Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Protein Nanoparticles Laden In situ Gel for Topical Ocular Drug Delivery

Author(s): Archana Rajan Pillai*, Bijal Prajapati and Abhay Dharamsi

Volume 21, Issue 1, 2024

Published on: 14 February, 2023

Page: [38 - 51] Pages: 14

DOI: 10.2174/1567201820666230123140249

Price: $65

conference banner
Abstract

Topical ocular delivery of drugs is most commonly preferred route by the patient and physician for the treatment of ocular diseases. The topical route is always followed with the disadvantages like tear turnover, nasolacrimal drainage, reduction in precorneal residence time, etc. To overcome these hindrances associated with topical ocular route, a novel drug delivery system is used for targeting the drug at a specific site. In the Novel Drug delivery System, protein-based nanoparticles are an attractive class of nanoparticles designed to deliver the drug at targeted site in slow and sustained release manner. They have a size in the range of 1-100 nm. Protein nanoparticles are leading, particularly for the topical ocular delivery like reduction in intra ocular pressure, providing sustained release and targeted drug delivery at the site of its action. Various methods are used for formulation of protein nanoparticles like desolvation, emulsification, complex coacervation, electrospray techniques. The characterization parameters include particle size, surface morphology, drug loading and entrapment efficiency. Protein nanoparticles can also be loaded in to the in situ gel forming polymers for increasing precorneal residence time of nanoparticles. The characterization parameters of in situ gelling systems are gelling time, rheological properties, gel strength. The review mainly describes the use of various proteins in preparation of protein nanoparticles, methods for preparation of protein nanoparticles, polymers used in in situ gelling system and evaluation as well as characterization parameters of protein nanoparticles, in situ gelling systems & patented information related to protein nanoparticles and in situ gelling system for ocular drug delivery.

Keywords: Ocular drug delivery, topical delivery, protein nanoparticles, in situ gelling systems, evaluation parameters, patented information.

Graphical Abstract
[1]
Harvard Eye Associates.What does the eye look like? - Diagram of the eye. Harvard Eye Associates. 2022. Available from: https://harvardeye.com/uncategorized/diagram-of-the-eye/
[2]
Siggers, J.H.; Ethier, C.R. Fluid mechanics of the eye. Annu. Rev. Fluid Mech., 2012, 44(1), 347-372.
[http://dx.doi.org/10.1146/annurev-fluid-120710-101058]
[3]
Santos, A. C. Altamirano-Vallejo J, Navarro-Partida J, la Rosa AG-D, H. Hsiao J. Breaking down the Barrier: Topical Liposomes as Nanocarriers for Drug Delivery into the Posterior Segment of the Eyeball; Role Nov Drug Deliv Veh Nanobiomedicine, 2020, pp. 1-36.
[http://dx.doi.org/ 10.5772/intechopen.86601] [http://dx.doi.org/10.1124/jpet.119.256933] [PMID: 31072813]
[4]
Gaudana, R.; Ananthula, H.K.; Parenky, A.; Mitra, A.K. Ocular drug delivery. AAPS J., 2010, 12(3), 348-360.
[http://dx.doi.org/10.1208/s12248-010-9183-3] [PMID: 20437123]
[5]
Patel, A.; Cholkar, K.; Agrahari, V.; Mitra, A.K. Ocular drug delivery systems: An overview. World J. Pharmacol., 2013, 2(2), 47-64.
[http://dx.doi.org/10.5497/wjp.v2.i2.47] [PMID: 25590022]
[6]
Wadhwa, S.; Paliwal, R.; Paliwal, S.; Vyas, S. Nanocarriers in ocular drug delivery: an update review. Curr. Pharm. Des., 2009, 15(23), 2724-2750.
[http://dx.doi.org/10.2174/138161209788923886] [PMID: 19689343]
[7]
Zhou, H.Y.; Hao, J.L.; Wang, S.; Zheng, Y.; Zhang, W.S. Nanoparticles in the ocular drug delivery. Int. J. Ophthalmol., 2013, 6(3), 390-396.
[PMID: 23826539]
[8]
Hong, S.; Choi, D.W.; Kim, H.N.; Park, C.G.; Lee, W.; Park, H.H. Protein-based nanoparticles as drug delivery systems. Pharmaceutics, 2020, 12(7), 604.
[http://dx.doi.org/10.3390/pharmaceutics12070604] [PMID: 32610448]
[9]
Kianfar, E. Protein nanoparticles in drug delivery: animal protein, plant proteins and protein cages, albumin nanoparticles. J. Nanobiotechnology, 2021, 19(1), 159.
[http://dx.doi.org/10.1186/s12951-021-00896-3] [PMID: 34051806]
[10]
Jain, A.; Singh, S.K.; Arya, S.K.; Kundu, S.C.; Kapoor, S. Protein nanoparticles: promising platforms for drug delivery applications. ACS Biomater. Sci. Eng., 2018, 4(12), 3939-3961.
[http://dx.doi.org/10.1021/acsbiomaterials.8b01098] [PMID: 33418796]
[11]
Verma, D.; Gulati, N.; Kaul, S.; Mukherjee, S.; Nagaich, U. Protein based nanostructures for drug delivery. J. Pharm. (Cairo), 2018, 2018, 1-18.
[http://dx.doi.org/10.1155/2018/9285854] [PMID: 29862118]
[12]
Hornok, V. Serum albumin nanoparticles: Problems and prospects. Polymers (Basel), 2021, 13(21), 3759.
[http://dx.doi.org/10.3390/polym13213759] [PMID: 34771316]
[13]
Huang, D.; Chen, Y.S.; Rupenthal, I.D. Hyaluronic acid coated albumin nanoparticles for targeted peptide delivery to the retina. Mol. Pharm., 2017, 14(2), 533-545.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b01029] [PMID: 27997199]
[14]
Radwan, S.E.S.; El-Moslemany, R.M.; Mehanna, R.A.; Thabet, E.H.; Abdelfattah, E.Z.A.; El-Kamel, A. Chitosan-coated bovine serum albumin nanoparticles for topical tetrandrine delivery in glaucoma: in vitro and in vivo assessment. Drug Deliv., 2022, 29(1), 1150-1163.
[http://dx.doi.org/10.1080/10717544.2022.2058648] [PMID: 35384774]
[15]
Kim, D.; Maharjan, P.; Jin, M.; Park, T.; Maharjan, A.; Amatya, R.; Yang, J.; Min, K.A.; Shin, M.C. Potential albumin-based antioxidant nanoformulations for ocular protection against oxidative stress. Pharmaceutics, 2019, 11(7), 297.
[http://dx.doi.org/10.3390/pharmaceutics11070297] [PMID: 31248013]
[16]
Rowe, R.; Sheskey, P.; Owen, S. Handbook of pharmaceutical excipients; Pharmaceutical Press: Londan, 2006.
[17]
Gelatin, H.Z. Encyclopedia of Food and Health; Elsevier, 2016, pp. 191-195.
[18]
Alipal, J.; Mohd Pu’ad, N.A.S.; Lee, T.C.; Nayan, N.H.M.; Sahari, N.; Basri, H.; Idris, M.I.; Abdullah, H.Z. A review of gelatin: Properties, sources, process, applications, and commercialisation. Mater. Today Proc., 2021, 42, 240-250.
[http://dx.doi.org/10.1016/j.matpr.2020.12.922]
[19]
Tseng, C.L.; Chen, K.H.; Su, W.Y.; Lee, Y.H.; Wu, C.C.; Lin, F.H. Cationic gelatin nanoparticles for drug delivery to the ocular surface: In vitro and in vivo evaluation. J. Nanomater., 2013, 2013, 1-11.
[http://dx.doi.org/10.1155/2013/238351]
[20]
Esteban-Pérez, S.; Andrés-Guerrero, V.; López-Cano, J.J.; Molina-Martínez, I.; Herrero-Vanrell, R.; Bravo-Osuna, I. Gelatin nanoparticles-HPMC hybrid system for effective ocular topical administration of antihypertensive agents. Pharmaceutics, 2020, 12(4), 306.
[http://dx.doi.org/10.3390/pharmaceutics12040306] [PMID: 32231033]
[21]
Huang, H.Y.; Wang, M.C.; Chen, Z.Y.; Chiu, W.Y.; Chen, K.H.; Lin, I.C.; Yang, W.C.V.; Wu, C.C.; Tseng, C.L. Gelatin-epigallocatechin gallate nanoparticles with hyaluronic acid decoration as eye drops can treat rabbit dry-eye syndrome effectively via inflammatory relief. Int. J. Nanomedicine, 2018, 13, 7251-7273.
[http://dx.doi.org/10.2147/IJN.S173198] [PMID: 30510416]
[22]
Green, E.M.; Mansfield, J.C.; Bell, J.S.; Winlove, C.P. The structure and micromechanics of elastic tissue. Interface Focus, 2014, 4(2)20130058
[http://dx.doi.org/10.1098/rsfs.2013.0058] [PMID: 24748954]
[23]
Lima, L.F.; Sousa, M.G.D.C.; Rodrigues, G.R.; de Oliveira, K.B.S.; Pereira, A.M.; da Costa, A.; Machado, R.; Franco, O.L.; Dias, S.C. Elastin-like polypeptides in development of nanomaterials for application in the medical field. Front. Nanotechnol., 2022, 4874790
[http://dx.doi.org/10.3389/fnano.2022.874790]
[24]
Pang, A.; Hsueh, Y. Trafficking of Targeted Elastin-Like Polypeptide Nanoparticles in the Lacrimal Gland. . PhD Thesis, University of Southern California, , 2015.
[25]
Sreekumar, P.G.; Li, Z.; Wang, W.; Spee, C.; Hinton, D.R.; Kannan, R.; MacKay, J.A. Intra-vitreal α B crystallin fused to elastin-like polypeptide provides neuroprotection in a mouse model of age-related macular degeneration. J. Control. Release, 2018, 283, 94-104.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.014] [PMID: 29778783]
[26]
Hsueh, P.Y.; Ju, Y.; Vega, A.; Edman, M.C.; MacKay, J.A.; Hamm-Alvarez, S.F. A multivalent ICAM-1 binding nanoparticle which inhibits ICAM-1 and LFA-1 interaction represents a new tool for the investigation of autoimmune-mediated dry eye. Int. J. Mol. Sci., 2020, 21(8), 2758.
[http://dx.doi.org/10.3390/ijms21082758] [PMID: 32326657]
[27]
Soy protein - Wikipedia, Available from: https://en.wikipedia.org/wiki/Soy_protein
[28]
Teng, Z.; Luo, Y.; Wang, Q. Nanoparticles synthesized from soy protein: preparation, characterization, and application for nutraceutical encapsulation. J. Agric. Food Chem., 2012, 60(10), 2712-2720.
[http://dx.doi.org/10.1021/jf205238x] [PMID: 22352467]
[29]
Wen, Y.; Jia, H.; Mo, Z.; Zheng, K.; Chen, S.; Ding, Y.; Zhang, Y.; Wen, Y.; Xie, Q.; Qiu, J.; Wu, H.; Ni, Q.; Ban, J.; Lu, Z.; Chen, Y. Cross-linked thermosensitive nanohydrogels for ocular drug delivery with a prolonged residence time and enhanced bioavailability. Mater. Sci. Eng. C, 2021, 119111445
[http://dx.doi.org/10.1016/j.msec.2020.111445] [PMID: 33321585]
[30]
Nguyen, T.P.; Nguyen, Q.V.; Nguyen, V.H.; Le, T.H.; Huynh, V.Q.N.; Vo, D.V.N.; Trinh, Q.T.; Kim, S.Y.; Le, Q.V. Silk fibroin-based biomaterials for biomedical applications: A review. Polymers (Basel), 2019, 11(12), 1933.
[http://dx.doi.org/10.3390/polym11121933] [PMID: 31771251]
[31]
Tran, S.H.; Wilson, C.G.; Seib, F.P. A review of the emerging role of silk for the treatment of the eye. Pharm. Res., 2018, 35(12), 248.
[http://dx.doi.org/10.1007/s11095-018-2534-y] [PMID: 30397820]
[32]
Sah, M.K.; Pramanik, K. Regenerated silk fibroin from B. mori silk cocoon for tissue engineering applications. Int. J. Environ. Sci. Dev., 2010, 1(5), 404-408.
[http://dx.doi.org/10.7763/IJESD.2010.V1.78]
[33]
CFR - Code of Federal Regulations Title 21 Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?FR=878.5030
[34]
Yang, P.; Dong, Y.; Huang, D.; Zhu, C.; Liu, H.; Pan, X.; Wu, C. Silk fibroin nanoparticles for enhanced bio-macromolecule delivery to the retina. Pharm. Dev. Technol., 2019, 24(5), 575-583.
[http://dx.doi.org/10.1080/10837450.2018.1545236] [PMID: 30457420]
[35]
Chomchalao, P.; Saelim, N.; Tiyaboonchai, W. Preparation and characterization of amphotericin B-loaded silk fibroin nanoparticles-in situ hydrogel composites for topical ophthalmic application. J. Mater. Sci., 2022, 57(26), 12522-12539.
[http://dx.doi.org/10.1007/s10853-022-07413-3]
[36]
Lipoprotein - Wikipedia Available from: https://en.wikipedia.org/wiki/Lipoprotein
[37]
Feingold, K.R.; Grunfeld, C. Introduction to lipids and lipoproteins. Endotext. 2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK305896/
[38]
Fukuda, R.; Murakami, T. Potential of lipoprotein-based nanoparticulate formulations for the treatment of eye diseases. Biol. Pharm. Bull., 2020, 43(4), 596-607.
[http://dx.doi.org/10.1248/bpb.b19-00858] [PMID: 32238702]
[39]
Schmidt-Erfurth, U.; Hasan, T.; Gragoudas, E.; Michaud, N.; Flotte, T.J.; Birngruber, R. Vascular targeting in photodynamic occlusion of subretinal vessels. Ophthalmology, 1994, 101(12), 1953-1961.
[http://dx.doi.org/10.1016/S0161-6420(13)31079-3] [PMID: 7997334]
[40]
Suda, K.; Murakami, T.; Gotoh, N.; Fukuda, R.; Hashida, Y.; Hashida, M.; Tsujikawa, A.; Yoshimura, N. High-density lipoprotein mutant eye drops for the treatment of posterior eye diseases. J. Control. Release, 2017, 266, 301-309.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.036] [PMID: 28987881]
[41]
Jao, D.; Xue, Y.; Medina, J.; Hu, X. Protein-based drug-delivery materials. Mater., 2017, 10(5), 517.
[http://dx.doi.org/10.3390/ma10050517]
[42]
Tarhini, M.; Greige-Gerges, H.; Elaissari, A. Protein-based nanoparticles: From preparation to encapsulation of active molecules. Int. J. Pharm., 2017, 522(1-2), 172-197.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.067] [PMID: 28188876]
[43]
Jahanshahi, M.; Babaei, Z. Protein nanoparticle: A unique system as drug delivery vehicles. Afr. J. Biotechnol., 2010, 7(25)
[44]
Maiti, R.; Panigrahi, S.; Tingjie, Y.; Meirong, H. Bovine serum albumin nanoparticles constructing procedures on anticancer activities. Int. J. Adv. Res. Biol. Sci., 2018, 5(4), 226-239.
[45]
Lohcharoenkal, W.; Wang, L.; Chen, Y.C.; Rojanasakul, Y. Protein nanoparticles as drug delivery carriers for cancer therapy. BioMed Res. Int., 2014, 2014180549
[http://dx.doi.org/10.1155/2014/180549]
[46]
Azarmi, S.; Huang, Y.; Chen, H.; McQuarrie, S.; Abrams, D.; Roa, W.; Finlay, W.H.; Miller, G.G.; Löbenberg, R. Optimization of a two-step desolvation method for preparing gelatin nanoparticles and cell uptake studies in 143B osteosarcoma cancer cells. J. Pharm. Pharm. Sci., 2006, 9(1), 124-132.
[PMID: 16849014]
[47]
Rajalakshmi, R.; Indira Muzib, Y.; Aruna, U.; Vinesha, V.; Rupangada, V.; Krishna Moorthy, S.B. Chitosan nanoparticles -an emerging trend in nanotechnology. Int. J. Drug Deliv., 2014, 6(3), 204-229.
[48]
Giannelli, M.; Guerrini, A.; Ballestri, M.; Posati, T.; Aluigi, A.; Zamboni, R. Bioactive Keratin and Fibroin Nanoparticles: An Overview of Their Preparation Strategies. Nanomaterials, 2022, 12(9), 1406.
[http://dx.doi.org/10.3390/nano12091406]
[49]
Jahanshahi, M.; Sanati, M.H.; Babaei, Z. Optimization of parameters for the fabrication of gelatin nanoparticles by the Taguchi robust design method. J. Appl. Stat., 2008, 35(12), 1345-1353.
[http://dx.doi.org/10.1080/02664760802382426]
[50]
de Kruif, C.G.; Weinbreck, F.; de Vries, R. Complex coacervation of proteins and anionic polysaccharides. Curr. Opin. Colloid Interface Sci., 2004, 9(5), 340-349.
[http://dx.doi.org/10.1016/j.cocis.2004.09.006]
[51]
Indiarto, R.; Indriana, L.P.A.; Andoyo, R.; Subroto, E.; Nurhadi, B. Bottom-up nanoparticle synthesis: a review of techniques, polyphenol-based core materials, and their properties. Eur. Food Res. Technol., 2022, 248(1), 1-24.
[http://dx.doi.org/10.1007/s00217-021-03867-y]
[52]
Asadi, M.; Salami, M.; Hajikhani, M.; Emam-Djomeh, Z.; Aghakhani, A.; Ghasemi, A. Electrospray production of curcumin-walnut protein nanoparticles. Food Biophys., 2021, 16(1), 15-26.
[http://dx.doi.org/10.1007/s11483-020-09637-9]
[53]
Sridhar, R.; Ramakrishna, S. Electrosprayed nanoparticles for drug delivery and pharmaceutical applications. Biomatter, 2013, 3(3)e24281
[http://dx.doi.org/10.4161/biom.24281] [PMID: 23512013]
[54]
Electrospraying for Drug Delivery Available from: https://ukdiss.com/examples/electrospraying-for-drug-delivery.php?vref=1
[55]
Stetefeld, J.; McKenna, S.A.; Patel, T.R. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys. Rev., 2016, 8(4), 409-427.
[http://dx.doi.org/10.1007/s12551-016-0218-6] [PMID: 28510011]
[56]
Falke, S.; Betzel, C. Dynamic Light Scattering (DLS). Bioanalysis, 2019, 8, 173-193.
[http://dx.doi.org/10.1007/978-3-030-28247-9_6]
[57]
Dynamic light scattering - Wikipedia Available from: https://en.wikipedia.org/wiki/Dynamic_light_scattering
[58]
Zhang, B. Amorphous and Nano Alloys Electroless Depositions: Technology, Composition, Structure and Theory, 1st ed; Chemical Industry Press, 2015, pp. 1-749.
[59]
Khan, A.A.; Paul, A.; Abbasi, S.; Prakash, S. Mitotic and antiapoptotic effects of nanoparticles coencapsulating human VEGF and human angiopoietin-1 on vascular endothelial cells. Int. J. Nanomedicine, 2011, 6, 1069-1081.
[PMID: 21698074]
[60]
Science, M.; Center, M.; Difference, S. Electron Microscopy | TEM vs SEM | Thermo Fisher Scientific Available https://www.thermofisher.com/in/en/home/materials-science/learning-center/appli-cations/sem-tem-difference.html#:~:text=The%20transmission%20electron%20microscopy%20
[61]
Serda, M. Re-aggregation of carbon nanotubes in two-component epoxy system. J. Nanostructur. Polym Nanocomposit., 2006, 2(3), 87-95.
[62]
Selvamani, V. Stability studies on nanomaterials used in drugs. In: Characterization and Biology of Nanomaterials for Drug Delivery-Nanoscience and Nanotechnology in Drug Delivery; Shyam, S.M.; Shivendu, R.; Nandita, D.; Raghvendra, K.M.; Sabu, T., Eds.; Elsevier, 2019; pp. 425-444.
[http://dx.doi.org/10.1016/B978-0-12-814031-4.00015-5]
[63]
Lomis, N.; Westfall, S.; Farahdel, L.; Malhotra, M.; Shum-Tim, D.; Prakash, S. Human serum albumin nanoparticles for use in cancer drug delivery: Process optimization and in vitro characterization. Nanomaterials (Basel), 2016, 6(6), 116.
[http://dx.doi.org/10.3390/nano6060116] [PMID: 28335244]
[64]
Bhattacharyya, S.; Reddy, P. Effect of surfactant on azithromycin dihydrate loaded stearic acid solid lipid nanoparticles. Turkish J. Pharm. Sci., 2019, 16(4), 425-431.
[http://dx.doi.org/10.4274/tjps.galenos.2018.82160] [PMID: 32454745]
[65]
Cassano, R.; Di Gioia, M.L.; Trombino, S. Gel-based materials for ophthalmic drug delivery. Gels, 2021, 7(3), 130.
[http://dx.doi.org/10.3390/gels7030130] [PMID: 34563016]
[66]
Dubald, M.; Bourgeois, S.; Andrieu, V.; Fessi, H. Ophthalmic drug delivery systems for antibiotherapy-A review. Pharmaceutics, 2018, 10(1), 10.
[http://dx.doi.org/10.3390/pharmaceutics10010010] [PMID: 29342879]
[67]
Rajoria, G.; Gupta, A. In situ gelling system: A novel approach for ocular drug delivery. Am. J. PharmTech. Res., 2012, 2(4), 24-53.
[68]
Sarada, K.; Firoz, S.; Padmini, K. In situ gelling system: A review. Int. J. Curr. Pharm. Rev. Res., 2014, 15(4), 76-90.
[69]
Garge, L.V.; Saudagar, R. Ophthalmic pH sensitive in situ gel: A review. J. Drug Deliv. Ther., 2019, 9(2-s), 682-689.
[70]
Agrawal, M.; Saraf, S.; Saraf, S.; Dubey, S.K.; Puri, A.; Gupta, U.; Kesharwani, P.; Ravichandiran, V.; Kumar, P.; Naidu, V.G.M.; Murty, U.S. Ajazuddin; Alexander, A. Stimuli-responsive in situ gelling system for nose-to-brain drug delivery. J. Control. Release, 2020, 327, 235-265.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.044] [PMID: 32739524]
[71]
Karavasili, C.; Fatouros, D.G. Smart materials: in situ gel-forming systems for nasal delivery. Drug Discov. Today, 2016, 21(1), 157-166.
[http://dx.doi.org/10.1016/j.drudis.2015.10.016] [PMID: 26563428]
[72]
Madan, M.; Bajaj, A.; Lewis, S.; Udupa, N.; Baig, J.A. In situ forming polymeric drug delivery systems. Indian J. Pharm. Sci., 2009, 71(3), 242-251.
[http://dx.doi.org/10.4103/0250-474X.56015] [PMID: 20490289]
[73]
Deka, M.; Ahmed, A.B.; Chakraborty, J. Development, evaluation and characteristics of ophthalmic in situ gel system: A review. Int. J. Curr. Pharm. Res., 2019, 11(4), 47-53.
[http://dx.doi.org/10.22159/ijcpr.2019v11i4.34949]
[74]
Radivojša, M.; Grabnar, I.; Ahlin Grabnar, P. Thermoreversible in situ gelling poloxamer-based systems with chitosan nanocomplexes for prolonged subcutaneous delivery of heparin: Design and in vitro evaluation. Eur. J. Pharm. Sci., 2013, 50(1), 93-101.
[http://dx.doi.org/10.1016/j.ejps.2013.03.002] [PMID: 23524253]
[75]
Kurniawansyah, I.S.; Rusdiana, T.; Wahab, H.A.; Subarnas, A. In situ opthalmic gel with ion activated system. Int. J. Appl. Pharm., 2019, 11(4), 15-18.
[http://dx.doi.org/10.22159/ijap.2019v11i4.33072]
[76]
Sharma, M.; Deohra, A.; Reddy, K.R.; Sadhu, V. Biocompatible in situ gelling polymer hydrogels for treating ocular infection. In: Methods Microbiol; , 2019; 46, pp. 93-114.
[http://dx.doi.org/10.1016/bs.mim.2019.01.001]
[77]
Patil, S.; Kadam, A.; Bandgar, S.; Patil, S. Formulation and evaluation of an in situ gel for ocular drug delivery of anticonjunctival drug. Cellul. Chem. Technol., 2015, 49(1), 35-40.
[78]
Charyulu, R.N.; Narayanan, V.A. Smart in situ gels for glaucoma- An overview. Int. J. Pharm. Sci. Rev. Res., 2018, 50(1), 94-100.
[79]
Kondepati, H.V.; Kulyadi, G.P.; Tippavajhala, V.K. A review on in situ gel forming ophthalmic drug delivery systems. Res. J. Pharm. Technol., 2018, 11(1), 380-386.
[http://dx.doi.org/10.5958/0974-360X.2018.00069.0]
[80]
Soliman, K.A.; Ullah, K.; Shah, A.; Jones, D.S.; Singh, T.R.R. Poloxamer-based in situ gelling thermoresponsive systems for ocular drug delivery applications. Drug Discov. Today, 2019, 24(8), 1575-1586.
[http://dx.doi.org/10.1016/j.drudis.2019.05.036] [PMID: 31175956]
[81]
Kurniawansyah, I.S.; Sopyan, I.; Wathoni, N.; Fillah, D.L.; Praditya, R.U. Application and characterization of in situ gel. Int. J. Appl. Pharm., 2018, 10(6), 34-37.
[http://dx.doi.org/10.22159/ijap.2018v10i6.28767]
[82]
Kurniawansyah, I.S.; Rusdiana, T.; Abnaz, Z.D.; Sopyan, I.; Subarnas, A. Study of isotonicity and ocular irritation of chloramphenicol in situ gel. Int. J. Appl. Pharm., 2021, 13(1), 103-107.
[http://dx.doi.org/10.22159/ijap.2021v13i1.39925]
[83]
Shen, T.; Yang, Z. In vivo and in vitro evaluation of in situ gel formulation of pemirolast potassium in allergic conjunctivitis. Drug Des. Devel. Ther., 2021, 15, 2099-2107.
[http://dx.doi.org/10.2147/DDDT.S308448] [PMID: 34040348]
[84]
Tatke, A.; Dudhipala, N.; Janga, K.; Balguri, S.; Avula, B.; Jablonski, M.; Majumdar, S. In situ gel of triamcinolone acetonide-loaded solid lipid nanoparticles for improved topical ocular delivery: Tear kinetics and ocular disposition studies. Nanomaterials (Basel), 2018, 9(1), 33.
[http://dx.doi.org/10.3390/nano9010033] [PMID: 30591688]
[85]
Khan, N.; Aqil, M.; Imam, S.S.; Ali, A. Development and evaluation of a novel in situ gel of sparfloxacin for sustained ocular drug delivery: in vitro and ex vivo characterization. Pharm. Dev. Technol., 2015, 20(6), 662-669.
[http://dx.doi.org/10.3109/10837450.2014.910807] [PMID: 24754411]
[86]
Gupta, H.; Sharma, A.; Shrivastava, B. Pluronic and Chitosan based in situ gel system for periodontal application. Asian J. Pharm., 2009, 3(2), 94-96.
[http://dx.doi.org/10.4103/0973-8398.55045]
[87]
Chun'e, Z.; Pianpian, Y. Yixian Chuanbin, W.; Di, H. Silk fibroin nanoparticle and drug-loaded silk fibroin nanoparticle. CN Patent 107157952B,, 2021.
[88]
Perumal, O.P.; Podaralla, S.K.; Kaushik, R.S. . Method of forming nonimmunogenic hydrophobic protein nanoparticlesand uses therefore. CN Patent 102066399B, 2014.
[89]
Martinus Walther, V.B.S.A.; Jos, N.P.; Kaspar, K. Continuous flow production of gelatin nanoparticles. US Patent 9289499B2,, 2016.
[90]
Johnston, K.P.; Joshua, E.; Robert, W.O. Formation of stable submicron peptide or protein particles by thin film freezing. EP Patent 2170283B1, 2019.
[91]
Zeev, Z.; Paul, L.J.; David, S.; Yifat, H.; Rivka, B.I. System; method and material composition for correcting eye condition CN Patent 111787879A, 2020.
[92]
Sung-Il, L.; Jae-Sik, Y.; Geun-Hyeog, L.; Byong-Sun, C.; Jong-Hyeon, R. Nanoemulsion-type ophthalmic composition. WO Patent2012091278A2,, 2012.
[93]
Sreenivasu, M.; Philippe, J.M.D.; Thierry, N.; David, W.A.; Mohammed, F.S. Liquid formulations of rapamycin for intraocular delivery. CA Patent 2597596C, 2014.
[94]
Lyle, B.; Stephen, P. Controlled-release ophthalmic vehicles US Patent 8501800B2, , 2013.
[95]
Jui-Yang, L.; Ai-Ching, H.; Pei-Lin, L. . Hydrogel-forming polymer; and preparation process and uses thereof. US Patent 20120315265A1, 2012.
[96]
Lou, J.; Hu, W.; Tian, R.; Zhang, H.; Jia, Y.; Zhang, J.; Zhang, L. Optimization and evaluation of a thermoresponsive ophthalmic in situ gel containing curcumin-loaded albumin nanoparticles. Int. J. Nanomedicine, 2014, 9(1), 2517-2525.
[PMID: 24904211]
[97]
Rasmussen, M.K.; Pedersen, J.N.; Marie, R. Size and surface charge characterization of nanoparticles with a salt gradient. Nat. Commun., 2020, 11(1), 2337.
[http://dx.doi.org/10.1038/s41467-020-15889-3] [PMID: 32393750]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy