Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

A Comprehensive Review on the Role of Polymers in Ocular Drug Delivery

Author(s): Paramjot, Sheetu Wadhwa*, Arun Sharma, Sachin Kumar Singh, Sukriti Vishwas, Rajesh Kumar, Saurabh Singh, Kamal Dua, Dinesh Kumar Chellappan and Gaurav Gupta

Volume 21, Issue 1, 2024

Published on: 25 January, 2023

Page: [16 - 37] Pages: 22

DOI: 10.2174/1567201820666230110140312

Price: $65

conference banner
Abstract

Amongst different routes of drug delivery systems, ophthalmic drug delivery still requires a careful investigation and strict parameter measurements because the eyes are one of the most sensitive parts of the body and require special attention. The conventional systems for eyes lead to rapid elimination of formulation and hence very small contact time on the ocular epithelium. The current review article covers various types of polymers used in ocular drug delivery along with their applications/ limitations. Polymers are widely used by researchers in prodrug techniques and as a penetration enhancer in ocular delivery. This article covers the role and use of different polymeric systems which makes the final formulation a promising candidate for ophthalmic drug delivery.

The researchers are still facing multiple challenges in order to maintain the therapeutic concentration of the drug in the eyes because of its complex structure. There are several barriers that further restrict the intraocular entry of the drug. In order to remove/reduce such challenges, these days various types of polymers are used for ocular delivery in order to develop different drug carrier systems for better efficacy and stability. The polymers used are highly helpful in increasing residence time by increasing the viscosity at the ocular epithelium layer. Such preparations also get easily permeated in ocular cells. The combination of different polymeric properties makes the final formulation stable with prolonged retention, high viscosity, high permeability, and better bioavailability, making the final formulation a promising candidate for ocular drug delivery.

Keywords: Ocular polymers, ocular bioavailability, ocular retention time, novel ocular drug delivery systems, high viscosity, lacrimal glands.

Graphical Abstract
[1]
Alhalafi, A. Applications of polymers in intraocular drug delivery systems. Oman J. Ophthalmol., 2017, 10(1), 3-8.
[http://dx.doi.org/10.4103/0974-620X.200692] [PMID: 28298856]
[2]
Imperiale, J.C.; Acosta, G.B.; Sosnik, A. Polymer-based carriers for ophthalmic drug delivery. J. Control. Release, 2018, 285, 106-141.
[http://dx.doi.org/10.1016/j.jconrel.2018.06.031] [PMID: 29964135]
[3]
Ding, Y.; Chow, S.H.; Liu, G.S.; Wang, B.; Lin, T.W.; Hsu, H.Y.; Duff, A.P.; Le Brun, A.P.; Shen, H.H. Annexin V-containing cubosomes for targeted early detection of apoptosis in degenerative retinal tissue. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(46), 7652-7661.
[http://dx.doi.org/10.1039/C8TB02465K] [PMID: 32254887]
[4]
Janagam, D.R.; Wu, L.; Lowe, T.L. Nanoparticles for drug delivery to the anterior segment of the eye. Adv. Drug Deliv. Rev., 2017, 122, 31-64.
[http://dx.doi.org/10.1016/j.addr.2017.04.001] [PMID: 28392306]
[5]
Gautam, N.; Kesavan, K. Development of microemulsions for ocular delivery. Ther. Deliv., 2017, 8(5), 313-330.
[http://dx.doi.org/10.4155/tde-2016-0076] [PMID: 28361605]
[6]
Lai, S.; Wei, Y.; Wu, Q.; Zhou, K.; Liu, T.; Zhang, Y.; Jiang, N.; Xiao, W.; Chen, J.; Liu, Q.; Yu, Y. Liposomes for effective drug delivery to the ocular posterior chamber. J. Nanobiotechnology, 2019, 17(1), 64.
[http://dx.doi.org/10.1186/s12951-019-0498-7] [PMID: 31084611]
[7]
Gallego, I.; Villate-Beitia, I.; Martínez-Navarrete, G.; Menéndez, M.; López-Méndez, T.; Soto-Sánchez, C.; Zárate, J.; Puras, G.; Fernández, E.; Pedraz, J.L. Non-viral vectors based on cationic niosomes and minicircle DNA technology enhance gene delivery efficiency for biomedical applications in retinal disorders. Nanomedicine, 2019, 17, 308-318.
[http://dx.doi.org/10.1016/j.nano.2018.12.018] [PMID: 30790710]
[8]
D’Souza, A.; Shegokar, R. Nanostructured Lipid Carriers (NLCs) for Drug Delivery: Role of Liquid Lipid (Oil). Curr. Drug Deliv., 2021, 18(3), 249-270.
[http://dx.doi.org/10.2174/1567201817666200423083807] [PMID: 32324512]
[9]
Morsi, N.; Ibrahim, M.; Refai, H.; El Sorogy, H. Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide. Eur. J. Pharm. Sci., 2017, 104, 302-314.
[http://dx.doi.org/10.1016/j.ejps.2017.04.013] [PMID: 28433750]
[10]
Dastjerdi, M.H.; Sadrai, Z.; Saban, D.R.; Zhang, Q.; Dana, R. Corneal penetration of topical and subconjunctival bevacizumab. Invest. Ophthalmol. Vis. Sci., 2011, 52(12), 8718-8723.
[http://dx.doi.org/10.1167/iovs.11-7871] [PMID: 22003112]
[11]
Kim, J.; Chang, J.Y.; Kim, Y.Y.; Kim, M.J.; Kho, H.S. Effects of molecular weight of hyaluronic acid on its viscosity and enzymatic activities of lysozyme and peroxidase. Arch. Oral Biol., 2018, 89, 55-64.
[http://dx.doi.org/10.1016/j.archoralbio.2018.02.007] [PMID: 29475188]
[12]
Sarimsakov, A.; Shukurov, A.; Yunusov, K.; Rashidova, S.; Letfullin, R. Drug delivery polymer systems for ophthalmic administration of anti- viral agents. Curr. Drug Deliv., 2020, 17(5), 406-413.
[http://dx.doi.org/10.2174/1567201817666200427215848] [PMID: 32342818]
[13]
Meng, T.; Kulkarni, V.; Simmers, R.; Brar, V.; Xu, Q. Therapeutic implications of nanomedicine for ocular drug delivery. Drug Discov. Today, 2019, 24(8), 1524-1538.
[http://dx.doi.org/10.1016/j.drudis.2019.05.006] [PMID: 31102733]
[14]
Kaplan, H.J. Anatomy and function of the eye. Chem. Immunol. Allergy, 2007, 92, 4-10.
[http://dx.doi.org/10.1159/000099236] [PMID: 17264478]
[15]
Lewis, R.A.; Shroyer, N.F.; Singh, N.; Allikmets, R.; Hutchinson, A.; Li, Y.; Lupski, J.R.; Leppert, M.; Dean, M. Genotype/Phenotype analysis of a photoreceptor-specific ATP-binding cassette transporter gene, ABCR, in Stargardt disease. Am. J. Hum. Genet., 1999, 64(2), 422-434.
[http://dx.doi.org/10.1086/302251] [PMID: 9973280]
[16]
Chen, Z.; You, J.; Liu, X.; Cooper, S.; Hodge, C.; Sutton, G.; Crook, J.M.; Wallace, G.G. Biomaterials for corneal bioengineering. Biomed. Mater., 2018, 13(3), 032002.
[http://dx.doi.org/10.1088/1748-605X/aa92d2] [PMID: 29021411]
[17]
Gade, S.K.; Shivshetty, N.; Sharma, N.; Bhatnagar, S.; Garg, P.; Venuganti, V.V.K. Effect of mucoadhesive polymeric formulation on corneal permeation of fluoroquinolones. J. Ocul. Pharmacol. Ther., 2018, 34(8), 570-578.
[http://dx.doi.org/10.1089/jop.2018.0059] [PMID: 30136888]
[18]
Fukuhara, J.; Kase, S.; Noda, K.; Murata, M.; Noda, M.; Ando, R.; Dong, Z.; Kanda, A.; Ishida, S. Immunolocalization of vascular adhesion protein-1 in human conjunctival tumors. Ophthalmic Res., 2012, 48(1), 33-37.
[http://dx.doi.org/10.1159/000335983] [PMID: 22354146]
[19]
Ashique, S.; Sandhu, N.K.; Chawla, V.; Chawla, P.A. Targeted drug delivery: Trends and perspectives. Curr. Drug Deliv., 2021, 18(10), 1435-1455.
[http://dx.doi.org/10.2174/1567201818666210609161301] [PMID: 34151759]
[20]
Zhang, J.; Yang, W.B.; Wu, X.Y.; Kuang, X.F.; Lu, C.Z. Protonation effect on ligands in EuL: a luminescent switcher for fast naked-eye detection of HCl. Dalton Trans., 2015, 44(30), 13586-13591.
[http://dx.doi.org/10.1039/C5DT01791B] [PMID: 26135646]
[21]
Simmons, P.; Vehige, J. Investigating the potential benefits of a new artificial tear formulation combining two polymers. Clin. Ophthalmol., 2017, 11, 1637-1642.
[http://dx.doi.org/10.2147/OPTH.S135550] [PMID: 28979093]
[22]
Irimia, T.; Dinu-Pîrvu, C.E.; Ghica, M.; Lupuleasa, D.; Muntean, D.L.; Udeanu, D.; Popa, L. Chitosan-based in situ gels for ocular delivery of therapeutics: A state-of-the-art review. Mar. Drugs, 2018, 16(10), 373.
[http://dx.doi.org/10.3390/md16100373] [PMID: 30304825]
[23]
Elsaid, N.; Jackson, T.L.; Gunic, M.; Somavarapu, S. Positively charged amphiphilic chitosan derivative for the transscleral delivery of rapamycin. Invest. Ophthalmol. Vis. Sci., 2012, 53(13), 8105-8111.
[http://dx.doi.org/10.1167/iovs.12-10717] [PMID: 23049091]
[24]
Wadhwa, S.; Paliwal, R.; Paliwal, S.R.; Vyas, S.P. Chitosan and its role in ocular therapeutics. Mini Rev. Med. Chem., 2009, 9(14), 1639-1647.
[http://dx.doi.org/10.2174/138955709791012292] [PMID: 20105127]
[25]
Irimia, T.; Ghica, M.; Popa, L.; Anuţa, V.; Arsene, A.L.; Dinu-Pîrvu, C.E. Strategies for improving ocular drug bioavailability and corneal wound healing with chitosan-based delivery systems. Polymers (Basel), 2018, 10(11), 1221.
[http://dx.doi.org/10.3390/polym10111221] [PMID: 30961146]
[26]
Antony, R.; Arun, T.; Manickam, S.T.D. A review on applications of chitosan-based Schiff bases. Int. J. Biol. Macromol., 2019, 129, 615-633.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.047] [PMID: 30753877]
[27]
Masuko, T.; Minami, A.; Iwasaki, N.; Majima, T.; Nishimura, S.I.; Lee, Y.C. Thiolation of chitosan. Attachment of proteins via thioether formation. Biomacromolecules, 2005, 6(2), 880-884.
[http://dx.doi.org/10.1021/bm049352e] [PMID: 15762654]
[28]
Wu, Z.M.; Zhang, X.G.; Zheng, C.; Li, C.X.; Zhang, S.M.; Dong, R.N.; Yu, D.M. Disulfide-crosslinked chitosan hydrogel for cell viability and controlled protein release. Eur. J. Pharm. Sci., 2009, 37(3-4), 198-206.
[http://dx.doi.org/10.1016/j.ejps.2009.01.010] [PMID: 19491006]
[29]
Berger, S.L.; Piña, B.; Silverman, N.; Marcus, G.A.; Agapite, J.; Regier, J.L.; Triezenberg, S.J.; Guarente, L. Genetic isolation of ADA2: A potential transcriptional adaptor required for function of certain acidic activation domains. Cell, 1992, 70(2), 251-265.
[http://dx.doi.org/10.1016/0092-8674(92)90100-Q] [PMID: 1638630]
[30]
Shih, P.Y.; Liao, Y.T.; Tseng, Y.K.; Deng, F.S.; Lin, C.H. A potential antifungal effect of chitosan against Candida albicans is mediated via the inhibition of SAGA complex component expression and the subsequent alteration of cell surface integrity. Front. Microbiol., 2019, 10, 602.
[http://dx.doi.org/10.3389/fmicb.2019.00602] [PMID: 30972050]
[31]
Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol., 2010, 144(1), 51-63.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2010.09.012] [PMID: 20951455]
[32]
Sudarshan, N.R.; Hoover, D.G.; Knorr, D. Antibacterial action of chitosan. Food Biotechnol., 1992, 6(3), 257-272.
[http://dx.doi.org/10.1080/08905439209549838]
[33]
Matica, M.A.; Aachmann, F.L.; Tøndervik, A.; Sletta, H.; Ostafe, V. Chitosan as a wound dressing starting material: Antimicrobial properties and mode of action. Int. J. Mol. Sci., 2019, 20(23), 5889.
[http://dx.doi.org/10.3390/ijms20235889] [PMID: 31771245]
[34]
Feng, P.; Luo, Y.; Ke, C.; Qiu, H.; Wang, W.; Zhu, Y.; Hou, R.; Xu, L.; Wu, S. Chitosan-based functional materials for skin wound repair: Mechanisms and applications. Front. Bioeng. Biotechnol., 2021, 9, 650598.
[http://dx.doi.org/10.3389/fbioe.2021.650598] [PMID: 33681176]
[35]
Ke, C.L.; Deng, F.S.; Chuang, C.Y.; Lin, C.H. Antimicrobial actions and applications of chitosan. Polymers (Basel), 2021, 13(6), 904.
[http://dx.doi.org/10.3390/polym13060904] [PMID: 33804268]
[36]
Hosseinnejad, M.; Jafari, S.M. Evaluation of different factors affecting antimicrobial properties of chitosan. Int. J. Biol. Macromol., 2016, 85, 467-475.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.022] [PMID: 26780706]
[37]
Matica, A.; Menghiu, G.; Ostafe, V. Antibacterial properties of chitin and chitosans. New Front. Chem, 2017, 26, 39-54.
[38]
Khalid, S.; Piggot, T.J.; Samsudin, F. Atomistic and coarse grain simulations of the cell envelope of gram-negative bacteria: What have we learned? Acc. Chem. Res., 2019, 52(1), 180-188.
[http://dx.doi.org/10.1021/acs.accounts.8b00377] [PMID: 30562009]
[39]
Helander, I.M.; Nurmiaho-Lassila, E.L.; Ahvenainen, R.; Rhoades, J.; Roller, S. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int. J. Food Microbiol., 2001, 71(2-3), 235-244.
[http://dx.doi.org/10.1016/S0168-1605(01)00609-2] [PMID: 11789941]
[40]
Verlee, A.; Mincke, S.; Stevens, C.V. Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr. Polym., 2017, 164, 268-283.
[http://dx.doi.org/10.1016/j.carbpol.2017.02.001] [PMID: 28325326]
[41]
Chen, H.; Ye, Z.; Sun, L.; Li, X.; Shi, S.; Hu, J.; Jin, Y.; Xu, Q.; Wang, B. Synthesis of chitosan-based micelles for pH responsive drug release and antibacterial application. Carbohydr. Polym., 2018, 189, 65-71.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.022] [PMID: 29580427]
[42]
Kim, S.; Cui, Z.K.; Koo, B.; Zheng, J.; Aghaloo, T.; Lee, M. Chitosan–lysozyme conjugates for enzyme-triggered hydrogel degradation in tissue engineering applications. ACS Appl. Mater. Interfaces, 2018, 10(48), 41138-41145.
[http://dx.doi.org/10.1021/acsami.8b15591] [PMID: 30421603]
[43]
Ahn, J.; Ryu, J.; Song, G.; Whang, M.; Kim, J. Network structure and enzymatic degradation of chitosan hydrogels determined by crosslinking methods. Carbohydr. Polym., 2019, 217, 160-167.
[http://dx.doi.org/10.1016/j.carbpol.2019.04.055] [PMID: 31079673]
[44]
Contreras-Ruiz, L.; de la Fuente, M.; García-Vázquez, C.; Sáez, V.; Seijo, B.; Alonso, M.J.; Calonge, M.; Diebold, Y. Ocular tolerance to a topical formulation of hyaluronic acid and chitosan-based nanoparticles. Cornea, 2010, 29(5), 550-558.
[http://dx.doi.org/10.1097/ICO.0b013e3181bd9eee] [PMID: 20335805]
[45]
Panova, I.G.; Tatikolov, A.S.; Smirnova, Y.A.; Poltavtseva, R.A.; Sukhikh, G.T. Albumin in the vitreous body, retina and lens of human fetal eye. Bull. Exp. Biol. Med., 2017, 162(5), 629-631.
[http://dx.doi.org/10.1007/s10517-017-3673-6] [PMID: 28361409]
[46]
Thangavel, K.; Lakshmikuttyamma, A.; Thangavel, C.; Shoyele, S.A. CD44-targeted, indocyanine green-paclitaxel-loaded human serum albumin nanoparticles for potential image-guided drug delivery. Colloids Surf. B Biointerfaces, 2022, 209(Pt 1), 112162.
[http://dx.doi.org/10.1016/j.colsurfb.2021.112162] [PMID: 34752986]
[47]
Imayasu, M.; Moriyama, T.; Ohashi, J.; Ichijima, H.; Cavanagh, H.D. A quantitative method for LDH, MDH and albumin levels in tears with ocular surface toxicity scored by Draize criteria in rabbit eyes. CLAO J., 1992, 18(4), 260-266.
[PMID: 1424063]
[48]
Schrader, S.; Wedel, T.; Moll, R.; Geerling, G. Combination of serum eye drops with hydrogel bandage contact lenses in the treatment of persistent epithelial defects. Graefes Arch. Clin. Exp. Ophthalmol., 2006, 244(10), 1345-1349.
[http://dx.doi.org/10.1007/s00417-006-0257-y] [PMID: 16544115]
[49]
Bohnert, J.L.; Horbett, T.A.; Ratner, B.D.; Royce, F.H. Adsorption of proteins from artificial tear solutions to contact lens materials. Invest. Ophthalmol. Vis. Sci., 1988, 29(3), 362-373.
[PMID: 3343093]
[50]
Hall, B.; Jones, L.W.; Forrest, J.A. Competitive effects from an artificial tear solution to protein adsorption. Optom. Vis. Sci., 2015, 92(7), 781-789.
[http://dx.doi.org/10.1097/OPX.0000000000000618] [PMID: 26002003]
[51]
Kojima, T.; Higuchi, A.; Goto, E.; Matsumoto, Y.; Dogru, M.; Tsubota, K. Autologous serum eye drops for the treatment of dry eye diseases. Cornea, 2008, 27(Suppl. 1), S25-S30.
[http://dx.doi.org/10.1097/ICO.0b013e31817f3a0e] [PMID: 18813071]
[52]
Higuchi, A.; Ueno, R.; Shimmura, S.; Suematsu, M.; Dogru, M.; Tsubota, K. Albumin rescues ocular epithelial cells from cell death in dry eye. Curr. Eye Res., 2007, 32(2), 83-88.
[http://dx.doi.org/10.1080/02713680601147690] [PMID: 17364740]
[53]
Noguchi, Y.; Kawashima, Y.; Maruyama, M.; Kawara, H.; Tokuyama, Y.; Uchiyama, K.; Shimizu, Y. Risk factors for eye disorders caused by paclitaxel: A retrospective study. Biol. Pharm. Bull., 2018, 41(11), 1694-1700.
[http://dx.doi.org/10.1248/bpb.b18-00444] [PMID: 30381669]
[54]
Parekh, M.; Elbadawy, H.; Salvalaio, G.; Amoureux, M.C.; Di Iorio, E.; Fortier, D.; Ponzin, D.; Ferrari, S.; Ruzza, A. Recombinant human serum albumin for corneal preservation. Acta Ophthalmol., 2018, 96(1), e79-e86.
[http://dx.doi.org/10.1111/aos.13498] [PMID: 28636255]
[55]
Nees, D.W.; Fariss, R.N.; Piatigorsky, J. Serum albumin in mammalian cornea: implications for clinical application. Invest. Ophthalmol. Vis. Sci., 2003, 44(8), 3339-3345.
[http://dx.doi.org/10.1167/iovs.02-1161] [PMID: 12882779]
[56]
Prause, J.U. Serum albumin, serum antiproteases and polymorphonuclear leucocyte neutral collagenolytic protease in the tear fluid of patients with corneal ulcers. Acta Ophthalmol., 1983, 61(2), 272-282.
[http://dx.doi.org/10.1111/j.1755-3768.1983.tb01421.x] [PMID: 6192677]
[57]
Schargus, M.; Kohlhaas, M.; Unterlauft, J.D. Treatment of severe ocular surface disorders with albumin eye drops. J. Ocul. Pharmacol. Ther., 2015, 31(5), 291-295.
[http://dx.doi.org/10.1089/jop.2014.0161] [PMID: 25853388]
[58]
Huang, D.; Chen, Y.S.; Thakur, S.S.; Rupenthal, I.D. Ultrasound-mediated nanoparticle delivery across ex vivo bovine retina after intravitreal injection. Eur. J. Pharm. Biopharm., 2017, 119, 125-136.
[http://dx.doi.org/10.1016/j.ejpb.2017.06.009] [PMID: 28602870]
[59]
Huang, D.; Chen, Y.S.; Thakur, S.S.; Rupenthal, I.D. Erratum to Ultrasound-mediated nanoparticle delivery across ex vivo bovine retina after intravitreal injection. Eur. J. Pharm. Biopharm., 2018, 123, 117.
[http://dx.doi.org/10.1016/j.ejpb.2017.11.016] [PMID: 29222046]
[60]
Scavelli, K.; Chatterjee, A.; Rhee, D.J. Secreted protein acidic and rich in cysteine in ocular tissue. J. Ocul. Pharmacol. Ther., 2015, 31(7), 396-405.
[http://dx.doi.org/10.1089/jop.2015.0057] [PMID: 26167673]
[61]
Lin, T.; Zhao, P.; Jiang, Y.; Tang, Y.; Jin, H.; Pan, Z.; He, H.; Yang, V.C.; Huang, Y. Blood–brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS Nano, 2016, 10(11), 9999-10012.
[http://dx.doi.org/10.1021/acsnano.6b04268] [PMID: 27934069]
[62]
Díaz-Coránguez, M.; Ramos, C.; Antonetti, D.A. The inner blood-retinal barrier: Cellular basis and development. Vision Res., 2017, 139, 123-137.
[http://dx.doi.org/10.1016/j.visres.2017.05.009] [PMID: 28619516]
[63]
Larsen, M.T.; Kuhlmann, M.; Hvam, M.L.; Howard, K.A. Albumin-based drug delivery: harnessing nature to cure disease. Mol. Cell. Ther., 2016, 4(1), 3.
[http://dx.doi.org/10.1186/s40591-016-0048-8] [PMID: 26925240]
[64]
Schnitzer, J.E. gp60 is an albumin-binding glycoprotein expressed by continuous endothelium involved in albumin transcytosis. Am. J. Physiol., 1992, 262(1 Pt 2), H246-H254.
[PMID: 1733316]
[65]
Buchen, S.Y.; Calogero, D.; Tarver, M.E.; Hilmantel, G.; Tang, X.; Eydelman, M.B. Evaluation of intraocular reactivity to organic contaminants of ophthalmic devices in a rabbit model. Ophthalmology, 2012, 119(7), e24-e29.
[http://dx.doi.org/10.1016/j.ophtha.2012.04.007] [PMID: 22578449]
[66]
Strocchi, P.; Dozza, B.; Pecorella, I.; Fresina, M.; Campos, E.; Stirpe, F. Lesions caused by ricin applied to rabbit eyes. Invest. Ophthalmol. Vis. Sci., 2005, 46(4), 1113-1116.
[http://dx.doi.org/10.1167/iovs.04-0769] [PMID: 15790867]
[67]
Miller, S.C.; Patton, T.F. Age-related differences in ophthalmic drug disposition II: Drug-protein interactions of pilocarpine and chloramphenicol. Biopharm. Drug Dispos., 1982, 3(2), 115-128.
[http://dx.doi.org/10.1002/bdd.2510030205] [PMID: 7104461]
[68]
Quinteros, D.A.; Ferreira, L.M.; Schaffazick, S.R.; Palma, S.D.; Allemandi, D.A.; Cruz, L. Novel polymeric nanoparticles intended for ophthalmic administration of acetazolamide. J. Pharm. Sci., 2016, 105(10), 3183-3190.
[http://dx.doi.org/10.1016/j.xphs.2016.06.023] [PMID: 27519647]
[69]
Durand-Cavagna, G.; Duprat, P.; Molon-Noblot, S.; Delort, P.; Rozier, A. Corneal endothelial changes with azone, a penetration enhancer. Lens Eye Toxic. Res., 1989, 6(1-2), 109-117.
[PMID: 2488011]
[70]
Zhu, Q.; Liu, C.; Sun, Z.; Zhang, X.; Liang, N.; Mao, S. Inner layer-embedded contact lenses for pH-triggered controlled ocular drug delivery. Eur. J. Pharm. Biopharm., 2018, 128, 220-229.
[http://dx.doi.org/10.1016/j.ejpb.2018.04.017] [PMID: 29730260]
[71]
Mortazavi, S.A.; Jafariazar, Z.; Ghadjahani, Y.; Mahmoodi, H.; Mehtarpour, F. Formulation and in-vitro characterization of sustained release matrix type ocular timolol maleate mini-tablet. Iran. J. Pharm. Res., 2014, 13(1), 19-27.
[PMID: 24734053]
[72]
Aburahma, M.H.; Mahmoud, A.A. Biodegradable ocular inserts for sustained delivery of brimonidine tartarate: preparation and in vitro/in vivo evaluation. AAPS PharmSciTech, 2011, 12(4), 1335-1347.
[http://dx.doi.org/10.1208/s12249-011-9701-3] [PMID: 21979886]
[73]
Rubião, F.; Araújo, A.C.F.; Sancio, J.B.; Nogueira, B.S.; Franca, J.R.; Nogueira, J.C.; Ferreira, A.J.; Faraco, A.A.G.; Foureaux, G.; Cronemberger, S. Topical bimatoprost insert for primary open-angle glaucoma and ocular hypertension treatment - a phase II controlled study. Curr. Drug Deliv., 2021, 18(7), 1022-1026.
[http://dx.doi.org/10.2174/1567201818666210101112256] [PMID: 33388018]
[74]
Maulvi, F.A.; Lakdawala, D.H.; Shaikh, A.A.; Desai, A.R.; Choksi, H.H.; Vaidya, R.J.; Ranch, K.M.; Koli, A.R.; Vyas, B.A.; Shah, D.O. In vitro and in vivo evaluation of novel implantation technology in hydrogel contact lenses for controlled drug delivery. J. Control. Release, 2016, 226, 47-56.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.012] [PMID: 26860285]
[75]
Prachi, G.; Divya, J. Formulation and evaluation of besifloxacin loaded in situ gel for ophthalmic delivery. Pharm. Biosci. J., 2018, 12(4), 2013-2018.
[76]
Mortazavi, S.A.; Jaffariazar, Z.; Damercheli, E. Formulation and in-vitro evaluation of ocular ciprofloxacin-containing minitablets prepared with different combinations of carbopol 974p and various cellulose derivatives. Iran. J. Pharm. Res., 2010, 9(2), 107-114.
[PMID: 24363715]
[77]
Idrees, A.; Rahman, N.U.; Javaid, Z.; Kashif, M.; Aslam, I.; Abbas, K.; Hussain, T. In vitro evaluation of transdermal patches of flurbiprofen with ethyl cellulose. Acta Pol. Pharm., 2014, 71(2), 287-295.
[PMID: 25272649]
[78]
Ahmed, A.; Safaa, S.; Viviane, F. Formulation and evaluation of acyclovir ophthalmic inserts. Asian J. Pharm. Sci., 2008, 3(2), 58-67.
[79]
Kempin, W.; Franz, C.; Koster, L.C.; Schneider, F.; Bogdahn, M.; Weitschies, W.; Seidlitz, A. Assessment of different polymers and drug loads for fused deposition modeling of drug loaded implants. Eur. J. Pharm. Biopharm., 2017, 115, 84-93.
[http://dx.doi.org/10.1016/j.ejpb.2017.02.014] [PMID: 28232106]
[80]
Daniel, M.; Ali, O.; Arthem, M. Iron(III)-cross-linked alginate hydrogels: a critical review; Material Advances, 2022.
[81]
Verma, S.; Nagpal, K.; Singh, S.K.; Mishra, D.N. Unfolding type gastroretentive film of Cinnarizine based on ethyl cellulose and hydroxypropylmethyl cellulose. Int. J. Biol. Macromol., 2014, 64, 347-352.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.12.030] [PMID: 24370473]
[82]
Balzus, B.; Sahle, F.F.; Hönzke, S.; Gerecke, C.; Schumacher, F.; Hedtrich, S.; Kleuser, B.; Bodmeier, R. Formulation and ex vivo evaluation of polymeric nanoparticles for controlled delivery of corticosteroids to the skin and the corneal epithelium. Eur. J. Pharm. Biopharm., 2017, 115, 122-130.
[http://dx.doi.org/10.1016/j.ejpb.2017.02.001] [PMID: 28189623]
[83]
Silva, D.; Pinto, L.F.V.; Bozukova, D.; Santos, L.F.; Serro, A.P.; Saramago, B. Chitosan/alginate based multilayers to control drug release from ophthalmic lens. Colloids Surf. B Biointerfaces, 2016, 147, 81-89.
[http://dx.doi.org/10.1016/j.colsurfb.2016.07.047] [PMID: 27494772]
[84]
Lou, R.; Yu, W.; Song, Y.; Ren, Y.; Zheng, H.; Guo, X.; Lin, Y.; Pan, G.; Wang, X.; Ma, X. Fabrication of stable galactosylated alginate microcapsules via covalent coupling onto hydroxyl groups for hepatocytes applications. Carbohydr. Polym., 2017, 155, 456-465.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.098] [PMID: 27702535]
[85]
Shin, E.Y.; Park, J.H.; Shin, M.E.; Song, J.E.; Thangavelu, M.; Carlomagno, C.; Motta, A.; Migliaresi, C.; Khang, G. Injectable taurine-loaded alginate hydrogels for retinal pigment epithelium (RPE) regeneration. Mater. Sci. Eng. C, 2019, 103, 109787.
[http://dx.doi.org/10.1016/j.msec.2019.109787] [PMID: 31349479]
[86]
Ching, S.H.; Bansal, N.; Bhandari, B. Alginate gel particles–A review of production techniques and physical properties. Crit. Rev. Food Sci. Nutr., 2017, 57(6), 1133-1152.
[http://dx.doi.org/10.1080/10408398.2014.965773] [PMID: 25976619]
[87]
Rupenthal, I.D.; Green, C.R.; Alany, R.G. Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 1: Physicochemical characterisation and in vitro release. Int. J. Pharm., 2011, 411(1-2), 69-77.
[http://dx.doi.org/10.1016/j.ijpharm.2011.03.042] [PMID: 21453762]
[88]
Oryan, A.; Kamali, A.; Moshiri, A.; Baharvand, H.; Daemi, H. Chemical crosslinking of biopolymeric scaffolds, Current knowledge and future directions of crosslinked engineered bone scaffolds. Int. J. Biol. Macromol., 2018, 107((Pt A)), 678-8.
[89]
Davidovich-Pinhas, M.; Bianco-Peled, H. Alginate–PEGAc: A new mucoadhesive polymer. Acta Biomater., 2011, 7(2), 625-633.
[http://dx.doi.org/10.1016/j.actbio.2010.09.021] [PMID: 20858555]
[90]
Mackie, A.R.; Macierzanka, A.; Aarak, K.; Rigby, N.M.; Parker, R.; Channell, G.A.; Harding, S.E.; Bajka, B.H. Sodium alginate decreases the permeability of intestinal mucus. Food Hydrocoll., 2016, 52, 749-755.
[http://dx.doi.org/10.1016/j.foodhyd.2015.08.004] [PMID: 26726279]
[91]
Fuzlin, A.; Misnon, I.; Nagao, Y. Study on ionic conduction of alginate bio-based polymer electrolytes by incorporating ionic liquid. Mater. Today: proceedngs., 2022, 51(2), 1455-1459.
[http://dx.doi.org/10.1016/j.matpr.2021.11.654]
[92]
Morgan, W.H.; Yu, D.Y. XEN-45 gelatin microfistula for uveitic glaucoma. Clin. Exp. Ophthalmol., 2018, 46(4), 323-324.
[http://dx.doi.org/10.1111/ceo.13307] [PMID: 29898259]
[93]
Echave, M.C.; Hernáez-Moya, R.; Iturriaga, L.; Pedraz, J.L.; Lakshminarayanan, R.; Dolatshahi-Pirouz, A.; Taebnia, N.; Orive, G. Recent advances in gelatin-based therapeutics. Expert Opin. Biol. Ther., 2019, 19(8), 773-779.
[http://dx.doi.org/10.1080/14712598.2019.1610383] [PMID: 31009588]
[94]
Tsai, C.H.; Wang, P.Y.; Lin, I.C.; Huang, H.; Liu, G.S.; Tseng, C.L. Ocular drug delivery, role of degradable polymeric nanocarriers for ophthalmic application. Int. J. Mol. Sci., 2018, 19(9)
[95]
Matthyssen, S.; Van den Bogerd, B.; Dhubhghaill, S.N.; Koppen, C.; Zakaria, N. Corneal regeneration: A review of stromal replacements. Acta Biomater., 2018, 69, 31-41.
[http://dx.doi.org/10.1016/j.actbio.2018.01.023] [PMID: 29374600]
[96]
Hong, W.; Xu, G.; Ou, X.; Sun, W.; Wang, T.; Tong, Z. Colloidal probe dynamics in gelatin solution during the sol–gel transition. Soft Matter, 2018, 14(19), 3694-3703.
[http://dx.doi.org/10.1039/C7SM02556D] [PMID: 29611569]
[97]
Luo, L.J.; Lai, J.Y. Epigallocatechin gallate-loaded gelatin-g-poly(n-isopropylacrylamide) as a new ophthalmic pharmaceutical formulation for topical use in the treatment of dry eye syndrome. Sci. Rep., 2017, 7(1), 9380.
[http://dx.doi.org/10.1038/s41598-017-09913-8] [PMID: 28839279]
[98]
Niu, G.; Choi, J.S.; Wang, Z.; Skardal, A.; Giegengack, M.; Soker, S. Heparin-modified gelatin scaffolds for human corneal endothelial cell transplantation. Biomaterials, 2014, 35(13), 4005-4014.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.033] [PMID: 24508079]
[99]
Liang, Y.; Liu, W.; Han, B.; Yang, C.; Ma, Q.; Zhao, W.; Rong, M.; Li, H. Fabrication and characters of a corneal endothelial cells scaffold based on chitosan. J. Mater. Sci. Mater. Med., 2011, 22(1), 175-183.
[http://dx.doi.org/10.1007/s10856-010-4190-6] [PMID: 21107657]
[100]
Chen, H.; Zhao, Z.; Zhao, Y.; Yang, Y. Fabrication and evaluation of chitosan–gelatin based buckling implant for retinal detachment surgery. J. Mater. Sci. Mater. Med., 2010, 21(10), 2887-2895.
[http://dx.doi.org/10.1007/s10856-010-4141-2] [PMID: 20711637]
[101]
Chen, T.; Janjua, R.; McDermott, M.K.; Bernstein, S.L.; Steidl, S.M.; Payne, G.F. Gelatin-based biomimetic tissue adhesive. Potential for retinal reattachment. J. Biomed. Mater. Res. B Appl. Biomater., 2006, 77B(2), 416-422.
[http://dx.doi.org/10.1002/jbm.b.30439] [PMID: 16278851]
[102]
Mathurm, M.; Gilhotra, R.M. Glycerogelatin-based ocular inserts of aceclofenac: Physicochemical, drug release studies and efficacy against prostaglandin E2-induced ocular inflammation. Drug Deliv., 2011, 18(1), 54-64.
[http://dx.doi.org/10.3109/10717544.2010.509366] [PMID: 20718601]
[103]
Natu, M.V.; Sardinha, J.P.; Correia, I.J.; Gil, M.H. Controlled release gelatin hydrogels and lyophilisates with potential application as ocular inserts. Biomed. Mater., 2007, 2(4), 241-249.
[http://dx.doi.org/10.1088/1748-6041/2/4/006] [PMID: 18458481]
[104]
Rose, J.; Pacelli, S.; Haj, A.; Dua, H.; Hopkinson, A.; White, L.; Rose, F. Gelatin-based materials in ocular tissue engineering. Materials (Basel), 2014, 7(4), 3106-3135.
[http://dx.doi.org/10.3390/ma7043106] [PMID: 28788609]
[105]
Hathout, R.M.; Omran, M.K. Gelatin-based particulate systems in ocular drug delivery. Pharm. Dev. Technol., 2016, 21(3), 379-386.
[http://dx.doi.org/10.3109/10837450.2014.999786] [PMID: 25567143]
[106]
Aldana, A.A.; Abraham, G.A. Current advances in electrospun gelatin-based scaffolds for tissue engineering applications. Int. J. Pharm., 2017, 523(2), 441-453.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.044] [PMID: 27640245]
[107]
Chou, S.F.; Luo, L.J.; Lai, J.Y.; Ma, D.H.K. Role of solvent-mediated carbodiimide cross-linking in fabrication of electrospun gelatin nanofibrous membranes as ophthalmic biomaterials. Mater. Sci. Eng. C, 2017, 71, 1145-1155.
[http://dx.doi.org/10.1016/j.msec.2016.11.105] [PMID: 27987671]
[108]
Shute, T.S.; Dietrich, U.M.; Baker, J.F.M.; Carmichael, K.P.; Wustenberg, W.; Ahmed, I.I.K.; Sheybani, A. Biocompatibility of a novel microfistula implant in nonprimate mammals for the surgical treatment of glaucoma. Invest. Ophthalmol. Vis. Sci., 2016, 57(8), 3594-3600.
[http://dx.doi.org/10.1167/iovs.16-19453] [PMID: 27391549]
[109]
Vijayakumar, V.; Subramanian, K. Diisocyanate mediated polyether modified gelatin drug carrier for controlled release. Saudi Pharm. J., 2014, 22(1), 43-51.
[http://dx.doi.org/10.1016/j.jsps.2013.01.005] [PMID: 24493973]
[110]
Sisson, K.; Zhang, C.; Farach-Carson, M.C.; Chase, D.B.; Rabolt, J.F. Evaluation of cross-linking methods for electrospun gelatin on cell growth and viability. Biomacromolecules, 2009, 10(7), 1675-1680.
[http://dx.doi.org/10.1021/bm900036s] [PMID: 19456101]
[111]
Tengroth, C.; Gasslander, U.; Andersson, F.O.; Jacobsson, S.P. Cross-linking of gelatin capsules with formaldehyde and other aldehydes: an FTIR spectroscopy study. Pharm. Dev. Technol., 2005, 10(3), 405-412.
[http://dx.doi.org/10.1081/PDT-65693] [PMID: 16176021]
[112]
Dubey, A.; Prabhu, P.; Parth, V.; Ghate, V. Investigation of hydrogel membranes containing combination of gentamicin and dexamethasone for ocular delivery. Int. J. Pharm. Investig., 2015, 5(4), 214-225.
[http://dx.doi.org/10.4103/2230-973X.167684] [PMID: 26682192]
[113]
Hou, S.; Lake, R.; Park, S.; Edwards, S.; Jones, C.; Jeong, K.J. Injectable macroporous hydrogel formed by enzymatic cross-linking of gelatin microgels. ACS Appl. Bio Mater., 2018, 1(5), 1430-1439.
[http://dx.doi.org/10.1021/acsabm.8b00380] [PMID: 31701093]
[114]
Le Thi, P.; Lee, Y.; Nguyen, D.H.; Park, K.D. In situ forming gelatin hydrogels by dual-enzymatic cross-linking for enhanced tissue adhesiveness. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(4), 757-764.
[http://dx.doi.org/10.1039/C6TB02179D] [PMID: 32263844]
[115]
Agunbiade, M.; Le Roes-Hill, M. Application of bacterial tyrosinases in organic synthesis. World J. Microbiol. Biotechnol., 2022, 38(1), 2.
[http://dx.doi.org/10.1007/s11274-021-03186-0] [PMID: 34817696]
[116]
Rose, J.B.; Sidney, L.E.; Patient, J.; White, L.J.; Dua, H.S.; El Haj, A.J.; Hopkinson, A.; Rose, F.R.A.J. In vitro evaluation of electrospun blends of gelatin and PCL for application as a partial thickness corneal graft. J. Biomed. Mater. Res. A, 2019, 107(4), 828-838.
[http://dx.doi.org/10.1002/jbm.a.36598] [PMID: 30578722]
[117]
Lin, T.W.; Chien, Y.; Lin, Y.Y.; Wang, M.L.; Yarmishyn, A.A.; Yang, Y.P.; Hwang, D.K.; Peng, C.H.; Hsu, C.C.; Chen, S.J.; Chien, K.H. Establishing liposome-immobilized dexamethasone-releasing PDMS membrane for the cultivation of retinal pigment epithelial cells and suppression of neovascularization. Int. J. Mol. Sci., 2019, 20(2), 241.
[http://dx.doi.org/10.3390/ijms20020241] [PMID: 30634448]
[118]
McDermott, M.K.; Chen, T.; Williams, C.M.; Markley, K.M.; Payne, G.F. Mechanical properties of biomimetic tissue adhesive based on the microbial transglutaminase-catalyzed crosslinking of gelatin. Biomacromolecules, 2004, 5(4), 1270-1279.
[http://dx.doi.org/10.1021/bm034529a] [PMID: 15244440]
[119]
Lin, Y.; Zheng, Q.; Hua, S.; Meng, Y.; Chen, W.; Wang, Y. Cross-linked decellularized porcine corneal graft for treating fungal keratitis. Sci. Rep., 2017, 7(1), 9955.
[http://dx.doi.org/10.1038/s41598-017-08207-3] [PMID: 28855517]
[120]
Iseli, H.P.; Körber, N.; Koch, C.; Karl, A.; Penk, A.; Huster, D.; Reichenbach, A.; Wiedemann, P.; Francke, M. Scleral cross-linking by riboflavin and blue light application in young rabbits: damage threshold and eye growth inhibition. Graefes Arch. Clin. Exp. Ophthalmol., 2016, 254(1), 109-122.
[http://dx.doi.org/10.1007/s00417-015-3213-x] [PMID: 26597112]
[121]
Tóth, E.; Beyer, D.; Zsebik, B.; Vereb, G.; Takács, L. Limbal and conjunctival epithelial cell cultivation on contact lenses-Different affixing techniques and the effect of feeder cells. Eye Contact Lens, 2017, 43(3), 162-167.
[http://dx.doi.org/10.1097/ICL.0000000000000259] [PMID: 27058829]
[122]
Lai, J.Y. Hyaluronic acid concentration-mediated changes in structure and function of porous carriers for corneal endothelial cell sheet delivery. Mater. Sci. Eng. C, 2016, 59, 411-419.
[http://dx.doi.org/10.1016/j.msec.2015.10.050] [PMID: 26652391]
[123]
Mimura, T.; Amano, S.; Yokoo, S.; Uchida, S.; Yamagami, S.; Usui, T.; Kimura, Y.; Tabata, Y. Tissue engineering of corneal stroma with rabbit fibroblast precursors and gelatin hydrogels. Mol. Vis., 2008, 14, 1819-1828.
[PMID: 18852871]
[124]
Streckbein, R.G.; Kraft, I.; Kraft, F.B.; Lorber, C.G. Antigenicity and resorptive behavior of the usual gelatin preparations and of dry fibrin foam. Dtsch. Zahnarztl. Z., 1979, 34(7), 536-540.
[PMID: 288571]
[125]
Schwick, H.G.; Heide, K. Immunochemistry and immunology of collagen and gelatin. Curr. Stud. Hematol. Blood Transfus., 1969, 33, 111-125.
[http://dx.doi.org/10.1159/000384833] [PMID: 4988117]
[126]
Shi, S.; Zhang, Z.; Luo, Z.; Yu, J.; Liang, R.; Li, X.; Chen, H. Chitosan grafted methoxy poly(ethylene glycol)-poly(ε-caprolactone) nanosuspension for ocular delivery of hydrophobic diclofenac. Sci. Rep., 2015, 5(1), 11337.
[http://dx.doi.org/10.1038/srep11337] [PMID: 26067670]
[127]
Silva-Cunha, A.; Fialho, S.L.; Naud, M.C.; Behar-Cohen, F. Poly-epsilon-caprolactone intravitreous devices: An in vivo study. Invest. Ophthalmol. Vis. Sci., 2009, 50(5), 2312-2318.
[http://dx.doi.org/10.1167/iovs.08-2969] [PMID: 19117927]
[128]
Chen, H.; Huang, J.; Yu, J.; Liu, S.; Gu, P. Electrospun chitosan-graft-poly (ε-caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering. Int. J. Biol. Macromol., 2011, 48(1), 13-19.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.09.019] [PMID: 20933540]
[129]
Mobarra, N.; Soleimani, M.; Ghayour-Mobarhan, M.; Safarpour, S.; Ferns, G.A.; Pakzad, R.; Pasalar, P. Hybrid poly‐ L ‐lactic acid/poly(ε-caprolactone) nanofibrous scaffold can improve biochemical and molecular markers of human induced pluripotent stem cell derived hepatocyte-like cells. J. Cell. Physiol., 2019, 234(7), 11247-11255.
[http://dx.doi.org/10.1002/jcp.27779] [PMID: 30515778]
[130]
Bakhshandeh, H.; Soleimani, M.; Hosseini, S.S.; Hashemi, H.; Shabani, I.; Shafiee, A.; Nejad, A.H.; Erfan, M.; Dinarvand, R.; Atyabi, F. Poly (epsilon-caprolactone) nanofibrous ring surrounding a polyvinyl alcohol hydrogel for the development of a biocompatible two-part artificial cornea. Int. J. Nanomedicine, 2011, 6, 1509-1515.
[PMID: 21845040]
[131]
Midhun, B.T.; Shalumon, K.T.; Manzoor, K.; Jayakumar, R.; Nair, S.V.; Deepthy, M. Preparation of budesonide-loaded polycaprolactone nanobeads by electrospraying for controlled drug release. J. Biomater. Sci. Polym. Ed., 2011, 22(18), 2431-2444.
[http://dx.doi.org/10.1163/092050610X540486] [PMID: 21144167]
[132]
Gou, M.; Zheng, X.; Men, K.; Zhang, J.; Wang, B.; Lv, L.; Wang, X.; Zhao, Y.; Luo, F.; Chen, L.; Zhao, X.; Wei, Y.; Qian, Z. Self-assembled hydrophobic honokiol loaded MPEG-PCL diblock copolymer micelles. Pharm. Res., 2009, 26(9), 2164-2173.
[http://dx.doi.org/10.1007/s11095-009-9929-8] [PMID: 19568695]
[133]
Bernards, D.A.; Bhisitkul, R.B.; Wynn, P.; Steedman, M.R.; Lee, O.T.; Wong, F.; Thoongsuwan, S.; Desai, T.A. Ocular biocompatibility and structural integrity of micro- and nanostructured poly(caprolactone) films. J. Ocul. Pharmacol. Ther., 2013, 29(2), 249-257.
[http://dx.doi.org/10.1089/jop.2012.0152] [PMID: 23391326]
[134]
Fialho, S.; Behar-Cohen, F.; Silva-Cunha, A. Dexamethasone-loaded poly(ε-caprolactone) intravitreal implants: A pilot study. Eur. J. Pharm. Biopharm., 2008, 68(3), 637-646.
[http://dx.doi.org/10.1016/j.ejpb.2007.08.004] [PMID: 17851057]
[135]
Carcaboso, A.M.; Chiappetta, D.A.; Opezzo, J.A.W.; Höcht, C.; Fandiño, A.C.; Croxatto, J.O.; Rubio, M.C.; Sosnik, A.; Abramson, D.H.; Bramuglia, G.F.; Chantada, G.L. Episcleral implants for topotecan delivery to the posterior segment of the eye. Invest. Ophthalmol. Vis. Sci., 2010, 51(4), 2126-2134.
[http://dx.doi.org/10.1167/iovs.09-4050] [PMID: 19834044]
[136]
Wei, Z.; Jin, C.; Xu, Q.; Leng, X.; Wang, Y.; Li, Y. Synthesis, microstructure and mechanical properties of partially biobased biodegradable poly(ethylene brassylate-co-ε-caprolactone) copolyesters. J. Mech. Behav. Biomed. Mater., 2019, 91, 255-265.
[http://dx.doi.org/10.1016/j.jmbbm.2018.12.019] [PMID: 30599448]
[137]
Sun, H.; Mei, L.; Song, C.; Cui, X.; Wang, P. The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials, 2006, 27(9), 1735-1740.
[http://dx.doi.org/10.1016/j.biomaterials.2005.09.019] [PMID: 16198413]
[138]
Lee, C.H.; Li, Y.J.; Huang, C.C.; Lai, J.Y. Poly(ε-caprolactone) nanocapsule carriers with sustained drug release: single dose for long-term glaucoma treatment. Nanoscale, 2017, 9(32), 11754-11764.
[http://dx.doi.org/10.1039/C7NR03221H] [PMID: 28782783]
[139]
Stein, S.; Auel, T.; Kempin, W.; Bogdahn, M.; Weitschies, W.; Seidlitz, A. Influence of the test method on in vitro drug release from intravitreal model implants containing dexamethasone or fluorescein sodium in poly (d,l-lactide-co-glycolide) or polycaprolactone. Eur. J. Pharm. Biopharm., 2018, 127, 270-278.
[http://dx.doi.org/10.1016/j.ejpb.2018.02.034] [PMID: 29490233]
[140]
Lawley, E.; Baranov, P.; Young, M. Hybrid vitronectin-mimicking polycaprolactone scaffolds for human retinal progenitor cell differentiation and transplantation. J. Biomater. Appl., 2015, 29(6), 894-902.
[http://dx.doi.org/10.1177/0885328214547751] [PMID: 25145988]
[141]
Kim, J.; Kudisch, M.; da Silva, N.R.K.; Asada, H.; Aya-Shibuya, E.; Bloomer, M.M.; Mudumba, S.; Bhisitkul, R.B.; Desai, T.A. Long-term intraocular pressure reduction with intracameral polycaprolactone glaucoma devices that deliver a novel anti-glaucoma agent. J. Control. Release, 2018, 269, 45-51.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.008] [PMID: 29127001]
[142]
Sridhar, R.; Madhaiyan, K.; Sundarrajan, S.; Góra, A.; Venugopal, J.R.; Ramakrishna, S. Cross-linking of protein scaffolds for therapeutic applications: PCL nanofibers delivering riboflavin for protein cross-linking. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(12), 1626-1633.
[http://dx.doi.org/10.1039/C3TB21789B] [PMID: 32261390]
[143]
Nasr, F.H.; Khoee, S.; Dehghan, M.M.; Chaleshtori, S.S.; Shafiee, A. Preparation and evaluation of contact lenses embedded with polycaprolactone-based nanoparticles for ocular drug delivery. Biomacromolecules, 2016, 17(2), 485-495.
[http://dx.doi.org/10.1021/acs.biomac.5b01387] [PMID: 26652301]
[144]
Parry, J.A.; Wagner, E.R.; Kok, P.L.; Dadsetan, M.; Yaszemski, M.J.; van Wijnen, A.J.; Kakar, S. A combination of a polycaprolactone fumarate scaffold with polyethylene terephthalate sutures for intra-articular ligament regeneration. Tissue Eng. Part A, 2018, 24(3-4), 245-253.
[http://dx.doi.org/10.1089/ten.tea.2016.0531] [PMID: 28530131]
[145]
Adeli-Sardou, M.; Yaghoobi, M.M.; Torkzadeh-Mahani, M.; Dodel, M. Controlled release of lawsone from polycaprolactone/gelatin electrospun nano fibers for skin tissue regeneration. Int. J. Biol. Macromol., 2019, 124, 478-491.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.237] [PMID: 30500508]
[146]
Baranov, P.; Michaelson, A.; Kundu, J.; Carrier, R.L.; Young, M. Interphotoreceptor matrix-poly(ϵ-caprolactone) composite scaffolds for human photoreceptor differentiation. J. Tissue Eng., 2014, 5.
[http://dx.doi.org/10.1177/2041731414554139] [PMID: 25383176]
[147]
Lance, K.D.; Good, S.D.; Mendes, T.S.; Ishikiriyama, M.; Chew, P.; Estes, L.S.; Yamada, K.; Mudumba, S.; Bhisitkul, R.B.; Desai, T.A. In vitro and in vivo sustained zero-order delivery of rapamycin (sirolimus) from a biodegradable intraocular device. Invest. Ophthalmol. Vis. Sci., 2015, 56(12), 7331-7337.
[http://dx.doi.org/10.1167/iovs.15-17757] [PMID: 26559479]
[148]
Thompson, J.R.; Worthington, K.S.; Green, B.J.; Mullin, N.K.; Jiao, C.; Kaalberg, E.E.; Wiley, L.A.; Han, I.C.; Russell, S.R.; Sohn, E.H.; Guymon, C.A.; Mullins, R.F.; Stone, E.M.; Tucker, B.A. Two-photon polymerized poly(caprolactone) retinal cell delivery scaffolds and their systemic and retinal biocompatibility. Acta Biomater., 2019, 94, 204-218.
[http://dx.doi.org/10.1016/j.actbio.2019.04.057] [PMID: 31055121]
[149]
Polat, H.K.; Bozdağ Pehlivan, S.; Özkul, C.; Çalamak, S.; Öztürk, N.; Aytekin, E.; Fırat, A.; Ulubayram, K.; Kocabeyoğlu, S.; İrkeç, M.; Çalış, S. Development of besifloxacin HCl loaded nanofibrous ocular inserts for the treatment of bacterial keratitis: In vitro, ex vivo and in vivo evaluation. Int. J. Pharm., 2020, 585, 119552.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119552] [PMID: 32569814]
[150]
Ng, X.W.; Liu, K.L.; Veluchamy, A.B.; Lwin, N.C.; Wong, T.T.; Venkatraman, S.S. A biodegradable ocular implant for long-term suppression of intraocular pressure. Drug Deliv. Transl. Res., 2015, 5(5), 469-479.
[http://dx.doi.org/10.1007/s13346-015-0240-4] [PMID: 26100093]
[151]
Chang, E.; McClellan, A.J.; Farley, W.J.; Li, D.Q.; Pflugfelder, S.C.; De Paiva, C.S. Biodegradable PLGA-based drug delivery systems for modulating ocular surface disease under experimental murine dry eye. J. Clin. Exp. Ophthalmol., 2011, 2(11), 191.
[http://dx.doi.org/10.4172/2155-9570.1000191] [PMID: 23560247]
[152]
Lee, C.K.; Atibalentja, D.F.; Yao, L.E.; Park, J.; Kuruvilla, S.; Felsher, D.W. Anti-PD-L1 F(ab) conjugated PEG-PLGA nanoparticle enhances immune checkpoint therapy. Nanotheranostics, 2022, 6(3), 243-255.
[http://dx.doi.org/10.7150/ntno.65544] [PMID: 35145835]
[153]
Singh, S.; Singha, P. Effect of modifications in poly (Lactide-co-Glycolide) (PLGA) on drug release and degradation characteristics: A mini review. Curr. Drug Deliv., 2021, 18(10), 1378-1390.
[http://dx.doi.org/10.2174/1567201818666210510165938] [PMID: 33970845]
[154]
Chan, P.S.; Xian, J.W.; Li, Q.; Chan, C.W.; Leung, S.S.Y.; To, K.K.W. Biodegradable thermosensitive PLGA-PEG-PLGA polymer for non-irritating and sustained ophthalmic drug delivery. AAPS J., 2019, 21(4), 59.
[http://dx.doi.org/10.1208/s12248-019-0326-x] [PMID: 31020458]
[155]
Cañadas, C.; Alvarado, H.; Calpena, A.C.; Silva, A.M.; Souto, E.B.; García, M.L.; Abrego, G. In vitro, ex vivo and in vivo characterization of PLGA nanoparticles loading pranoprofen for ocular administration. Int. J. Pharm., 2016, 511(2), 719-727.
[http://dx.doi.org/10.1016/j.ijpharm.2016.07.055] [PMID: 27480398]
[156]
Cañadas-Enrich, C.; Abrego, G.; Alvarado, H.L.; Calpena-Campmany, A.C.; Boix-Montañes, A. Pranoprofen quantification in ex vivo corneal and scleral permeation samples: Analytical validation. J. Pharm. Biomed. Anal., 2018, 160, 109-118.
[http://dx.doi.org/10.1016/j.jpba.2018.07.015] [PMID: 30077069]
[157]
Tahara, K.; Karasawa, K.; Onodera, R.; Takeuchi, H. Feasibility of drug delivery to the eye’s posterior segment by topical instillation of PLGA nanoparticles. Asian J. Pharm. Sci., 2017, 12(4), 394-399.
[http://dx.doi.org/10.1016/j.ajps.2017.03.002] [PMID: 32104351]
[158]
Salama, A.H.; Mahmoud, A.A.; Kamel, R. A novel method for preparing surface-modified fluocinolone acetonide loaded PLGA nanoparticles for ocular use: In vitro and in vivo evaluations. AAPS PharmSciTech, 2016, 17(5), 1159-1172.
[http://dx.doi.org/10.1208/s12249-015-0448-0] [PMID: 26589410]
[159]
Alkholief, M.; Albasit, H.; Alhowyan, A.; Alshehri, S.; Raish, M.; Abul Kalam, M.; Alshamsan, A. Employing a PLGA-TPGS based nanoparticle to improve the ocular delivery of Acyclovir. Saudi Pharm. J., 2019, 27(2), 293-302.
[http://dx.doi.org/10.1016/j.jsps.2018.11.011] [PMID: 30766442]
[160]
Muralidharan, A.; Tender, T.; Shetty, P.K.; Mutalik, S.; Hariharapura, RC. Anti-inflammatory activity of human lens crystallin derived peptide. Curr. Drug Deliv., 2021, 18(9), 1330-1337.
[http://dx.doi.org/10.2174/1567201818666210303095120] [PMID: 33655858]
[161]
Aguilar, A.; Berra, M.; Trédicce, J.; Berra, A. Efficacy of polyethylene glycol–propylene glycol-based lubricant eye drops in reducing squamous metaplasia in patients with dry eye disease. Clin. Ophthalmol., 2018, 12, 1237-1243.
[http://dx.doi.org/10.2147/OPTH.S164888] [PMID: 30034217]
[162]
Labetoulle, M.; Messmer, E.M.; Pisella, P.J.; Ogundele, A.; Baudouin, C. Safety and efficacy of a hydroxypropyl guar/polyethylene glycol/propylene glycol-based lubricant eye-drop in patients with dry eye. Br. J. Ophthalmol., 2017, 101(4), 487-492.
[http://dx.doi.org/10.1136/bjophthalmol-2016-308608] [PMID: 27422973]
[163]
Davitt, W.F.; Bloomenstein, M.; Christensen, M.; Martin, A.E. Efficacy in patients with dry eye after treatment with a new lubricant eye drop formulation. J. Ocul. Pharmacol. Ther., 2010, 26(4), 347-353.
[http://dx.doi.org/10.1089/jop.2010.0025] [PMID: 20653478]
[164]
Foulks, G.N. Clinical evaluation of the efficacy of PEG/PG lubricant eye drops with gelling agent (HP-Guar) for the relief of the signs and symptoms of dry eye disease: A review. Drugs Today (Barc), 2007, 43(12), 887-896.
[http://dx.doi.org/10.1358/dot.2007.43.12.1162080] [PMID: 18174974]
[165]
Rolando, M.; Autori, S.; Badino, F.; Barabino, S. Protecting the ocular surface and improving the quality of life of dry eye patients: a study of the efficacy of an HP-guar containing ocular lubricant in a population of dry eye patients. J. Ocul. Pharmacol. Ther., 2009, 25(3), 271-278.
[http://dx.doi.org/10.1089/jop.2008.0026] [PMID: 19366323]
[166]
Christensen, M.T.; Cohen, S.; Rinehart, J.; Akers, F.; Pemberton, B.; Bloomenstein, M.; Lesher, M.; Kaplan, D.; Meadows, D.; Meuse, P.; Hearn, C.; Stein, J.M. Clinical evaluation of an HP-guar gellable lubricant eye drop for the relief of dryness of the eye. Curr. Eye Res., 2004, 28(1), 55-62.
[http://dx.doi.org/10.1076/ceyr.28.1.55.23495] [PMID: 14704914]
[167]
Maharana, P.; Raghuwanshi, S.; Chauhan, A.; Rai, V.; Pattebahadur, R. Comparison of the efficacy of carboxymethylcellulose 0.5%, hydroxypropyl-guar containing polyethylene glycol 400/pro-pylene glycol, and hydroxypropyl methyl cellulose 0.3% tear substitutes in improving ocular surface disease index in cases of dry eye. Middle East Afr. J. Ophthalmol., 2017, 24(4), 202-206.
[http://dx.doi.org/10.4103/meajo.MEAJO_165_15] [PMID: 29422755]
[168]
Chaiyasan, W.; Srinivas, S.P.; Tiyaboonchai, W. Crosslinked chitosan-dextran sulfate nanoparticle for improved topical ocular drug delivery. Mol. Vis., 2015, 21, 1224-1234.
[PMID: 26604662]
[169]
Sharma, R.; Yassin, A.E. Nanostructure-based platforms-current prospective in ophthalmic drug delivery. Indian J. Ophthalmol., 2014, 62(7), 768-772.
[http://dx.doi.org/10.4103/0301-4738.138301] [PMID: 25116766]
[170]
Yu, T.; Wang, Y.Y.; Yang, M.; Schneider, C.; Zhong, W.; Pulicare, S.; Choi, W.J.; Mert, O.; Fu, J.; Lai, S.K.; Hanes, J. Biodegradable mucus-penetrating nanoparticles composed of diblock copolymers of polyethylene glycol and poly(lactic-co-glycolic acid). Drug Deliv. Transl. Res., 2012, 2(2), 124-128.
[http://dx.doi.org/10.1007/s13346-011-0048-9] [PMID: 24205449]
[171]
Huckaby, J.T.; Lai, S.K. PEGylation for enhancing nanoparticle diffusion in mucus. Adv. Drug Deliv. Rev., 2018, 124, 125-139.
[http://dx.doi.org/10.1016/j.addr.2017.08.010] [PMID: 28882703]
[172]
Kottke, D.; Majid, H.; Breitkreutz, J.; Burckhardt, B.B. Development and evaluation of mucoadhesive buccal dosage forms of lidocaine hydrochloride by ex-vivo permeation studies. Int. J. Pharm., 2020, 581, 119293.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119293] [PMID: 32247812]
[173]
Das, N.G.; Das, S.K. Development of mucoadhesive dosage forms of buprenorphine for sublingual drug delivery. Drug Deliv., 2004, 11(2), 89-95.
[http://dx.doi.org/10.1080/10717540490280688] [PMID: 15200007]
[174]
Cohen, S.; Martin, A.; Sall, K. Evaluation of clinical outcomes in patients with dry eye disease using lubricant eye drops containing polyethylene glycol or carboxymethylcellulose. Clin. Ophthalmol., 2014, 8, 157-164.
[PMID: 24403819]
[175]
Tang, Y.; Varyambath, A.; Ding, Y.; Chen, B.; Huang, X.; Zhang, Y.; Yu, D.; Kim, I.; Song, W. Porous organic polymers for drug delivery: hierarchical pore structures, variable morphologies, and biological properties. Biomater. Sci., 2022, 10(19), 5369-5390.
[http://dx.doi.org/10.1039/D2BM00719C] [PMID: 35861101]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy