://dx.doi.org/10.1128/MCB.19.1.1] [PMID: 9858526]
[73]
Dang, C.V. MYC on the path to cancer. Cell, 2012, 149(1), 22-35.
[http://dx.doi.org/10.1016/j.cell.2012.03.003] [PMID: 22464321]
[74]
Su, C.; Ren, Z.J.; Wang, F.; Liu, M.; Li, X.; Tang, H. PIWIL4 regulates cervical cancer cell line growth and is involved in down-regulating the expression of p14ARF and p53. FEBS Lett., 2012, 586(9), 1356-1362.
[http://dx.doi.org/10.1016/j.febslet.2012.03.053] [PMID: 22483988]
[75]
Chen, C.; Liu, J.; Xu, G. Overexpression of PIWI proteins in human stage III epithelial ovarian cancer with lymph node metastasis. Cancer Biomark., 2013, 13(5), 315-321.
[http://dx.doi.org/10.3233/CBM-130360] [PMID: 24440970]
[76]
Tan, Y.; Liu, L.; Liao, M.; Zhang, C.; Hu, S.; Zou, M.; Gu, M.; Li, X. Emerging roles for PIWI proteins in cancer. Acta Biochim. Biophys. Sin. (Shanghai), 2015, 47(5), 315-324.
[http://dx.doi.org/10.1093/abbs/gmv018] [PMID: 25854579]
[77]
Singh, G.; Roy, J.; Rout, P.; Mallick, B. Genome-wide profiling of the PIWI-interacting RNA-mRNA regulatory networks in epithelial ovarian cancers. PLoS One, 2018, 13(1), e0190485.
[http://dx.doi.org/10.1371/journal.pone.0190485] [PMID: 29320577]
[78]
Bachmayr-Heyda, A.; Auer, K.; Sukhbaatar, N.; Aust, S.; Deycmar, S.; Reiner, A.T.; Polterauer, S.; Dekan, S.; Pils, D. Small RNAs and the competing endogenous RNA network in high grade serous ovarian cancer tumor spread. Oncotarget, 2016, 7(26), 39640-39653.
[http://dx.doi.org/10.18632/oncotarget.9243] [PMID: 27172797]
[79]
Ravo, M.; Cordella, A.; Rinaldi, A.; Bruno, G.; Alexandrova, E.; Saggese, P.; Nassa, G.; Giurato, G.; Tarallo, R.; Marchese, G.; Rizzo, F.; Stellato, C.; Biancardi, R.; Troisi, J.; Di Spiezio Sardo, A.; Zullo, F.; Weisz, A.; Guida, M. Small non-coding RNA deregulation in endometrial carcinogenesis. Oncotarget, 2015, 6(7), 4677-4691.
[http://dx.doi.org/10.18632/oncotarget.2911] [PMID: 25686835]
[80]
Chen, Z.; Che, Q.; He, X.; Wang, F.; Wang, H.; Zhu, M.; Sun, J.; Wan, X. Stem cell protein PIWIl1 endowed endometrial cancer cells with stem-like properties via inducing epithelial-mesenchymal transition. BMC Cancer, 2015, 15(1), 811.
[http://dx.doi.org/10.1186/s12885-015-1794-8] [PMID: 26506848]
[81]
Chen, Z.; Che, Q.; Jiang, F.Z.; Wang, H.H.; Wang, F.Y.; Liao, Y.; Wan, X.P. PIWIl1 causes epigenetic alteration of PTEN gene via upregulation of DNA methyltransferase in type I endometrial cancer. Biochem. Biophys. Res. Commun., 2015, 463(4), 876-880.
[http://dx.doi.org/10.1016/j.bbrc.2015.06.028] [PMID: 26056945]
[82]
Liu, W.K.; Jiang, X.Y.; Zhang, Z.X. Expression of PSCA, PIWIL1, and TBX2 in endometrial adenocarcinoma. Onkologie, 2010, 33(5), 241-245.
[http://dx.doi.org/10.1159/000305098] [PMID: 20502058]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy