Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Research Status, Synthesis and Clinical Application of Antiepileptic Drugs

Author(s): Si-Jie Wang, Min-Yan Zhao, Peng-Cheng Zhao, Wen Zhang and Guo-Wu Rao*

Volume 31, Issue 4, 2024

Published on: 27 March, 2023

Page: [410 - 452] Pages: 43

DOI: 10.2174/0929867330666230117160632

Price: $65

conference banner
Abstract

According to the 2017 ILAE's official definition, epilepsy is a slow brain disease state characterized by recurrent episodes. Due to information released by ILAE in 2017, it can be divided into four types, including focal epilepsy, generalized epilepsy, combined generalized, and focal epilepsy, and unknown epilepsy. Since 1989, 24 new antiepileptic drugs have been approved to treat different types of epilepsy. Besides, there are a variety of antiepileptic medications under clinical monitoring. These novel antiepileptic drugs have plenty of advantages. Over the past 33 years, there have been many antiepileptic drugs on the mearket, but no one has been found that can completely cure epilepsy. In this paper, the mentioned drugs were classified according to their targets, and the essential information, and clinical studies of each drug were described. The structure-activity relationship of different chemical structures was summarized. This paper provides help for the follow-up research on epilepsy drugs.

Keywords: Brain dysfunction, epilepsy, antiepileptic drugs (AEDs), drugs targets, GABA, glutamate.

[1]
Krauss, G.L.; Klein, P.; Brandt, C.; Lee, S.K.; Milanov, I.; Milovanovic, M.; Steinhoff, B.J.; Kamin, M. Safety and efficacy of adjunctive cenobamate (YKP3089) in patients with uncontrolled focal seizures: a multicentre, double-blind, randomised, placebo-controlled, dose-response trial. Lancet Neurol., 2020, 19(1), 38-48.
[http://dx.doi.org/10.1016/S1474-4422(19)30399-0] [PMID: 31734103]
[2]
Ruffolo, G.; Di Bonaventura, C.; Cifelli, P.; Roseti, C.; Fattouch, J.; Morano, A.; Limatola, C.; Aronica, E.; Palma, E.; Giallonardo, A.T. A novel action of lacosamide on GABAA currents sets the ground for a synergic interaction with levetiracetam in treatment of epilepsy. Neurobiol. Dis., 2018, 115, 59-68.
[http://dx.doi.org/10.1016/j.nbd.2018.03.015] [PMID: 29621596]
[3]
Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.; Mathern, G.W.; Moshé, S.L.; Nordli, D.R.; Perucca, E.; Tomson, T.; Wiebe, S.; Zhang, Y.H.; Zuberi, S.M. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia, 2017, 58(4), 512-521.
[http://dx.doi.org/10.1111/epi.13709] [PMID: 28276062]
[4]
D’Antuono, M.; Köhling, R.; Ricalzone, S.; Gotman, J.; Biagini, G.; Avoli, M. Antiepileptic drugs abolish ictal but not interictal epileptiform discharges in vitro. Epilepsia, 2010, 51(3), 423-431.
[http://dx.doi.org/10.1111/j.1528-1167.2009.02273.x] [PMID: 19694791]
[5]
Lattanzi, S.; Zaccara, G.; Giovannelli, F.; Grillo, E.; Nardone, R.; Silvestrini, M.; Trinka, E.; Brigo, F. Antiepileptic monotherapy in newly diagnosed focal epilepsy. A network meta-analysis. Acta Neurol. Scand., 2019, 139(1), 33-41.
[http://dx.doi.org/10.1111/ane.13025] [PMID: 30194755]
[6]
Betjemann, J.P.; Lowenstein, D.H. Status epilepticus in adults. Lancet Neurol., 2015, 14(6), 615-624.
[http://dx.doi.org/10.1016/S1474-4422(15)00042-3] [PMID: 25908090]
[7]
Bialer, M.; White, H.S. Key factors in the discovery and development of new antiepileptic drugs. Nat. Rev. Drug Discov., 2010, 9(1), 68-82.
[http://dx.doi.org/10.1038/nrd2997] [PMID: 20043029]
[8]
Löscher, W.; Klitgaard, H.; Twyman, R.E.; Schmidt, D. New avenues for anti-epileptic drug discovery and development. Nat. Rev. Drug Discov., 2013, 12(10), 757-776.
[http://dx.doi.org/10.1038/nrd4126] [PMID: 24052047]
[9]
Brodie, M.J.; Besag, F.; Ettinger, A.B.; Mula, M.; Gobbi, G.; Comai, S.; Aldenkamp, A.P.; Steinhoff, B.J. Epilepsy, antiepileptic drugs, and aggression: An evidence-based review. Pharmacol. Rev., 2016, 68(3), 563-602.
[http://dx.doi.org/10.1124/pr.115.012021] [PMID: 27255267]
[10]
Greenfield, L.J. Jr Molecular mechanisms of antiseizure drug activity at GABAA receptors. Seizure, 2013, 22(8), 589-600.
[http://dx.doi.org/10.1016/j.seizure.2013.04.015] [PMID: 23683707]
[11]
Kaufman, K.R.; Lepore, F.E.; Keyser, B.J. Visual fields and tiagabine: a quandary. Seizure, 2001, 10(7), 525-529.
[http://dx.doi.org/10.1053/seiz.2001.0543] [PMID: 11749112]
[12]
Boada, C.M.; Grossman, S.N.; Grzeskowiak, C.L. Proceedings of the 2020 epilepsy foundation pipeline conference: emerging drugs and devices. Epilepsy. Behav., 2021, 125, 15.
[http://dx.doi.org/10.1016/j.yebeh.2021.108364]
[13]
Wirrell, E.C.; Laux, L.; Franz, D.N.; Sullivan, J.; Saneto, R.P.; Morse, R.P.; Devinsky, O.; Chugani, H.; Hernandez, A.; Hamiwka, L.; Mikati, M.A.; Valencia, I.; Le Guern, M.E.; Chancharme, L.; de Menezes, M.S. Stiripentol in Dravet syndrome: Results of a retrospective U.S. study. Epilepsia, 2013, 54(9), 1595-1604.
[http://dx.doi.org/10.1111/epi.12303] [PMID: 23848835]
[14]
Xiao, B.; Long, H. The present status and prospect of antiepileptic drugs. Chin. J. Neurol., 2021, 54(1), 5-8.
[15]
Wallace, S.J. Newer antiepileptic drugs: advantages and disadvantages. Brain Dev., 2001, 23(5), 277-283.
[http://dx.doi.org/10.1016/S0387-7604(01)00230-3] [PMID: 11504596]
[16]
Faught, E.; Wilder, B.J.; Ramsay, R.E.; Reife, R.A.; Kramer, L.D.; Pledger, G.W.; Karim, R.M. Topiramate placebo-controlled dose-ranging trial in refractory partial epilepsy using 200-, 400-, and 600-mg daily dosages. Neurology, 1996, 46(6), 1684-1690.
[http://dx.doi.org/10.1212/WNL.46.6.1684] [PMID: 8649570]
[17]
Mudigoudar, B.; Weatherspoon, S.; Wheless, J.W. Emerging antiepileptic drugs for severe pediatric epilepsies. Semin. Pediatr. Neurol., 2016, 23(2), 167-179.
[http://dx.doi.org/10.1016/j.spen.2016.06.003] [PMID: 27544474]
[18]
Biagini, G.; Rustichelli, C.; Curia, G.; Vinet, J.; Lucchi, C.; Pugnaghi, M.; Meletti, S. Neurosteroids and epileptogenesis. J. Neuroendocrinol., 2013, 25(11), 980-990.
[http://dx.doi.org/10.1111/jne.12063] [PMID: 23763517]
[19]
Bialer, M.; Johannessen, S.I.; Levy, R.H.; Perucca, E.; Tomson, T.; White, H.S. Progress report on new antiepileptic drugs: A summary of the Twelfth Eilat Conference (EILAT XII). Epilepsy Res., 2015, 111, 85-141.
[http://dx.doi.org/10.1016/j.eplepsyres.2015.01.001] [PMID: 25769377]
[20]
Berg, A.T.; Berkovic, S.F.; Brodie, M.J.; Buchhalter, J.; Cross, J.H.; van Emde Boas, W.; Engel, J.; French, J.; Glauser, T.A.; Mathern, G.W.; Moshé, S.L.; Nordli, D.; Plouin, P.; Scheffer, I.E. Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia, 2010, 51(4), 676-685.
[http://dx.doi.org/10.1111/j.1528-1167.2010.02522.x] [PMID: 20196795]
[21]
Martinez Botella, G.; Salituro, F.G.; Harrison, B.L.; Beresis, R.T.; Bai, Z.; Shen, K.; Belfort, G.M.; Loya, C.M.; Ackley, M.A.; Grossman, S.J.; Hoffmann, E.; Jia, S.; Wang, J.; Doherty, J.J.; Robichaud, A.J. Neuroactive steroids. 1. Positive allosteric modulators of the (γ-aminobutyric acid) A receptor: Structure–activity relationships of heterocyclic substitution at C-21. J. Med. Chem., 2015, 58(8), 3500-3511.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00032] [PMID: 25799373]
[22]
Nabbout, R.; Chiron, C. Stiripentol: An example of antiepileptic drug development in childhood epilepsies. Eur. J. Paediatr. Neurol., 2012, 16(Suppl. 1), S13-S17.
[http://dx.doi.org/10.1016/j.ejpn.2012.04.009] [PMID: 22695038]
[23]
Upasani, R.B.; Yang, K.C.; Acosta-Burruel, M.; Konkoy, C.S.; McLellan, J.A.; Woodward, R.M.; Lan, N.C.; Carter, R.B.; Hawkinson, J.E. 3α-Hydroxy-3β-(phenylethynyl)-5β-pregnan-20-ones: Synthesis and pharmacological activity of neuroactive steroids with high affinity for GABAA receptors. J. Med. Chem., 1997, 40(1), 73-84.
[http://dx.doi.org/10.1021/jm9605344] [PMID: 9016330]
[24]
Rosati, A.; Boncristiano, A.; Doccini, V.; Pugi, A.; Pisano, T.; Lenge, M.; De Masi, S.; Guerrini, R. Long‐term efficacy of add‐on stiripentol treatment in children, adolescents, and young adults with refractory epilepsies: A single center prospective observational study. Epilepsia, 2019, 60(11), 2255-2262.
[http://dx.doi.org/10.1111/epi.16363] [PMID: 31630399]
[25]
Perucca, E.; Brodie, M.J.; Kwan, P.; Tomson, T. 30 years of second-generation antiseizure medications: impact and future perspectives. Lancet Neurol., 2020, 19(6), 544-556.
[http://dx.doi.org/10.1016/S1474-4422(20)30035-1] [PMID: 32109411]
[26]
Grosenbaugh, D.K.; Mott, D.D. Stiripentol is anticonvulsant by potentiating GABAergic transmission in a model of benzodiazepine-refractory status epilepticus. Neuropharmacology, 2013, 67, 136-143.
[http://dx.doi.org/10.1016/j.neuropharm.2012.11.002] [PMID: 23168114]
[27]
Fisher, J.L. The anti-convulsant stiripentol acts directly on the GABAA receptor as a positive allosteric modulator. Neuropharmacology, 2009, 56(1), 190-197.
[http://dx.doi.org/10.1016/j.neuropharm.2008.06.004] [PMID: 18585399]
[28]
Quilichini, P.P.; Chiron, C.; Ben-Ari, Y.; Gozlan, H. Stiripentol, a putative antiepileptic drug, enhances the duration of opening of GABAA receptor channels. Epilepsia, 2006, 47(4), 704-716.
[http://dx.doi.org/10.1111/j.1528-1167.2006.00497.x] [PMID: 16650136]
[29]
Duan, P.; Li, S.; Ai, N.; Hu, L.; Welsh, W.J.; You, G. Potent inhibitors of human organic anion transporters 1 and 3 from clinical drug libraries: discovery and molecular characterization. Mol. Pharm., 2012, 9(11), 3340-3346.
[http://dx.doi.org/10.1021/mp300365t] [PMID: 22973893]
[30]
Aboul-Enein, M.N.; El-Azzouny, A.A.; Attia, M.I.; Maklad, Y.A.; Amin, K.M.; Abdel-Rehim, M.; El-Behairy, M.F. Design and synthesis of novel stiripentol analogues as potential anticonvulsants. Eur. J. Med. Chem., 2012, 47(1), 360-369.
[http://dx.doi.org/10.1016/j.ejmech.2011.11.004] [PMID: 22118828]
[31]
David, S.; Blaise, B.; Bruce, C.V.C. Spectroscopic identification, structural features, Hirshfeld surface analysis and molecular docking studies on stiripentol: An orphan antiepileptic drug. J. Mol. Struct., 2018, 13(6), 612-632.
[http://dx.doi.org/10.1016/j.molstruc.2018.11.088]
[32]
Chiron, C. Stiripentol. Neurotherapeutics, 2007, 4(1), 123-125.
[http://dx.doi.org/10.1016/j.nurt.2006.10.001] [PMID: 17199026]
[33]
Chiron, C.; Marchand, M.C.; Tran, A.; Rey, E.; d’Athis, P.; Vincent, J.; Dulac, O.; Pons, G. Stiripentol in severe myoclonic epilepsy in infancy: a randomised placebo-controlled syndrome-dedicated trial. Lancet, 2000, 356(9242), 1638-1642.
[http://dx.doi.org/10.1016/S0140-6736(00)03157-3] [PMID: 11089822]
[34]
Sada, N.; Lee, S.; Katsu, T.; Otsuki, T.; Inoue, T. Targeting LDH enzymes with a stiripentol analog to treat epilepsy. Science, 2015, 347(6228), 1362-1367.
[http://dx.doi.org/10.1126/science.aaa1299] [PMID: 25792327]
[35]
Dodrill, C.B.; Arnett, J.L.; Sommerville, K.W.; Sussman, N.M. Effects of differing dosages of vigabatrin (Sabril) on cognitive abilities and quality of life in epilepsy. Epilepsia, 1995, 36(2), 164-173.
[http://dx.doi.org/10.1111/j.1528-1157.1995.tb00976.x] [PMID: 7821274]
[36]
Bialer, M. Chemical properties of antiepileptic drugs (AEDs). Adv. Drug Deliv. Rev., 2012, 64(10), 887-895.
[http://dx.doi.org/10.1016/j.addr.2011.11.006] [PMID: 22210279]
[37]
Mandal, V.; Andrews, A.; Tirol, F. Ketamine use in a newborn with hemimegalencephaly and super-refractory status epilepticus: A case report. Invest. Med., 2022, 70(4), 1022.
[38]
Bellusci, M.; Trivisano, M.; de Palma, L.; Pietrafusa, N.; Vigevano, F.; Specchio, N. Vigabatrin efficacy in GPR56-associated polymicrogyria: The role of GABAA receptor pathway. Epilepsia, 2016, 57(8), 1337-1338.
[http://dx.doi.org/10.1111/epi.13453] [PMID: 27485378]
[39]
Walters, D.C.; Arning, E.; Bottiglieri, T.; Jansen, E.E.W.; Salomons, G.S.; Brown, M.N.; Schmidt, M.A.; Ainslie, G.R.; Roullet, J.B.; Gibson, K.M. Metabolomic analyses of vigabatrin (VGB)-treated mice: GABA-transaminase inhibition significantly alters amino acid profiles in murine neural and non-neural tissues. Neurochem. Int., 2019, 125, 151-162.
[http://dx.doi.org/10.1016/j.neuint.2019.02.015] [PMID: 30822440]
[40]
Choi, S.; Silverman, R.B. Inactivation and inhibition of gamma-aminobutyric acid aminotransferase by conformationally restricted vigabatrin analogues. J. Med. Chem., 2002, 45(20), 4531-4539.
[http://dx.doi.org/10.1021/jm020134i] [PMID: 12238932]
[41]
Trost, B.M.; Lemoine, R.C. An asymmetric synthesis of vigabatrin. Tetrahedron Lett., 1996, 37(51), 9161-9164.
[http://dx.doi.org/10.1016/S0040-4039(96)02148-X]
[42]
Sills, G.J.; Butler, E.; Thompson, G.G.; Brodie, M.J. Vigabatrin and tiagabine are pharmacologically different drugs. A pre-clinical study. Seizure, 1999, 8(7), 404-411.
[http://dx.doi.org/10.1053/seiz.1999.0326] [PMID: 10600581]
[43]
Richens, A.; Chadwick, D.W.; Duncan, J.S.; Dam, M.; Gram, L.; Mikkelsen, M.; Morrow, J.; Mengel, H.; Shu, V.; McKelvy, J.F.; Pierce, M.W. Adjunctive treatment of partial seizures with tiagabine: A placebo-controlled trial. Epilepsy Res., 1995, 21(1), 37-42.
[http://dx.doi.org/10.1016/0920-1211(95)00006-V] [PMID: 7641674]
[44]
Fritz, N.; Glogau, S.; Hoffmann, J.; Rademacher, M.; Elger, C.E.; Helmstaedter, C. Efficacy and cognitive side effects of tiagabine and topiramate in patients with epilepsy. Epilepsy Behav., 2005, 6(3), 373-381.
[http://dx.doi.org/10.1016/j.yebeh.2005.01.002] [PMID: 15820346]
[45]
Uldall, P.; Bulteau, C.; Pedersen, S.A.; Dulac, O.; Lyby, K. Tiagabine adjunctive therapy in children with refractory epilepsy: a single-blind dose escalating study. Epilepsy Res., 2000, 42(2-3), 159-168.
[http://dx.doi.org/10.1016/S0920-1211(00)00173-X] [PMID: 11074188]
[46]
Schmidt, D.; Gram, L.; Brodie, M.; Krämer, G.; Perucca, E.; Kälviäinen, R.; Elger, C.E. Tiagabine in the treatment of epilepsy - a clinical review with a guide for the prescribing physician. Epilepsy Res., 2000, 41(3), 245-251.
[http://dx.doi.org/10.1016/S0920-1211(00)00149-2] [PMID: 10962215]
[47]
Al-Otaibi, F. An overview of structurally diversified anticonvulsant agents. Acta Pharm., 2019, 69(3), 321-344.
[http://dx.doi.org/10.2478/acph-2019-0023] [PMID: 31259739]
[48]
Lee, E.C.; Chorghade, M.S.; Petersen, H. Efficient syntheses of regioisomers of tiagabine. Abstr. Pap. Am. Chem. Soc., 1995, 209, 43.
[49]
Singh, B.K.; White-Scott, S. Role of topiramate in adults with intractable epilepsy, mental retardation, and developmental disabilities. Seizure, 2002, 11(1), 47-50.
[http://dx.doi.org/10.1053/seiz.2001.0571] [PMID: 11888260]
[50]
de Araujo Filho, G.M.; Pascalicchio, T.F.; Lin, K.; Sousa, P.S.; Yacubian, E.M.T. Neuropsychiatric profiles of patients with juvenile myoclonic epilepsy treated with valproate or topiramate. Epilepsy Behav., 2006, 8(3), 606-609.
[http://dx.doi.org/10.1016/j.yebeh.2006.01.016] [PMID: 16504593]
[51]
Brandt, C.; Lahr, D.; May, T.W. Cognitive adverse events of topiramate in patients with epilepsy and intellectual disability. Epilepsy Behav., 2015, 45, 261-264.
[http://dx.doi.org/10.1016/j.yebeh.2014.12.043] [PMID: 25843340]
[52]
Hernández-Díaz, S.; Smith, C.R.; Shen, A.; Mittendorf, R.; Hauser, W.A.; Yerby, M.; Holmes, L.B. Comparative safety of antiepileptic drugs during pregnancy. Neurology, 2012, 78(21), 1692-1699.
[http://dx.doi.org/10.1212/WNL.0b013e3182574f39] [PMID: 22551726]
[53]
Baker, G.A.; Currie, N.G.T.; Light, M.J.; Schneiderman, J.H. The effects of adjunctive topiramate therapy on seizure severity and health-related quality of life in patients with refractory epilepsy-a Canadian study. Seizure, 2002, 11(1), 6-15.
[http://dx.doi.org/10.1053/seiz.2001.0581] [PMID: 11888254]
[54]
Perucca, E. A pharmacological and clinical review on topiramate, a new antiepileptic drug. Pharmacol. Res., 1997, 35(4), 241-256.
[http://dx.doi.org/10.1006/phrs.1997.0124] [PMID: 9264038]
[55]
Mula, M. Topiramate and cognitive impairment: evidence and clinical implications. Ther. Adv. Drug Saf., 2012, 3(6), 279-289.
[http://dx.doi.org/10.1177/2042098612455357] [PMID: 25083242]
[56]
Kudin, A.P.; Debska-Vielhaber, G.; Vielhaber, S.; Elger, C.E.; Kunz, W.S. The mechanism of neuroprotection by topiramate in an animal model of epilepsy. Epilepsia, 2004, 45(12), 1478-1487.
[http://dx.doi.org/10.1111/j.0013-9580.2004.13504.x] [PMID: 15571505]
[57]
Saeidian, H.; Abdoli, M. The first general protocol for N -monoalkylation of sulfamate esters: benign synthesis of N -alkyl Topiramate (anticonvulsant drug) derivatives. J. Sulfur Chem., 2015, 36(5), 463-470.
[http://dx.doi.org/10.1080/17415993.2015.1069294]
[58]
Reife, R.; Pledger, G.; Wu, S.C. Topiramate as add-on therapy: pooled analysis of randomized controlled trials in adults. Epilepsia, 2000, 41(s1), 66-71.
[http://dx.doi.org/10.1111/j.1528-1157.2000.tb02175.x] [PMID: 10768304]
[59]
Marcotte, D. Use of topiramate, a new anti-epileptic as a mood stabilizer. J. Affect. Disord., 1998, 50(2-3), 245-251.
[http://dx.doi.org/10.1016/S0165-0327(98)00110-4] [PMID: 9858083]
[60]
Shank, R.P.; Maryanoff, B.E. Molecular pharmacodynamics, clinical therapeutics, and pharmacokinetics of topiramate. CNS Neurosci. Ther., 2008, 14(2), 120-142.
[http://dx.doi.org/10.1111/j.1527-3458.2008.00041.x] [PMID: 18482025]
[61]
Stephen, L.J.; Sills, G.J.; Brodie, M.J. Topiramate in refractory epilepsy: a prospective observational study. Epilepsia, 2000, 41(8), 977-980.
[http://dx.doi.org/10.1111/j.1528-1157.2000.tb00282.x] [PMID: 10961624]
[62]
Lazarini-Lopes, W.; Do Val-da Silva, R.A.; da Silva-Júnior, R.M.P.; Leite, J.P.; Garcia-Cairasco, N. The anticonvulsant effects of cannabidiol in experimental models of epileptic seizures: From behavior and mechanisms to clinical insights. Neurosci. Biobehav. Rev., 2020, 111, 166-182.
[http://dx.doi.org/10.1016/j.neubiorev.2020.01.014] [PMID: 31954723]
[63]
Leo, A.; Russo, E.; Elia, M. Cannabidiol and epilepsy: Rationale and therapeutic potential. Pharmacol. Res., 2016, 107, 85-92.
[http://dx.doi.org/10.1016/j.phrs.2016.03.005] [PMID: 26976797]
[64]
Tamir, I.; Mechoulam, R.; Meyer, A.Y. Cannabidiol and phenytoin: a structural comparison. J. Med. Chem., 1980, 23(2), 220-223.
[http://dx.doi.org/10.1021/jm00176a022] [PMID: 7359539]
[65]
Lago-Fernandez, A.; Redondo, V.; Hernandez-Folgado, L. New methods for the synthesis of cannabidiol derivatives. In: Cannabinoids and Their Receptors; REGGIO, P.H., Ed.; Elsevier Academic Press Inc.: San Diego, 2017; pp. 237-257.
[66]
Thiele, E.A.; Marsh, E.D.; French, J.A.; Mazurkiewicz-Beldzinska, M.; Benbadis, S.R.; Joshi, C.; Lyons, P.D.; Taylor, A.; Roberts, C.; Sommerville, K.; Gunning, B.; Gawlowicz, J.; Lisewski, P.; Mazurkiewicz Beldzinska, M.; Mitosek Szewczyk, K.; Steinborn, B.; Zolnowska, M.; Hughes, E.; McLellan, A.; Benbadis, S.; Ciliberto, M.; Clark, G.; Dlugos, D.; Filloux, F.; Flamini, R.; French, J.; Frost, M.; Haut, S.; Joshi, C.; Kapoor, S.; Kessler, S.; Laux, L.; Lyons, P.; Marsh, E.; Moore, D.; Morse, R.; Nagaraddi, V.; Rosenfeld, W.; Seltzer, L.; Shellhaas, R.; Sullivan, J.; Thiele, E.; Thio, L.L.; Wang, D.; Wilfong, A. Cannabidiol in patients with seizures associated with Lennox-Gastaut syndrome (GWPCARE4): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet, 2018, 391(10125), 1085-1096.
[http://dx.doi.org/10.1016/S0140-6736(18)30136-3] [PMID: 29395273]
[67]
Groeneveld, G.J.; Martin, J.H. Parasitic pharmacology: A plausible mechanism of action for cannabidiol. Br. J. Clin. Pharmacol., 2020, 86(2), 189-191.
[http://dx.doi.org/10.1111/bcp.14028] [PMID: 31290177]
[68]
Devinsky, O.; Patel, A.D.; Thiele, E.A.; Wong, M.H.; Appleton, R.; Harden, C.L.; Greenwood, S.; Morrison, G.; Sommerville, K. Randomized, dose-ranging safety trial of cannabidiol in Dravet syndrome. Neurology, 2018, 90(14), e1204-e1211.
[http://dx.doi.org/10.1212/WNL.0000000000005254] [PMID: 29540584]
[69]
Devinsky, O.; Marsh, E.; Friedman, D. Cannabidiol in patients with treatment-resistant epilepsy – Authors’ reply. Lancet Neurol., 2016, 15(6), 545-546.
[http://dx.doi.org/10.1016/S1474-4422(16)00120-4] [PMID: 27302119]
[70]
Devinsky, O.; Marsh, E.; Friedman, D.; Thiele, E.; Laux, L.; Sullivan, J.; Miller, I.; Flamini, R.; Wilfong, A.; Filloux, F.; Wong, M.; Tilton, N.; Bruno, P.; Bluvstein, J.; Hedlund, J.; Kamens, R.; Maclean, J.; Nangia, S.; Singhal, N.S.; Wilson, C.A.; Patel, A.; Cilio, M.R. Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. Lancet Neurol., 2016, 15(3), 270-278.
[http://dx.doi.org/10.1016/S1474-4422(15)00379-8] [PMID: 26724101]
[71]
Costa, A.M.; Senn, L.; Anceschi, L.; Brighenti, V.; Pellati, F.; Biagini, G. Antiseizure effects of fully characterized non-psychoactive Cannabis sativa L. extracts in the repeated 6-Hz corneal stimulation test. Pharmaceuticals (Basel), 2021, 14(12), 1259.
[http://dx.doi.org/10.3390/ph14121259] [PMID: 34959660]
[72]
Senn, L.; Cannazza, G.; Biagini, G. Receptors and channels possibly mediating the effects of phytocannabinoids on seizures and epilepsy. Pharmaceuticals (Basel), 2020, 13(8), 174.
[http://dx.doi.org/10.3390/ph13080174] [PMID: 32751761]
[73]
Cerne, R.; Lippa, A.; Poe, M.M.; Smith, J.L.; Jin, X.; Ping, X.; Golani, L.K.; Cook, J.M.; Witkin, J.M. GABAkines – Advances in the discovery, development, and commercialization of positive allosteric modulators of GABAA receptors. Pharmacol. Ther., 2022, 234, 108035.
[http://dx.doi.org/10.1016/j.pharmthera.2021.108035] [PMID: 34793859]
[74]
Aida, V.; Niedzielko, T.L.; Szaflarski, J.P.; Floyd, C.L. Acute administration of perampanel, an AMPA receptor antagonist, reduces cognitive impairments after traumatic brain injury in rats. Exp. Neurol., 2020, 327, 113222.
[http://dx.doi.org/10.1016/j.expneurol.2020.113222] [PMID: 32027929]
[75]
Lee, S.M.; Asress, S.; Hales, C.M.; Gearing, M.; Vizcarra, J.C.; Fournier, C.N.; Gutman, D.A.; Chin, L.S.; Li, L.; Glass, J.D. TDP-43 cytoplasmic inclusion formation is disrupted in C9orf72-associated amyotrophic lateral sclerosis/frontotemporal lobar degeneration. Brain Commun., 2019, 1(1), fcz014.
[http://dx.doi.org/10.1093/braincomms/fcz014] [PMID: 31633109]
[76]
Tremblay, G.; Howard, D.; Tsong, W.; Patel, V.; De Rosendo, J. Cost-effectiveness of perampanel for the treatment of primary generalized tonic-clonic seizures (PGTCS) in epilepsy: A Spanish perspective. Epilepsy Behav., 2018, 86, 108-115.
[http://dx.doi.org/10.1016/j.yebeh.2018.06.002] [PMID: 30001911]
[77]
Raedler, L. A. Fycompa (Perampanel hydrate) receives expanded indication for primary generalized tonic-clonic seizures Am. Health Drug Benefits, 2016, 9(Spec Feature), 88.
[78]
Chang, F.M.; Fan, P.C.; Weng, W.C.; Chang, C.H.; Lee, W.T. The efficacy of perampanel in young children with drug-resistant epilepsy. Seizure, 2020, 75, 82-86.
[http://dx.doi.org/10.1016/j.seizure.2019.12.024] [PMID: 31901668]
[79]
French, J.A.; Krauss, G.L.; Biton, V.; Squillacote, D.; Yang, H.; Laurenza, A.; Kumar, D.; Rogawski, M.A. Adjunctive perampanel for refractory partial-onset seizures: Randomized phase III study 304. Neurology, 2012, 79(6), 589-596.
[http://dx.doi.org/10.1212/WNL.0b013e3182635735] [PMID: 22843280]
[80]
McGee, J.H.; Erikson, D.J.; Galbreath, C.; Willigan, D.A.; Sofia, R.D. Acute, subchronic, and chronic toxicity studies with felbamate, 2-phenyl-1,3-propanediol dicarbamate. Toxicol. Sci., 1998, 45(2), 225-232.
[http://dx.doi.org/10.1093/toxsci/45.2.225] [PMID: 9848129]
[81]
Mazzocchetti, P.; Mancini, A.; Sciaccaluga, M.; Megaro, A.; Bellingacci, L.; Di Filippo, M.; Cesarini, E.N.; Romoli, M.; Carrano, N.; Gardoni, F.; Tozzi, A.; Calabresi, P.; Costa, C. Low doses of Perampanel protect striatal and hippocampal neurons against in vitro ischemia by reversing the ischemia-induced alteration of AMPA receptor subunit composition. Neurobiol. Dis., 2020, 140, 104848.
[http://dx.doi.org/10.1016/j.nbd.2020.104848] [PMID: 32222474]
[82]
Hibi, S.; Ueno, K.; Nagato, S.; Kawano, K.; Ito, K.; Norimine, Y.; Takenaka, O.; Hanada, T.; Yonaga, M. Discovery of 2-(2-oxo-1-phenyl-5-pyridin-2-yl-1,2-dihydro-pyridin-3-yl)benzonitrile (perampanel): A novel, noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropa-noic acid (AMPA) receptor antagonist. J. Med. Chem., 2012, 55(23), 10584-10600.
[http://dx.doi.org/10.1021/jm301268u] [PMID: 23181587]
[83]
Marom, E.; Rubnov, S. Process and intermediates for the preparation of perampanel. US Patent US10111867, 2018.
[84]
Sullivan, B.J.; Ammanuel, S.; Kipnis, P.A.; Araki, Y.; Huganir, R.L.; Kadam, S.D. Low-dose perampanel rescues cortical gamma dysregulation associated with parvalbumin interneuron glua2 upregulation in epileptic Syngap1+/− mice. Biol. Psychiatry, 2020, 87(9), 829-842.
[http://dx.doi.org/10.1016/j.biopsych.2019.12.025] [PMID: 32107006]
[85]
Brigo, F.; Lattanzi, S.; Rohracher, A. Perampanel in the treatment of status epilepticus: a systematic review of the literature. Epilepsia, 2018, 59(S120), S.
[http://dx.doi.org/10.1016/j.yebeh.2018.07.004]
[86]
Galati, C.; Pironti, E.; Cucinotta, F. Perampanel treatment in drug-resistant focal epilepsy with de novo mutation CACNA1H: characteristics and clinical outcome. Eur. Neuropsychopharmacol., 2017, 27, S1110-S.
[87]
Pistovcakova, J.; Makatsori, A.; Sulcova, A.; Jezova, D. Felbamate reduces hormone release and locomotor hypoactivity induced by repeated stress of social defeat in mice. Eur. Neuropsychopharmacol., 2005, 15(2), 153-158.
[http://dx.doi.org/10.1016/j.euroneuro.2004.08.007] [PMID: 15695059]
[88]
Avanzini, G.; Canger, R.; Dalla Bernardina, B.; Vigevano, F. Felbamate in therapy-resistant epilepsy: an Italian experience. Epilepsy Res., 1996, 25(3), 249-255.
[http://dx.doi.org/10.1016/S0920-1211(96)00070-8] [PMID: 8956923]
[89]
Contin, M.; Balboni, M.; Callegati, E.; Candela, C.; Albani, F.; Riva, R.; Baruzzi, A. Simultaneous liquid chromatographic determination of lamotrigine, oxcarbazepine monohydroxy derivative and felbamate in plasma of patients with epilepsy. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 828(1-2), 113-117.
[http://dx.doi.org/10.1016/j.jchromb.2005.09.009] [PMID: 16182617]
[90]
Brodie, M.; Pellock, J. Taming the brain storms: felbamate updated. Lancet, 1995, 346(8980), 918-919.
[http://dx.doi.org/10.1016/S0140-6736(95)91550-8] [PMID: 7564721]
[91]
Luszczki, J.J.; Andres-Mach, M.M.; Ratnaraj, N.; Patsalos, P.N.; Czuczwar, S.J. Levetiracetam and felbamate interact both pharmacodynamically and pharmacokinetically: an isobolographic analysis in the mouse maximal electroshock model. Epilepsia, 2007, 48(4), 806-815.
[http://dx.doi.org/10.1111/j.1528-1167.2006.00964.x] [PMID: 17284299]
[92]
Ketter, T.A.; Malow, B.A.; Flamini, R.; Ko, D.; White, S.R.; Post, R.M.; Theodore, W.H. Felbamate monotherapy has stimulant-like effects in patients with epilepsy. Epilepsy Res., 1996, 23(2), 129-137.
[http://dx.doi.org/10.1016/0920-1211(95)00089-5] [PMID: 8964274]
[93]
Hen, N.; Bialer, M.; Yagen, B. Syntheses and evaluation of anticonvulsant activity of novel branched alkyl carbamates. J. Med. Chem., 2012, 55(6), 2835-2845.
[http://dx.doi.org/10.1021/jm201751x] [PMID: 22339381]
[94]
Peña-López, M.; Neumann, H.; Beller, M. Iron-catalyzed reaction of urea with alcohols and amines: a safe alternative for the synthesis of primary carbamates. ChemSusChem, 2016, 9(16), 2233-2238.
[http://dx.doi.org/10.1002/cssc.201600587] [PMID: 27403875]
[95]
Ebert, U.; Reissmüller, E.; Löscher, W. The new antiepileptic drugs lamotrigine and felbamate are effective in phenytoin-resistant kindled rats. Neuropharmacology, 2000, 39(10), 1893-1903.
[http://dx.doi.org/10.1016/S0028-3908(00)00039-3] [PMID: 10884570]
[96]
Hussain, S.A.; Asilnejad, B.; Heesch, J.; Navarro, M.; Ji, M.; Shrey, D.W.; Rajaraman, R.R.; Sankar, R. Felbamate in the treatment of refractory epileptic spasms. Epilepsy Res., 2020, 161, 106284.
[http://dx.doi.org/10.1016/j.eplepsyres.2020.106284] [PMID: 32058261]
[97]
Mazarati, A.M.; Baldwin, R.A.; Sofia, R.D.; Wasterain, C.G. Felbamate in experimental model of status epilepticus. Epilepsia, 2000, 41(2), 123-127.
[http://dx.doi.org/10.1111/j.1528-1157.2000.tb00130.x] [PMID: 10691107]
[98]
Pal, R.; Singh, K.; Khan, S.A.; Chawla, P.; Kumar, B.; Akhtar, M.J. Reactive metabolites of the anticonvulsant drugs and approaches to minimize the adverse drug reaction. Eur. J. Med. Chem., 2021, 226, 113890.
[http://dx.doi.org/10.1016/j.ejmech.2021.113890] [PMID: 34628237]
[99]
Bialer, M.; Johannessen, S.I.; Koepp, M.J.; Levy, R.H.; Perucca, E.; Perucca, P.; Tomson, T.; White, H.S. Progress report on new antiepileptic drugs: A summary of the fifteenth eilat conference on new antiepileptic drugs and devices (EILAT XV). II. Drugs in more advanced clinical development. Epilepsia, 2020, 61(11), 2365-2385.
[http://dx.doi.org/10.1111/epi.16726] [PMID: 33165915]
[100]
Lechuga, L.; Franz, D.N. Everolimus as adjunctive therapy for tuberous sclerosis complex-associated partial-onset seizures. Expert Rev. Neurother., 2019, 19(10), 913-925.
[http://dx.doi.org/10.1080/14737175.2019.1635457] [PMID: 31335226]
[101]
Samueli, S.; Abraham, K.; Dressler, A.; Gröppel, G.; Mühlebner-Fahrngruber, A.; Scholl, T.; Kasprian, G.; Laccone, F.; Feucht, M. Efficacy and safety of Everolimus in children with TSC - associated epilepsy – Pilot data from an open single-center prospective study. Orphanet J. Rare Dis., 2016, 11(1), 145.
[http://dx.doi.org/10.1186/s13023-016-0530-z] [PMID: 27809914]
[102]
Krueger, D.A.; Wilfong, A.A.; Holland-Bouley, K.; Anderson, A.E.; Agricola, K.; Tudor, C.; Mays, M.; Lopez, C.M.; Kim, M.O.; Franz, D.N. Everolimus treatment of refractory epilepsy in tuberous sclerosis complex. Ann. Neurol., 2013, 74(5), 679-687.
[http://dx.doi.org/10.1002/ana.23960] [PMID: 23798472]
[103]
Kuhn, B.; Jacobsen, W.; Christians, U.; Benet, L.Z.; Kollman, P.A. Metabolism of sirolimus and its derivative everolimus by cytochrome P450 3A4: insights from docking, molecular dynamics, and quantum chemical calculations. J. Med. Chem., 2001, 44(12), 2027-2034.
[http://dx.doi.org/10.1021/jm010079y] [PMID: 11384247]
[104]
Supurgibekov, M. B.; Shestakov, A. N.; Sharkov, D. E. New method for producing everolimus. RU2716714-C1,
[105]
Fronza, G.; Fuganti, C.; Grasselli, P.; Mele, A. The mode of bakers’ yeast transformation of 3-chloropropiophenone and related ketones. Synthesis of (2S)-[2-2H]propiophenone, (R)-fluoxetine, and (R)- and (S)-fenfluramine. J. Org. Chem., 1991, 56(21), 6019-6023.
[http://dx.doi.org/10.1021/jo00021a011]
[106]
Thijs, R.D.; Surges, R.; O’Brien, T.J.; Sander, J.W. Epilepsy in adults. Lancet, 2019, 393(10172), 689-701.
[http://dx.doi.org/10.1016/S0140-6736(18)32596-0] [PMID: 30686584]
[107]
Fuller, R.W.; Snoddy, H.D.; Clemens, J.A.; Molloy, B.B. Effect of norfenfluramine and two structural analogues on brain 5-hydroxyindoles and serum prolactin in rats. J. Pharm. Pharmacol., 2011, 34(7), 449-450.
[http://dx.doi.org/10.1111/j.2042-7158.1982.tb04755.x] [PMID: 6181246]
[108]
Goument, B.; Duhamel, L.; Mauge, R. Asymmetric syntheses of (S)-fenfluramine using sharpless epoxidation methods. Tetrahedron, 1994, 50(1), 171-188.
[http://dx.doi.org/10.1016/S0040-4020(01)80743-2]
[109]
Tu, W.; Qian, S. Anti-epileptic effect of 16-O-acetyldigitoxigenin via suppressing mTOR signaling pathway. Cell. Mol. Biol., 2019, 65(5), 59-63.
[http://dx.doi.org/10.14715/cmb/2019.65.5.10] [PMID: 31304908]
[110]
Brandt, C.; Hillmann, P.; Noack, A.; Römermann, K.; Öhler, L.A.; Rageot, D.; Beaufils, F.; Melone, A.; Sele, A.M.; Wymann, M.P.; Fabbro, D.; Löscher, W. The novel, catalytic mTORC1/2 inhibitor PQR620 and the PI3K/mTORC1/2 inhibitor PQR530 effectively cross the blood-brain barrier and increase seizure threshold in a mouse model of chronic epilepsy. Neuropharmacology, 2018, 140, 107-120.
[http://dx.doi.org/10.1016/j.neuropharm.2018.08.002] [PMID: 30081001]
[111]
Nakamura, M.; Cho, J.H.; Shin, H.; Jang, I.S. Effects of cenobamate (YKP3089), a newly developed anti-epileptic drug, on voltage-gated sodium channels in rat hippocampal CA3 neurons. Eur. J. Pharmacol., 2019, 855, 175-182.
[http://dx.doi.org/10.1016/j.ejphar.2019.05.007] [PMID: 31063770]
[112]
Sills, G. The mechanisms of action of gabapentin and pregabalin. Curr. Opin. Pharmacol., 2006, 6(1), 108-113.
[http://dx.doi.org/10.1016/j.coph.2005.11.003] [PMID: 16376147]
[113]
Mantegazza, M.; Curia, G.; Biagini, G.; Ragsdale, D.S.; Avoli, M. Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurol., 2010, 9(4), 413-424.
[http://dx.doi.org/10.1016/S1474-4422(10)70059-4] [PMID: 20298965]
[114]
Kim, D.Y.; Moon, J.; Shin, Y.W.; Lee, S.T.; Jung, K.H.; Park, K.I.; Jung, K.Y.; Kim, M.; Lee, S.; Yu, K.S.; Jang, I.J.; Song, K.; Chu, K.; Lee, S. Usefulness of saliva for perampanel therapeutic drug monitoring. Epilepsia, 2020, 61(6), 1120-1128.
[http://dx.doi.org/10.1111/epi.16513] [PMID: 32378757]
[115]
Park, S.; Lee, H.; Jung, D. Long-term cognitive effects of oxcarbazepine monotherapy in epilepsy patients. J. Neurol. Sci., 2005, 238, S138-S.
[116]
Ide, M.; Kato, T.; Nakata, M.; Saito, K.; Yoshida, T.; Awaya, T.; Heike, T. A granulocytosis associated with rufinamide: A case report. Brain Dev., 2015, 37(8), 825-828.
[http://dx.doi.org/10.1016/j.braindev.2014.12.010] [PMID: 25619447]
[117]
Spina, E.; Pisani, F.; de Leon, J. Clinically significant pharmacokinetic drug interactions of antiepileptic drugs with new antidepressants and new antipsychotics. Pharmacol. Res., 2016, 106, 72-86.
[http://dx.doi.org/10.1016/j.phrs.2016.02.014] [PMID: 26896788]
[118]
Franco, V.; Gatti, G.; Mazzucchelli, I.; Marchiselli, R.; Fattore, C.; Rota, P.; Galimberti, C.A.; Capovilla, G.; Beccaria, F.; De Giorgis, V.; Johannessen Landmark, C.; Perucca, E. Relationship between saliva and plasma rufinamide concentrations in patients with epilepsy. Epilepsia, 2020, 61(7), e79-e84.
[http://dx.doi.org/10.1111/epi.16584] [PMID: 32562438]
[119]
Bootsma, H.P.R.; Vos, A.M.; Hulsman, J.; Lambrechts, D.; Leenen, L.; Majoie, M.; Savelkoul, M.; Schellekens, A.; Aldenkamp, A.P. Lamotrigine in clinical practice: Long-term experience in patients with refractory epilepsy referred to a tertiary epilepsy center. Epilepsy Behav., 2008, 12(2), 262-268.
[http://dx.doi.org/10.1016/j.yebeh.2007.10.004] [PMID: 18093878]
[120]
Brodie, M.J.; Richens, A.; Yuen, A.W.C. Double-blind comparison of lamotrigine and carbamazepine in newly diagnosed epilepsy. Lancet, 1995, 345(8948), 476-479.
[http://dx.doi.org/10.1016/S0140-6736(95)90581-2] [PMID: 7710545]
[121]
Brodie, M.J. Zonisamide as adjunctive therapy for refractory partial seizures. Epilepsy Res., 2006, 68(Suppl. 2), S11-S16.
[http://dx.doi.org/10.1016/j.eplepsyres.2005.11.005] [PMID: 16316744]
[122]
Glauser, T.; Ben-Menachem, E.; Bourgeois, B.; Cnaan, A.; Guerreiro, C.; Kälviäinen, R.; Mattson, R.; French, J.A.; Perucca, E.; Tomson, T. Updated ILAE evidence review of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes. Epilepsia, 2013, 54(3), 551-563.
[http://dx.doi.org/10.1111/epi.12074] [PMID: 23350722]
[123]
Rocamora, R.; Peltola, J.; Assenza, G.; McMurray, R.; Villanueva, V. Safety, tolerability and effectiveness of transition to eslicarbazepine acetate from carbamazepine or oxcarbazepine in clinical practice. Seizure, 2020, 75, 121-128.
[http://dx.doi.org/10.1016/j.seizure.2019.12.022] [PMID: 31981862]
[124]
Weissinger, F.; Losch, F.; Winter, Y.; Brecht, S.; Lendemans, D.; Kockelmann, E. Effectiveness of eslicarbazepine acetate in dependency of baseline anticonvulsant therapy: Results from a German prospective multicenter clinical practice study. Epilepsy Behav., 2019, 101(Pt A), 106574.
[http://dx.doi.org/10.1016/j.yebeh.2019.106574] [PMID: 31678808]
[125]
Kirkham, F.; Auvin, S.; Moreira, J.; Gama, H.; Falcão, A.C.; Rocha, J.F.; Soares-da-Silva, P. Efficacy and safety of eslicarbazepine acetate as adjunctive therapy for refractory focal-onset seizures in children: A double-blind, randomized, placebo-controlled, parallel-group, multicenter, phase-III clinical trial. Epilepsy Behav., 2020, 105, 106962.
[http://dx.doi.org/10.1016/j.yebeh.2020.106962] [PMID: 32151803]
[126]
Villanueva, V.; Bermejo, P.; Montoya, J.; Massot-Tarrús, A.; Galiano, M.L.; Toledo, M.; Rodriguez-Uranga, J.J.; Bertol, V.; Mauri, J.Á.; Poza, J.J.; Bonet, M.; Castro-Vilanova, M.D.; Ruiz-Giménez, J.; López-González, F.J.; Rodríguez-Osorio, X.; Tortosa-Conesa, D.; Ojeda, J.; Giner, P.; Garcés, M.; Alvarez, B.M.; Quiroga-Subirana, P.; Esteve, P.; Baiges, J.J.; Hampel, K. MONOZEB: Long-term observational study of eslicarbazepine acetate monotherapy. Epilepsy Behav., 2019, 97, 51-59.
[http://dx.doi.org/10.1016/j.yebeh.2019.05.003] [PMID: 31181429]
[127]
Verrotti, A.; Loiacono, G.; Rossi, A.; Zaccara, G. Eslicarbazepine acetate: An update on efficacy and safety in epilepsy. Epilepsy Res., 2014, 108(1), 1-10.
[http://dx.doi.org/10.1016/j.eplepsyres.2013.10.005] [PMID: 24225327]
[128]
Unverferth, K.; Engel, J.; Höfgen, N.; Rostock, A.; Günther, R.; Lankau, H.J.; Menzer, M.; Rolfs, A.; Liebscher, J.; Müller, B.; Hofmann, H.J. Synthesis, anticonvulsant activity, and structure-activity relationships of sodium channel blocking 3-aminopyrroles. J. Med. Chem., 1998, 41(1), 63-73.
[http://dx.doi.org/10.1021/jm970327j] [PMID: 9438023]
[129]
Ravinder, B.; Rajeshwar Reddy, S.; Sridhar, M.; Murali Mohan, M.; Srinivas, K.; Panasa Reddy, A.; Bandichhor, R. An efficient synthesis for eslicarbazepine acetate, oxcarbazepine, and carbamazepine. Tetrahedron Lett., 2013, 54(22), 2841-2844.
[http://dx.doi.org/10.1016/j.tetlet.2013.03.089]
[130]
Chang, R.S.; Lui, H.K.K.; Lui, H.T.C.; Leung, C.Y.W.; Leung, Y.H.I.; Wang, Y.O. Efficacy upon 12-weeks after achievement of maximal dose and tolerability of lacosamide as an adjunctive therapy in epilepsy: Real world clinical experience. J. Neurol. Sci., 2020, 409, 116601.
[http://dx.doi.org/10.1016/j.jns.2019.116601] [PMID: 31801052]
[131]
Ben-Menachem, E.; Grebe, H.P.; Terada, K.; Jensen, L.; Li, T.; De Backer, M.; Steiniger-Brach, B.; Gasalla, T.; Brock, M.; Biton, V. Long‐term safety and efficacy of lacosamide and controlled‐release carbamazepine monotherapy in patients with newly diagnosed epilepsy. Epilepsia, 2019, 60(12), 2437-2447.
[http://dx.doi.org/10.1111/epi.16381] [PMID: 31755090]
[132]
Curia, G.; Biagini, G.; Perucca, E.; Avoli, M. Lacosamide. CNS Drugs, 2009, 23(7), 555-568.
[http://dx.doi.org/10.2165/00023210-200923070-00002] [PMID: 19552484]
[133]
Lattanzi, S.; Cagnetti, C.; Foschi, N.; Provinciali, L.; Silvestrini, M. Lacosamide monotherapy for partial onset seizures. Seizure, 2015, 27, 71-74.
[http://dx.doi.org/10.1016/j.seizure.2015.03.003] [PMID: 25891931]
[134]
King, A.M.; Salomé, C.; Salomé-Grosjean, E.; De Ryck, M.; Kaminski, R.; Valade, A.; Stables, J.P.; Kohn, H. Primary amino acid derivatives: substitution of the 4′-N′-benzylamide site in (R)-N′-benzyl 2-amino-3-methyl-butanamide, (R)-N′-benzyl 2-amino-3,3-dimethylbut-anamide, and (R)-N′-benzyl 2-amino-3-methoxypropiona-mide provides potent anticonvulsants with pain-attenuating properties. J. Med. Chem., 2011, 54(19), 6417-6431.
[http://dx.doi.org/10.1021/jm200759t] [PMID: 21861463]
[135]
Gavatha, M.; Ioannou, I.; Papavasiliou, A.S. Efficacy and tolerability of oral lacosamide as adjunctive therapy in pediatric patients with pharmacoresistant focal epilepsy. Epilepsy Behav., 2011, 20(4), 691-693.
[http://dx.doi.org/10.1016/j.yebeh.2011.02.005] [PMID: 21406334]
[136]
Morieux, P.; Salomé, C.; Park, K.D.; Stables, J.P.; Kohn, H. The structure-activity relationship of the 3-oxy site in the anticonvulsant (R)-N-benzyl 2-acetamido-3-methoxypro-pionamide. J. Med. Chem., 2010, 53(15), 5716-5726.
[http://dx.doi.org/10.1021/jm100508m] [PMID: 20614888]
[137]
Chen, M.D.; Yang, A.J.; Li, Z.; Hu, F-F.; Yang, J-T.; Gao, S-H.; Zhang, F-L.; Zhao, C-J. Concise synthesis of lacosamide with high chiral purity. ACS Omega, 2019, 4(4), 6546-6550.
[http://dx.doi.org/10.1021/acsomega.8b02564]
[138]
Helmstaedter, C.; Witt, J.A. The longer-term cognitive effects of adjunctive antiepileptic treatment with lacosamide in comparison with lamotrigine and topiramate in a naturalistic outpatient setting. Epilepsy Behav., 2013, 26(2), 182-187.
[http://dx.doi.org/10.1016/j.yebeh.2012.11.052] [PMID: 23318473]
[139]
Olson, H.E.; Loddenkemper, T.; Vendrame, M.; Poduri, A.; Takeoka, M.; Bergin, A.M.; Libenson, M.H.; Duffy, F.H.; Rotenberg, A.; Coulter, D.; Bourgeois, B.F.; Kothare, S.V. Rufinamide for the treatment of epileptic spasms. Epilepsy Behav., 2011, 20(2), 344-348.
[http://dx.doi.org/10.1016/j.yebeh.2010.11.023] [PMID: 21233024]
[140]
Alsaad, A.M.S.; Koren, G. Exposure to rufinamide and risks of CNS adverse events in drug-resistant epilepsy: a meta-analysis of randomized, placebo-controlled trials. Br. J. Clin. Pharmacol., 2014, 78(6), 1264-1271.
[http://dx.doi.org/10.1111/bcp.12479] [PMID: 25132372]
[141]
Deeks, E.D.; Scott, L.J. Rufinamide. CNS Drugs, 2006, 20(9), 751-760.
[http://dx.doi.org/10.2165/00023210-200620090-00007] [PMID: 16953653]
[142]
Gáll, Z.; Vancea, S.; Szilágyi, T.; Gáll, O.; Kolcsár, M. Dose-dependent pharmacokinetics and brain penetration of rufinamide following intravenous and oral administration to rats. Eur. J. Pharm. Sci., 2015, 68, 106-113.
[http://dx.doi.org/10.1016/j.ejps.2014.12.012] [PMID: 25530452]
[143]
Yıldız, E.P.; Hızlı, Z.; Bektaş, G.; Ulak-Özkan, M.; Tatlı, B.; Aydınlı, N.; Çalışkan, M.; Özmen, M. Efficacy of rufinamide in childhood refractory epilepsy. Turk. J. Pediatr., 2018, 60(3), 238-243.
[http://dx.doi.org/10.24953/turkjped.2018.03.002] [PMID: 30511535]
[144]
Chen, B.H.; Ahn, J.H.; Park, J.H.; Song, M.; Kim, H.; Lee, T.K.; Lee, J.C.; Kim, Y.M.; Hwang, I.K.; Kim, D.W.; Lee, C.H.; Yan, B.C.; Kang, I.J.; Won, M.H. Rufinamide, an antiepileptic drug, improves cognition and increases neurogenesis in the aged gerbil hippocampal dentate gyrus via increasing expressions of IGF-1, IGF-1R and p -CREB. Chem. Biol. Interact., 2018, 286, 71-77.
[http://dx.doi.org/10.1016/j.cbi.2018.03.007] [PMID: 29548728]
[145]
Zhang, P.; Russell, M.G.; Jamison, T.F. Continuous flow total synthesis of rufinamide. Org. Process Res. Dev., 2014, 18(11), 1567-1570.
[http://dx.doi.org/10.1021/op500166n]
[146]
Sirven, J.I.; Noe, K.; Hoerth, M.; Drazkowski, J. Antiepileptic drugs 2012: recent advances and trends. Mayo Clin. Proc., 2012, 87(9), 879-889.
[http://dx.doi.org/10.1016/j.mayocp.2012.05.019] [PMID: 22958992]
[147]
Gilchrist, J.; Dutton, S.; Diaz-Bustamante, M.; McPherson, A.; Olivares, N.; Kalia, J.; Escayg, A.; Bosmans, F. Nav1.1 modulation by a novel triazole compound attenuates epileptic seizures in rodents. ACS Chem. Biol., 2014, 9(5), 1204-1212.
[http://dx.doi.org/10.1021/cb500108p] [PMID: 24635129]
[148]
Mudd, W.H.; Stevens, E.P. An efficient synthesis of rufinamide, an antiepileptic drug. Tetrahedron Lett., 2010, 51(24), 3229-3231.
[http://dx.doi.org/10.1016/j.tetlet.2010.04.060]
[149]
Besag, F.M.C.; Dulac, O.; Alving, J.; Mullens, E.L. Long-term safety and efficacy of lamotrigine (Lamictal®) in paediatric patients with epilepsy. Seizure, 1997, 6(1), 51-56.
[http://dx.doi.org/10.1016/S1059-1311(97)80053-2] [PMID: 9061824]
[150]
Machado, R.A.; García, V.F.; Astencio, A.G.; Cuartas, V.B. Efficacy and tolerability of lamotrigine in Juvenile Myoclonic Epilepsy in adults: A prospective, unblinded randomized controlled trial. Seizure, 2013, 22(10), 846-855.
[http://dx.doi.org/10.1016/j.seizure.2013.07.006] [PMID: 23916525]
[151]
Paraskevas, G.P.; Triantafyllou, N.I.; Kapaki, E.; Limpitaki, G.; Petropoulou, O.; Vassilopoulos, D. Add-on lamotrigine treatment and plasma glutamate levels in epilepsy: Relation to treatment response. Epilepsy Res., 2006, 70(2-3), 184-189.
[http://dx.doi.org/10.1016/j.eplepsyres.2006.05.004] [PMID: 16762531]
[152]
Grover, G.; Nath, R.; Bhatia, R.; Akhtar, M.J. Synthetic and therapeutic perspectives of nitrogen containing heterocycles as anti-convulsants. Bioorg. Med. Chem., 2020, 28(15), 115585.
[http://dx.doi.org/10.1016/j.bmc.2020.115585] [PMID: 32631563]
[153]
Leitch, D.C.; John, M.P.; Slavin, P.A.; Searle, A.D. An evaluation of multiple catalytic systems for the cyanation of 2,3-dichlorobenzoyl chloride: application to the synthesis of lamotrigine. Org. Process Res. Dev., 2017, 21(11), 1815-1821.
[http://dx.doi.org/10.1021/acs.oprd.7b00262]
[154]
Tang, L.; Ge, L.; Wu, W.; Yang, X.; Rui, P.; Wu, Y.; Yu, W.; Wang, X. Lamotrigine versus valproic acid monotherapy for generalised epilepsy: A meta-analysis of comparative studies. Seizure, 2017, 51, 95-101.
[http://dx.doi.org/10.1016/j.seizure.2017.08.001] [PMID: 28826049]
[155]
Kaminow, L.; Schimschock, J.R.; Hammer, A.E.; Vuong, A. Lamotrigine monotherapy compared with carbamazepine, phenytoin, or valproate monotherapy in patients with epilepsy. Epilepsy Behav., 2003, 4(6), 659-666.
[http://dx.doi.org/10.1016/j.yebeh.2003.08.033] [PMID: 14698699]
[156]
Brodie, M.J. Zonisamide clinical trials: European experience. Seizure, 2004, 13(Suppl. 1), S66-S70.
[http://dx.doi.org/10.1016/j.seizure.2004.04.010] [PMID: 15511696]
[157]
Baulac, M. Introduction to zonisamide. Epilepsy Res., 2006, 68(Suppl. 2), S3-S9.
[http://dx.doi.org/10.1016/j.eplepsyres.2005.11.004] [PMID: 16413170]
[158]
Borowicz, K.K.; Luszczki, J.J.; Sobieszek, G.; Ratnaraj, N.; Patsalos, P.N.; Czuczwar, S.J. Interactions between zonisamide and conventional antiepileptic drugs in the mouse maximal electroshock test model. Eur. Neuropsychopharmacol., 2007, 17(4), 265-272.
[http://dx.doi.org/10.1016/j.euroneuro.2006.06.008] [PMID: 16876388]
[159]
Naddaka, V.; Klopfer, E.; Saeed, S. Derivatives of 1,2-benzisoxazole-3-methane sulfonic acid as novel intermediates for the synthesis of zonisamide. US Patent US07745471, 2010.
[160]
Besag, F.M.C.; Vasey, M.J.; Sharma, A.N.; Lam, I.C.H. Efficacy and safety of lamotrigine in the treatment of bipolar disorder across the lifespan: a systematic review. Ther. Adv. Psychopharmacol., 2021, 11, 20451253211045870.
[http://dx.doi.org/10.1177/20451253211045870] [PMID: 34646439]
[161]
Baker, E.M.; Thompson, C.H.; Hawkins, N.A.; Wagnon, J.L.; Wengert, E.R.; Patel, M.K.; George, A.L., Jr; Meisler, M.H.; Kearney, J.A. The novel sodium channel modulator GS-458967 (GS967) is an effective treatment in a mouse model of SCN8A encephalopathy. Epilepsia, 2018, 59(6), 1166-1176.
[http://dx.doi.org/10.1111/epi.14196] [PMID: 29782051]
[162]
Ma, R. A new SV2A ligand for epilepsy. Cell, 2016, 167(3), 587.
[http://dx.doi.org/10.1016/j.cell.2016.09.057]
[163]
Rashid, M.; Rajan, A.K.; Chhabra, M.; Kashyap, A. Levetiracetam and cutaneous adverse reactions: A systematic review of descriptive studies. Seizure, 2020, 75, 101-109.
[http://dx.doi.org/10.1016/j.seizure.2020.01.002] [PMID: 31931437]
[164]
Steinhoff, B.J.; Christensen, J.; Doherty, C.P.; Majoie, M.; De Backer, M.; Hellot, S.; Leunikava, I.; Leach, J.P. Effectiveness and tolerability of adjunctive brivaracetam in patients with focal seizures: Second interim analysis of 6-month data from a prospective observational study in Europe. Epilepsy Res., 2020, 165, 106329.
[http://dx.doi.org/10.1016/j.eplepsyres.2020.106329] [PMID: 32623096]
[165]
Dudra-Jastrzebska, M.; Andres-Mach, M.M.; Sielski, M.; Ratnaraj, N.; Patsalos, P.N.; Czuczwar, S.J.; Luszczki, J.J. Pharmacodynamic and pharmacokinetic interaction profiles of levetiracetam in combination with gabapentin, tiagabine and vigabatrin in the mouse pentylenetetrazole-induced seizure model: An isobolographic analysis. Eur. J. Pharmacol., 2009, 605(1-3), 87-94.
[http://dx.doi.org/10.1016/j.ejphar.2008.12.046] [PMID: 19168049]
[166]
Morgan, O.; Medenwald, B. Safety and tolerability of rapid administration undiluted levetiracetam. Neurocrit. Care, 2020, 32(1), 131-134.
[http://dx.doi.org/10.1007/s12028-019-00708-5] [PMID: 30919301]
[167]
Sourbron, J.; Chan, H.; Wammes-van der Heijden, E.A.; Klarenbeek, P.; Wijnen, B.F.M.; de Haan, G.J.; van der Kuy, H.; Evers, S.; Majoie, M. Review on the relevance of therapeutic drug monitoring of levetiracetam. Seizure, 2018, 62, 131-135.
[http://dx.doi.org/10.1016/j.seizure.2018.09.004] [PMID: 30237016]
[168]
Dalziel, S.R.; Borland, M.L.; Furyk, J.; Bonisch, M.; Neutze, J.; Donath, S.; Francis, K.L.; Sharpe, C.; Harvey, A.S.; Davidson, A.; Craig, S.; Phillips, N.; George, S.; Rao, A.; Cheng, N.; Zhang, M.; Kochar, A.; Brabyn, C.; Oakley, E.; Babl, F.E. Levetiracetam versus phenytoin for second-line treatment of convulsive status epilepticus in children (ConSEPT): an open-label, multicentre, randomised controlled trial. Lancet, 2019, 393(10186), 2135-2145.
[http://dx.doi.org/10.1016/S0140-6736(19)30722-6] [PMID: 31005386]
[169]
Costa, A.M.; Lucchi, C.; Malkoç, A.; Rustichelli, C.; Biagini, G. Relationship between delta rhythm, seizure occurrence and allopregnanolone hippocampal levels in epileptic rats exposed to the rebound effect. Pharmaceuticals (Basel), 2021, 14(2), 127.
[http://dx.doi.org/10.3390/ph14020127] [PMID: 33561937]
[170]
Steinhoff, B.J.; Staack, A.M. Levetiracetam and brivaracetam: a review of evidence from clinical trials and clinical experience. Ther. Adv. Neurol. Disord., 2019, 12, 1756286419873518.
[http://dx.doi.org/10.1177/1756286419873518] [PMID: 31523280]
[171]
Fonseca, E.; Guzmán, L.; Quintana, M.; Abraira, L.; Santamarina, E.; Salas-Puig, X.; Toledo, M. Efficacy, retention, and safety of brivaracetam in adult patients with genetic generalized epilepsy. Epilepsy Behav., 2020, 102, 106657.
[http://dx.doi.org/10.1016/j.yebeh.2019.106657] [PMID: 31731108]
[172]
Nissenkorn, A.; Tzadok, M.; Bar-Yosef, O.; Ben-Zeev, B. Treatment with brivaracetam in children – The experience of a pediatric epilepsy center. Epilepsy Behav., 2019, 101(Pt A), 106541.
[http://dx.doi.org/10.1016/j.yebeh.2019.106541] [PMID: 31698260]
[173]
Rosenstiel, P. Brivaracetam (UCB 34714). Neurotherapeutics, 2007, 4(1), 84-87.
[http://dx.doi.org/10.1016/j.nurt.2006.11.004] [PMID: 17199019]
[174]
Kenda, B.M.; Matagne, A.C.; Talaga, P.E.; Pasau, P.M.; Differding, E.; Lallemand, B.I.; Frycia, A.M.; Moureau, F.G.; Klitgaard, H.V.; Gillard, M.R.; Fuks, B.; Michel, P. Discovery of 4-substituted pyrrolidone butanamides as new agents with significant antiepileptic activity. J. Med. Chem., 2004, 47(3), 530-549.
[http://dx.doi.org/10.1021/jm030913e] [PMID: 14736235]
[175]
Chavan, S.P.; Kawale, S.A.; Chavan, P.N. Formal synthesis of brivaracetam: A key to construct the pyrrolidone scaffold using Pd-catalyzed oxidative cyclization and ring-closing metathesis reaction. Tetrahedron Lett., 2019, 60(46), 151249.
[http://dx.doi.org/10.1016/j.tetlet.2019.151249]
[176]
Lyttle, M.D.; Rainford, N.E.A.; Gamble, C.; Messahel, S.; Humphreys, A.; Hickey, H.; Woolfall, K.; Roper, L.; Noblet, J.; Lee, E.D.; Potter, S.; Tate, P.; Iyer, A.; Evans, V.; Appleton, R.E.; Pereira, M.; Hardwick, S.; Messahel, S.; Noblet, J.; Lee, E.D.; Greenwood-Bibby, R.; Buchanan, M.; Lewis, L.; Hughes, S.; Hartshorn, S.; Rogers, L.; Hopkins, J.; Lyttle, M.D.; Fernandez, D.; Potter, S.; Lavigne-Smith, H.R.; Moulsdale, P.; Smith, A.; Bingham, T.; Ross, J.; Ramsey, N.; Hacking, J.; Mullen, N.; Corrigan, P.P.; Prudhoe, S.; Faza, H.; Robinson, G.; Sunley, R.C.; Smith, C.J.; Unsworth, V.; Criddle, J.; Laque, M.; Sheedy, A.B.; Anderson, M.; Bell, K.; Devine, K.; Scott, A.; Kumar, R.; Armstrong, S.; Sutherland, E.; Cantle, F.; Helyer, S.; Riozzi, P.; Cotton, H.; Downes, A.J.; Mollard, H.; Roland, D.; Hay, F.; Gough, C.; Finucane, S.; Bevan, C.; Ramsay, R.; Walton, E.; Maney, J-A.; Dalzell, E.; Millar, M.; Howells, R.J.; Appelboam, A.; Mackle, D.; Small, J.; Neil, A.; Choudhery, V.; MacLeod, S.; Browning, J.; O’Neill, T.; Grahamslaw, J.; Parikh, A.; Skene, I.; Thomas, R.; Potier de la Morandiere, K.; Wilson, J.L.; Danziger, D.; Burke, D.; Ramlakhan, S.; Evans, J.; Morcombe, J.; Gormley, S.; Barling, J.M.; Cathie, K.; Bayreuther, J.; Ensom, R.; Iqbal, Y.; Rounding, S.; Mulligan, J.; Bell, C.; McLellan, S.; Leighton, S.; Sajjanhar, T.; Nyirenda, M.; Crome, L.; Williamson, N.; Alcock, A.; Edwards, S.; Morgan, J.; Powell, C.V.E.; Ramesh, C.A.; Kamal-Uddin, S.; Linney, M.; Vamvakiti, K.; Floyd, S.; Hobden, G. Levetiracetam versus phenytoin for second-line treatment of paediatric convulsive status epilepticus (EcLiPSE): a multicentre, open-label, randomised trial. Lancet, 2019, 393(10186), 2125-2134.
[http://dx.doi.org/10.1016/S0140-6736(19)30724-X]
[177]
Reed, R.C.; Rosenfeld, W.E.; Lippmann, S.M.; Eijkemans, R.M.J.C.; Kasteleijn-Nolst Trenité, D.G.A. Rapidity of cns effect on photoparoxysmal response for brivaracetam vs. levetiracetam: a randomized, double-blind, crossover trial in photosensitive epilepsy patients. CNS Drugs, 2020, 34(10), 1075-1086.
[http://dx.doi.org/10.1007/s40263-020-00761-1] [PMID: 32949370]
[178]
Sitges, M.; Guarneros, A.; Nekrassov, V. Effects of carbamazepine, phenytoin, valproic acid, oxcarbazepine, lamotrigine, topiramate and vinpocetine on the presynaptic Ca2+ channel-mediated release of [3H]glutamate: Comparison with the Na+ channel-mediated release. Neuropharmacology, 2007, 53(7), 854-862.
[http://dx.doi.org/10.1016/j.neuropharm.2007.08.016] [PMID: 17904592]
[179]
Hamandi, K.; Sander, J.W. Pregabalin: A new antiepileptic drug for refractory epilepsy. Seizure, 2006, 15(2), 73-78.
[http://dx.doi.org/10.1016/j.seizure.2005.11.005] [PMID: 16413993]
[180]
Yüksel, M.; Sarıkaya, R.; Bostanci, N. Genotoxic evaluation of antiepileptic drugs by Drosophila somatic mutation and recombination test. Food Chem. Toxicol., 2010, 48(10), 2682-2687.
[http://dx.doi.org/10.1016/j.fct.2010.06.040] [PMID: 20600525]
[181]
Yu, J.; Wang, D.S.; Bonin, R.P.; Penna, A.; Alavian-Ghavanini, A.; Zurek, A.A.; Rauw, G.; Baker, G.B.; Orser, B.A. Gabapentin increases expression of δ subunit-containing GABAA receptors. EBioMedicine, 2019, 42, 203-213.
[http://dx.doi.org/10.1016/j.ebiom.2019.03.008] [PMID: 30878595]
[182]
François, J.; Germe, K.; Ferrandon, A.; Koning, E.; Nehlig, A. Carisbamate has powerful disease-modifying effects in the lithium-pilocarpine model of temporal lobe epilepsy. Neuropharmacology, 2011, 61(1-2), 313-328.
[http://dx.doi.org/10.1016/j.neuropharm.2011.04.018] [PMID: 21539848]
[183]
Derry, S.; Bell, R.F.; Straube, S.; Wiffen, P.J.; Aldington, D.; Moore, R.A. Pregabalin for neuropathic pain in adults. Cochrane Libr., 2019, 1(1), CD007076.
[http://dx.doi.org/10.1002/14651858.CD007076.pub3] [PMID: 30673120]
[184]
Ishitani, H.; Kanai, K.; Saito, Y.; Tsubogo, T.; Kobayashi, S. Synthesis of (±)-pregabalin by utilizing a three-step sequential-flow system with heterogeneous catalysts. Eur. J. Org. Chem., 2017, 2017(44), 6491-6494.
[http://dx.doi.org/10.1002/ejoc.201700998]
[185]
Nieoczym, D. Socała, K.; Łuszczki, J.J.; Czuczwar, S.J.; Wlaź P. Sildenafil influences the anticonvulsant activity of vigabatrin and gabapentin in the timed pentylenetetrazole infusion test in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2012, 39(1), 129-135.
[http://dx.doi.org/10.1016/j.pnpbp.2012.05.020] [PMID: 22683320]
[186]
Desai, A.; Kherallah, Y.; Szabo, C.; Marawar, R. Gabapentin or pregabalin induced myoclonus: A case series and literature review. J. Clin. Neurosci., 2019, 61, 225-234.
[http://dx.doi.org/10.1016/j.jocn.2018.09.019] [PMID: 30381161]
[187]
Mallesha, L.; Mohana, K.N.; Veeresh, B. Synthesis and biological activities of Schiff bases of gabapentin with different aldehydes and ketones: a structure–activity relationship study. Med. Chem. Res., 2012, 21(1), 1-9.
[http://dx.doi.org/10.1007/s00044-010-9498-8]
[188]
Xue, Y.P.; Zhong, H.J.; Zou, S.P.; Zheng, Y-G. Efficient chemoenzymatic synthesis of gabapentin by control of immobilized biocatalyst activity in a stirred bioreactor. Biochem. Eng. J., 2017, 125, 190-195.
[http://dx.doi.org/10.1016/j.bej.2017.06.008]
[189]
Galdames, D.; Aguilera, L.; Faure, E. New antiepileptic drugs for refractory epilepsy in adults - role of gabapentin. Rev. Med. Chil., 1995, 123(4), 500-508.
[PMID: 8525196]
[190]
French, J.A.; Kanner, A.M.; Bautista, J.; Abou-Khalil, B.; Browne, T.; Harden, C.L.; Theodore, W.H.; Bazil, C.; Stern, J.; Schachter, S.C.; Bergen, D.; Hirtz, D.; Montouris, G.D.; Nespeca, M.; Gidal, B.; Marks, W.J., Jr; Turk, W.R.; Fischer, J.H.; Bourgeois, B.; Wilner, A.; Faught, R.E., Jr; Sachdeo, R.C.; Beydoun, A.; Glauser, T.A. Efficacy and tolerability of the new antiepileptic drugs II: treatment of refractory epilepsy: report of the Therapeutics and Technology Assessment Subcommittee and Quality Standards Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology, 2004, 62(8), 1261-1273.
[http://dx.doi.org/10.1212/01.WNL.0000123695.22623.32] [PMID: 15111660]
[191]
Placidi, F.; Mattia, D.; Romigi, A.; Bassetti, M.A.; Spanedda, F.; Marciani, M.G. Gabapentin-induced modulation of interictal epileptiform activity related to different vigilance levels. Clin. Neurophysiol., 2000, 111(9), 1637-1642.
[http://dx.doi.org/10.1016/S1388-2457(00)00365-5] [PMID: 10964076]
[192]
Walker, M.C.; Patsalos, P.N. Clinical pharmacokinetics of new antiepileptic drugs. Pharmacol. Ther., 1995, 67(3), 351-384.
[http://dx.doi.org/10.1016/0163-7258(95)00021-6] [PMID: 8577822]
[193]
Wulff, H.; Castle, N.A.; Pardo, L.A. Voltage-gated potassium channels as therapeutic targets. Nat. Rev. Drug Discov., 2009, 8(12), 982-1001.
[http://dx.doi.org/10.1038/nrd2983] [PMID: 19949402]
[194]
Brodie, M.J.; French, J.A.; McDonald, S.A.; Lee, W.J.; Adams, B.; Scott, A.; Nohria, V.; DeRossett, S. Adjunctive use of ezogabine/retigabine with either traditional sodium channel blocking antiepileptic drugs (AEDs) or AEDs with other mechanisms of action: Evaluation of efficacy and tolerability. Epilepsy Res., 2014, 108(5), 989-994.
[http://dx.doi.org/10.1016/j.eplepsyres.2014.03.008] [PMID: 24726452]
[195]
Wehner, T.; Chinnasami, S.; Novy, J.; Bell, G.S.; Duncan, J.S.; Sander, J.W. Long term retention of retigabine in a cohort of people with drug resistant epilepsy. Seizure, 2014, 23(10), 878-881.
[http://dx.doi.org/10.1016/j.seizure.2014.08.001] [PMID: 25175006]
[196]
Kanner, A.M.; Ashman, E.; Gloss, D.; Harden, C.; Bourgeois, B.; Bautista, J.F.; Abou-Khalil, B.; Burakgazi-Dalkilic, E.; Park, E.L.; Stern, J.; Hirtz, D.; Nespeca, M.; Gidal, B.; Faught, E.; French, J. Practice guideline update summary: Efficacy and tolerability of the new antiepileptic drugs I: Treatment of new-onset epilepsy. Epilepsy Curr., 2018, 18(4), 260-268.
[http://dx.doi.org/10.5698/1535-7597.18.4.260] [PMID: 30254527]
[197]
Davar, D.; Beumer, J.H.; Hamieh, L.; Tawbi, H. Role of PARP inhibitors in cancer biology and therapy. Curr. Med. Chem., 2012, 19(23), 3907-3921.
[http://dx.doi.org/10.2174/092986712802002464] [PMID: 22788767]
[198]
Plummer, R. Perspective on the pipeline of drugs being developed with modulation of DNA damage as a target. Clin. Cancer Res., 2010, 16(18), 4527-4531.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0984] [PMID: 20823148]
[199]
Mathias, S.V.; Abou-Khalil, B.W. Ezogabine skin discoloration is reversible after discontinuation. Epilepsy Behav. Case Rep., 2017, 7, 61-63.
[http://dx.doi.org/10.1016/j.ebcr.2017.01.001] [PMID: 28417066]
[200]
Meador, K.J.; Brashear, H.R.; Wiegand, F.; Zannikos, P.; Novak, G. Cognitive effects of carisbamate in randomized, placebo-controlled, healthy-volunteer, multidose studies. Epilepsy Behav., 2011, 22(2), 324-330.
[http://dx.doi.org/10.1016/j.yebeh.2011.07.006] [PMID: 21849260]
[201]
Ragueneau-Majlessi, I.; Levy, R.; Solanki, B. Pharmacokinetics, safety, and tolerability of the new antiepileptic drug carisbamate (RWJ333369) in elderly adults. Epilepsia, 2007, 48, 326.
[http://dx.doi.org/10.1016/j.eplepsyres.2007.12.013]
[202]
Deshpande, L.S.; Nagarkatti, N.; Sombati, S.; DeLorenzo, R.J. The novel antiepileptic drug carisbamate (RWJ 333369) is effective in inhibiting spontaneous recurrent seizure discharges and blocking sustained repetitive firing in cultured hippocampal neurons. Epilepsy Res., 2008, 79(2-3), 158-165.
[http://dx.doi.org/10.1016/j.eplepsyres.2008.01.002] [PMID: 18353614]
[203]
Arnold, S. Cenobamate: new hope for treatment-resistant epilepsy. Lancet Neurol., 2020, 19(1), 23-24.
[http://dx.doi.org/10.1016/S1474-4422(19)30434-X] [PMID: 31734104]
[204]
Krauss, G.L.; Klein, P.; Brandt, C.; Lee, S.K.; Milanov, I.; Milovanovic, M.; Steinhoff, B.J.; Kamin, M. Safety of adjunctive treatment with cenobamate in patients with uncontrolled focal seizures – Authors’ reply. Lancet Neurol., 2020, 19(4), 288-289.
[http://dx.doi.org/10.1016/S1474-4422(20)30077-6] [PMID: 32199090]
[205]
Bialer, M.; Johannessen, S.I.; Levy, R.H.; Perucca, E.; Tomson, T.; White, H.S. Progress report on new antiepileptic drugs: A summary of the Tenth Eilat Conference (EILAT X). Epilepsy Res., 2010, 92(2-3), 89-124.
[http://dx.doi.org/10.1016/j.eplepsyres.2010.09.001] [PMID: 20970964]
[206]
Tompson, D.J.; Crean, C.S.; Reeve, R.; Berry, N.S. Efficacy and tolerability exposure-response relationship of retigabine (ezogabine) immediate-release tablets in patients with partial-onset seizures. Clin. Ther., 2013, 35(8), 1174-1185.e4.
[http://dx.doi.org/10.1016/j.clinthera.2013.06.012] [PMID: 23916044]
[207]
Noe, F.M.; Polascheck, N.; Frigerio, F.; Bankstahl, M.; Ravizza, T.; Marchini, S.; Beltrame, L.; Banderó, C.R.; Löscher, W.; Vezzani, A. Pharmacological blockade of IL-1β/IL-1 receptor type 1 axis during epileptogenesis provides neuroprotection in two rat models of temporal lobe epilepsy. Neurobiol. Dis., 2013, 59, 183-193.
[http://dx.doi.org/10.1016/j.nbd.2013.07.015] [PMID: 23938763]
[208]
Wang, D.D.; Englot, D.J.; Garcia, P.A.; Lawton, M.T.; Young, W.L. Minocycline- and tetracycline-class antibiotics are protective against partial seizures in vivo. Epilepsy Behav., 2012, 24(3), 314-318.
[http://dx.doi.org/10.1016/j.yebeh.2012.03.035] [PMID: 22579030]
[209]
Marques-Carneiro, J.; Nehlig, A.; Cassel, J.C.; Castro-Neto, E.; Litzahn, J.; Pereira de Vasconcelos, A.; Naffah-Mazacoratti, M.; Fernandes, M. Neurochemical changes and c-fos mapping in the brain after carisbamate treatment of rats subjected to lithium–pilocarpine-induced status epilepticus. Pharmaceuticals (Basel), 2017, 10(4), 85.
[http://dx.doi.org/10.3390/ph10040085] [PMID: 29104261]
[210]
Dong, G.R.; Li, Q.R.; Woo, S.H.; Kim, I.S.; Jung, Y.H. One-pot conversion of trimethylsilyl ethers into urethanes using chlorosulfonyl isocyanate: Application to the synthesis of a novel neuromodulator carisbamate. Arch. Pharm. Res., 2008, 31(11), 1393-1398.
[http://dx.doi.org/10.1007/s12272-001-2122-1] [PMID: 19023534]
[211]
Kim, D.Y.; Zhang, F.X.; Nakanishi, S.T.; Mettler, T.; Cho, I.H.; Ahn, Y.; Hiess, F.; Chen, L.; Sullivan, P.G.; Chen, S.R.W.; Zamponi, G.W.; Rho, J.M. Carisbamate blockade of T-type voltage-gated calcium channels. Epilepsia, 2017, 58(4), 617-626.
[http://dx.doi.org/10.1111/epi.13710] [PMID: 28230232]
[212]
Yuan, S.; Yu, B.; Liu, H.M. New drug approvals for 2019: Synthesis and clinical applications. Eur. J. Med. Chem., 2020, 205, 112667.
[http://dx.doi.org/10.1016/j.ejmech.2020.112667] [PMID: 32911308]
[213]
Sharma, R.; Nakamura, M.; Neupane, C.; Jeon, B.H.; Shin, H.; Melnick, S.M.; Glenn, K.J.; Jang, I.S.; Park, J.B. Positive allosteric modulation of GABAA receptors by a novel antiepileptic drug cenobamate. Eur. J. Pharmacol., 2020, 879, 173117.
[http://dx.doi.org/10.1016/j.ejphar.2020.173117] [PMID: 32325146]
[214]
Damar, U.; Gersner, R.; Johnstone, J.T.; Schachter, S.; Rotenberg, A.; Huperzine, A. A promising anticonvulsant, disease modifying, and memory enhancing treatment option in Alzheimer’s disease. Med. Hypotheses, 2017, 99, 57-62.
[http://dx.doi.org/10.1016/j.mehy.2016.12.006] [PMID: 28110700]
[215]
Damar, U.; Gersner, R.; Johnstone, J.T.; Schachter, S.; Rotenberg, A. Huperzine A as a neuroprotective and antiepileptic drug: a review of preclinical research. Expert Rev. Neurother., 2016, 16(6), 671-680.
[http://dx.doi.org/10.1080/14737175.2016.1175303] [PMID: 27086593]
[216]
Ferreira, A.; Rodrigues, M.; Fortuna, A.; Falcão, A.; Alves, G. Huperzine A from Huperzia serrata: a review of its sources, chemistry, pharmacology and toxicology. Phytochem. Rev., 2016, 15(1), 51-85.
[http://dx.doi.org/10.1007/s11101-014-9384-y]
[217]
Haudrechy, A.; Chassaing, C.; Riche, C.; Langlois, Y. A formal synthesis of (+)-huperzine A. Tetrahedron, 2000, 56(20), 3181-3187.
[http://dx.doi.org/10.1016/S0040-4020(00)00227-1]
[218]
Gersner, R.; Ekstein, D.; Dhamne, S.C.; Schachter, S.C.; Rotenberg, A. Huperzine A prophylaxis against pentylenetetrazole-induced seizures in rats is associated with increased cortical inhibition. Epilepsy Res., 2015, 117, 97-103.
[http://dx.doi.org/10.1016/j.eplepsyres.2015.08.012] [PMID: 26432930]
[219]
Alcalá, M.M.; Vivas, N.M.; Hospital, S.; Camps, P.; Muñoz-Torrero, D.; Badia, A. Characterisation of the anticholinesterase activity of two new tacrine–huperzine A hybrids. Neuropharmacology, 2003, 44(6), 749-755.
[http://dx.doi.org/10.1016/S0028-3908(03)00071-6] [PMID: 12681373]
[220]
Koenig, J.B.; Cantu, D.; Low, C.; Sommer, M.; Noubary, F.; Croker, D.; Whalen, M.; Kong, D.; Dulla, C.G. Glycolytic inhibitor 2-deoxyglucose prevents cortical hyperexcitability after traumatic brain injury. JCI Insight, 2019, 4(11), e126506.
[http://dx.doi.org/10.1172/jci.insight.126506] [PMID: 31038473]
[221]
Sills, G.J.; Rogawski, M.A. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology, 2020, 168, 107966.
[http://dx.doi.org/10.1016/j.neuropharm.2020.107966] [PMID: 32120063]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy