Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Preparation of IgE Antibody and Distribution of IgE+ Secretory Cells in the Palatine Tonsil of Bactrian Camel

Author(s): Li-Ping Liu, Min Li, Wang-Dong Zhang and Wen-Hui Wang*

Volume 30, Issue 2, 2023

Published on: 11 January, 2023

Page: [173 - 182] Pages: 10

DOI: 10.2174/0929866530666221212115739

Price: $65

conference banner
Abstract

Background: Allergic diseases induced by dust have seriously threatened human health, while Bactrian camels can live in a sandy environment for a long time.

Objective: To prepare rabbit anti-Bactrian camel IgE antibody and explore the distribution characteristics of IgE+ secretory cells in the palatine tonsils, which lays a theoretical foundation for the distribution of local antibodies in the palatal tonsils of Bactrian camel and the study of immune function.

Methods: In this study, the amino acid sequences of Bactrian camel IgE, IgA, IgM and IgG heavy chain constant regions were compared, and a specific IgE gene fragment were selected (447 bp). The recombinant plasmid pET-28a-IgE was induced in Escherichia coli BL21(DE3) by IPTG and its expression conditions were optimized. The antibody was prepared by immunizing rabbits with purified IgE recombinant protein, its titer and specificity were detected by indirect ELISA and Western blotting. Immunohistochemical and statistical methods investigated the distribution of IgE+ secretory cells in the palatine tonsils.

Results: The IgE recombinant protein was expressed in the form of inclusion bodies with a size of 16 kDa. The optimal IPTG induction concentration was 0.7 mmol/L and the induction time was 8 h. The titer of the antibody was 1:16000 by ELISA, and the antibody could specifically bind to the recombinant protein by Western blotting. IgE+ secretory cells were mainly distributed in the subepithelial compartments of reticulated crypt epithelium of the palatine tonsil of the Bactrian camel, followed by the subepithelial compartments of stratified squamous epithelium and occasionally in the extrafollicular region.

Conclusion: The rabbit anti-Bactrian camel IgE polyclonal antibody was successfully prepared. It is confirmed that IgE exists in the palatine tonsils of Bactrian camels under normal living conditions. In addition, IgE+ secretory cells are mainly distributed in the subepithelial compartments of reticulated crypt epithelium of the palatine tonsil, which is consistent with the distribution characteristics of IgG+ and sIgA+ secretory cells in the palatal tonsils of the Bactrian camel.

Keywords: Bactrian camel, IgE recombinant protein, rabbit anti-Bactrian camel IgE polyclonal antibody, palatine tonsil, IgE+ secretory cells, distribution.

Graphical Abstract
[1]
Vitte, J.; Vibhushan, S.; Bratti, M.; Montero-Hernández, J.E.; Blank, U. Allergy, anaphylaxis and non-allergic hypersensitivity: IgE, mast cells and beyond. Med. Princ. Pract., 2022.
[http://dx.doi.org/10.1159/000527481] [PMID: 36219943]
[2]
Vieira, P.; Rajewsky, K. The half-lives of serum immunoglobulins in adult mice. Eur. J. Immunol., 1988, 18(2), 313-316.
[http://dx.doi.org/10.1002/eji.1830180221] [PMID: 3350037]
[3]
Anvari, S.; Miller, J.; Yeh, C.Y.; Davis, C.M. IgE-mediated food allergy. Clin. Rev. Allergy Immunol., 2019, 57(2), 244-260.
[http://dx.doi.org/10.1007/s12016-018-8710-3] [PMID: 30370459]
[4]
Nilsson, S.F.; Lilja, G.; Järnbert-Pettersson, H.; Alm, J. Relevance of low specific IgE levels to egg, milk and peanut in infancy. Clin. Exp. Allergy, 2019, 49(3), 308-316.
[http://dx.doi.org/10.1111/cea.13273] [PMID: 30204271]
[5]
Wang, F.; Zhong, H.; Cheng, J.H. Comprehensive analysis of the structure and allergenicity changes of seafood allergens induced by non-thermal processing: A review. Molecules, 2022, 27(18), 5857.
[http://dx.doi.org/10.3390/molecules27185857] [PMID: 36144594]
[6]
Stone, C.A., Jr; Trubiano, J.; Coleman, D.T.; Rukasin, C.R.F.; Phillips, E.J. The challenge of de-labeling penicillin allergy. Allergy, 2020, 75(2), 273-288.
[http://dx.doi.org/10.1111/all.13848] [PMID: 31049971]
[7]
Wickner, P.G.; Hong, D. Immediate drug hypersensitivity. Curr. Allergy Asthma Rep., 2016, 16(7), 49.
[http://dx.doi.org/10.1007/s11882-016-0626-5] [PMID: 27333778]
[8]
Tahir, D.; Meyer, L.N.; Lekouch, N.; Varloud, M. Aedes (Stegomyia) aegypti mosquito bite hypersensitivity in a dog: A case report. BMC Vet. Res., 2020, 16(1), 402.
[http://dx.doi.org/10.1186/s12917-020-02622-x] [PMID: 33097059]
[9]
Vander Does, A.; Labib, A.; Yosipovitch, G. Update on mosquito bite reaction: Itch and hypersensitivity, pathophysiology, prevention, and treatment. Front. Immunol., 2022, 13, 1024559.
[http://dx.doi.org/10.3389/fimmu.2022.1024559] [PMID: 36211437]
[10]
Zeng, F.J.; Chen, C.; Liu, M.H. Allergic reactions to antivenom in a patient bitten twice by the same snake within a month: A rare case report and literature review. Chin. J. Traumatol., 2017, 20(5), 299-302.
[http://dx.doi.org/10.1016/j.cjtee.2016.12.004] [PMID: 28988729]
[11]
Maizels, R.M. Regulation of immunity and allergy by helminth parasites. Allergy, 2020, 75(3), 524-534.
[http://dx.doi.org/10.1111/all.13944] [PMID: 31187881]
[12]
Zibaei, M.; Shayesteh, Z.; Moradi, N.; Bahadory, S. Human toxocara infection: Allergy and immune responses. Antiinflamm. Antiallergy Agents Med. Chem., 2019, 18(2), 82-90.
[http://dx.doi.org/10.2174/1871523018666181210115840] [PMID: 31379304]
[13]
Rampur, L.; Jariwala, S.P.; Hudes, G.; Rosenstreich, D.L.; de Vos, G. Effect of ivermectin on allergy-type manifestations in occult strongyloidiasis. Ann. Allergy Asthma Immunol., 2016, 117(4), 423-428.
[http://dx.doi.org/10.1016/j.anai.2016.07.021] [PMID: 27566864]
[14]
Bernstein, D.I.; Würtzen, P.A.; DuBuske, L.; Blaiss, M.S.; Ellis, A.K.; Weber, R.W.; Nolte, H. Allergy to oak pollen in North America. Allergy Asthma Proc., 2021, 42(1), 43-54.
[http://dx.doi.org/10.2500/aap.2021.42.200089] [PMID: 33404388]
[15]
Biedermann, T.; Winther, L.; Till, S.J.; Panzner, P.; Knulst, A.; Valovirta, E. Birch pollen allergy in Europe. Allergy, 2019, 74(7), all.13758.
[http://dx.doi.org/10.1111/all.13758] [PMID: 30829410]
[16]
Pacheco, S.E.; Guidos-Fogelbach, G.; Annesi-Maesano, I.; Pawankar, R.; D’ Amato, G.; Latour-Staffeld, P.; Urrutia-Pereira, M.; Kesic, M.J.; Hernandez, M.L. Climate change and global issues in allergy and immunology. J. Allergy Clin. Immunol., 2021, 148(6), 1366-1377.
[http://dx.doi.org/10.1016/j.jaci.2021.10.011] [PMID: 34688774]
[17]
Miller, J.D. The role of dust mites in allergy. Clin. Rev. Allergy Immunol., 2019, 57(3), 312-329.
[http://dx.doi.org/10.1007/s12016-018-8693-0] [PMID: 29936683]
[18]
Soy, F.K. Yazıcı H.; Kulduk, E.; Dündar, R.; Gülen, Ş.T.; Doğan, S.; Can, İ.H. The effects of dust storms on quality of life of allergic patients with or without asthma. Kulak Burun Bogaz Ihtis. Derg., 2016, 26(1), 19-27.
[http://dx.doi.org/10.5606/kbbihtisas.2016.56254] [PMID: 26794331]
[19]
Masoli, M.; Fabian, D.; Holt, S.; Beasley, R. The global burden of asthma: Executive summary of the GINA dissemination committee report. Allergy, 2004, 59(5), 469-478.
[http://dx.doi.org/10.1111/j.1398-9995.2004.00526.x] [PMID: 15080825]
[20]
Jackson, K.D.; Howie, L.D.; Akinbami, L.J. Trends in allergic conditions among children: United States, 1997-2011. NCHS Data Brief, 2013, (121), 1-8.
[PMID: 23742874]
[21]
Ekici, N.Y.; Görgülü, O.; Yucel, G. Külahcı Ö.; Arıkan, O.K.; Durmaz, C. Can the number of eosinophils in adenoid and tonsil tissue determine the allergy in children? Int. J. Pediatr. Otorhinolaryngol., 2018, 108, 35-39.
[http://dx.doi.org/10.1016/j.ijporl.2018.02.008] [PMID: 29605362]
[22]
Jia, S.; Zhang, W.; Tan, X.; He, W.; Wang, W. The distribution of SIgA and IgG antibody-secreting cells in the palatine tonsils of Bactrian camels (Camelus bactrianus) of different ages. Histol. Histopathol., 2017, 32(5), 511-521.
[http://dx.doi.org/10.14670/HH-11-808] [PMID: 27605252]
[23]
Silva, B.F.; Bassetto, C.C.; Amarante, A.F.T. Immune responses in sheep naturally infected with Oestrus ovis (Diptera: Oestridae) and gastrointestinal nematodes. Vet. Parasitol., 2012, 190(1-2), 120-126.
[http://dx.doi.org/10.1016/j.vetpar.2012.06.004] [PMID: 22770703]
[24]
Gebert, A. Identification of M-cells in the rabbit tonsil by vimentin immunohistochemistry and in vivo protein transport. Histochem. Cell Biol., 1995, 104(3), 211-220.
[http://dx.doi.org/10.1007/BF01835154] [PMID: 8542447]
[25]
Gebert, A. M cells in the rabbit palatine tonsil: The distribution, spatial arrangement and membrane subdomains as defined by confocal lectin histochemistry. Anat. Embryol., 1997, 195(4), 353-358.
[http://dx.doi.org/10.1007/s004290050055] [PMID: 9108201]
[26]
Bykova, V.P.; Satdykova, G.P. Morphofunctional organization of lymphoepithelial organs of the human pharynx. Izv. Akad. Nauk Ser. Biol., 2002, (4), 463-471.
[PMID: 12180012]
[27]
Shamji, M.H.; Valenta, R.; Jardetzky, T.; Verhasselt, V.; Durham, S.R.; Würtzen, P.A.; van Neerven, R.J.J. The role of allergen-specific IgE, IgG and IgA in allergic disease. Allergy, 2021, 76(12), 3627-3641.
[http://dx.doi.org/10.1111/all.14908] [PMID: 33999439]
[28]
Semberova, J.; Rychly, B.; Hanzelova, J.; Jakubikova, J. The immune status in situ of recurrent tonsillitis and idiopathic tonsillar hypertrophy. Bratisl. Med. J., 2013, 114(3), 140-144.
[http://dx.doi.org/10.4149/BLL_2013_031] [PMID: 23406181]
[29]
Gowthaman, U.; Chen, J.S.; Zhang, B.; Flynn, W.F.; Lu, Y.; Song, W.; Joseph, J.; Gertie, J.A.; Xu, L.; Collet, M.A.; Grassmann, J.D.S.; Simoneau, T.; Chiang, D.; Berin, M.C.; Craft, J.E.; Weinstein, J.S.; Williams, A.; Eisenbarth, S.C. Identification of a T follicular helper cell subset that drives anaphylactic IgE. Science, 2019, 365(6456), eaaw6433.
[http://dx.doi.org/10.1126/science.aaw6433] [PMID: 31371561]
[30]
Pulendran, B.; Artis, D. New paradigms in type 2 immunity. Science, 2012, 337(6093), 431-435.
[http://dx.doi.org/10.1126/science.1221064] [PMID: 22837519]
[31]
Walker, J.A.; McKenzie, A.N.J. TH2 cell development and function. Nat. Rev. Immunol., 2018, 18(2), 121-133.
[http://dx.doi.org/10.1038/nri.2017.118] [PMID: 29082915]
[32]
Perry, M.E. The specialised structure of crypt epithelium in the human palatine tonsil and its functional significance. J. Anat., 1994, 185(1), 111-127.
[33]
Baekkevold, E.S.; Yamanaka, T.; Palframan, R.T.; Carlsen, H.S.; Reinholt, F.P.; von Andrian, U.H.; Brandtzaeg, P.; Haraldsen, G. The CCR7 ligand elc (CCL19) is transcytosed in high endothelial venules and mediates T cell recruitment. J. Exp. Med., 2001, 193(9), 1105-1112.
[http://dx.doi.org/10.1084/jem.193.9.1105] [PMID: 11342595]
[34]
Hafeez, A.; Khan, M.Y.; Minhas, L.A. A comparative histological study of the surface epithelium and high endothelial venules in the subepithelial compartments of human nasopharyngeal and palatine tonsils. J. Coll. Physicians Surg. Pak., 2009, 19(6), 333-337.
[PMID: 19486568]
[35]
Froidure, A.; Mouthuy, J.; Durham, S.R.; Chanez, P.; Sibille, Y.; Pilette, C. Asthma phenotypes and IgE responses. Eur. Respir. J., 2016, 47(1), 304-319.
[http://dx.doi.org/10.1183/13993003.01824-2014] [PMID: 26677936]
[36]
Velinova, M.; Thielen, C.; Mklot, F.; Eicher, S.; Heinen, E.; Antoine, N.; Donga, J. New histochemical and ultrastructural observations on normal bovine tonsils. Vet. Rec., 2001, 149(20), 613-617.
[http://dx.doi.org/10.1136/vr.149.20.613] [PMID: 11761292]
[37]
Sun, J.; Xu, Y.; Cui, Y.; Liu, P.; Yu, S.; He, J.; Zhang, Q.; Huang, Y.; Yang, X. Age-related changes in the morphology and the distribution of IgA and IgG in the palatine tonsils of yaks (Bos grunniens). Histol. Histopathol., 2018, 33(6), 577-588.
[http://dx.doi.org/10.14670/HH-11-954] [PMID: 29239471]
[38]
He, W.; Wang, W.; Guan, F.; Tai, L.; Gao, Q.; Qi, S.; Xu, X.; Zhaxi, Y.; Yang, Y. Structural characteristics of palatine tonsils in Bactrian camels (Camelus bactrianus). Chinese Veter. Sci., 2010, 40(7), 743-746.
[39]
Yao, W.L.; Liu, L.P.; Wen, Y.Q.; Wang, B.S.; Dong, J.Q.; He, W.H.; Fan, X.P.; Wang, W.H.; Zhang, W.D. Moniezia benedeni infection enhances neuromedin U (NMU) expression in sheep (Ovis aries) small intestine. BMC Vet. Res., 2022, 18(1), 143.
[http://dx.doi.org/10.1186/s12917-022-03243-2] [PMID: 35439995]
[40]
Bowden, G.A.; Paredes, A.M.; Georgiou, G. Structure and morphology of protein inclusion bodies in Escherichia coli. Nat. Biotechnol., 1991, 9(8), 725-730.
[http://dx.doi.org/10.1038/nbt0891-725] [PMID: 1367632]
[41]
Larentis, A.L.; Nicolau, J.F.M.Q.; Esteves, G.S.; Vareschini, D.T.; de Almeida, F.V.R.; dos Reis, M.G.; Galler, R.; Medeiros, M.A. Evaluation of pre-induction temperature, cell growth at induction and IPTG concentration on the expression of a leptospiral protein in E. coli using shaking flasks and microbioreactor. BMC Res. Notes, 2014, 7(1), 671.
[http://dx.doi.org/10.1186/1756-0500-7-671] [PMID: 25252618]
[42]
Malakar, P.; Venkatesh, K.V. Effect of substrate and IPTG concentrations on the burden to growth of Escherichia coli on glycerol due to the expression of Lac proteins. Appl. Microbiol. Biotechnol., 2012, 93(6), 2543-2549.
[http://dx.doi.org/10.1007/s00253-011-3642-3] [PMID: 22038249]
[43]
Hunke, S.; Betton, J.M. Temperature effect on inclusion body formation and stress response in the periplasm of Escherichia coli. Mol. Microbiol., 2003, 50(5), 1579-1589.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03785.x] [PMID: 14651640]
[44]
Nave, H.; Gebert, A.; Pabst, R. Morphology and immunology of the human palatine tonsil. Anat. Embryol., 2001, 204(5), 367-373.
[http://dx.doi.org/10.1007/s004290100210] [PMID: 11789984]
[45]
Brandtzaeg, P. Immunology of tonsils and adenoids: Everything the ENT surgeon needs to know. Int. J. Pediatr. Otorhinolaryngol., 2003, 67(Suppl. 1), S69-S76.
[http://dx.doi.org/10.1016/j.ijporl.2003.08.018] [PMID: 14662171]
[46]
Oláh, I. Törö, Effect of neonatal thymectomy on rabbit tonsils. Acta Morphol. Acad. Sci. Hung., 1975, 23(3), 205-216.
[PMID: 1234823]
[47]
Gothe, F.; Kappler, M.; Griese, M. Increasing total serum IgE, allergic bronchopulmonary aspergillosis, and lung function in cystic fibrosis. J. Allergy Clin. Immunol. Pract., 2017, 5(6), 1591-1598.e6.
[http://dx.doi.org/10.1016/j.jaip.2017.03.033] [PMID: 28526275]
[48]
Casteleyn, C.; Cornillie, P.; Simoens, P.; Van Den Broeck, W. Stereological assessment of the epithelial surface area of the ovine palatine and pharyngeal tonsils. Anat. Histol. Embryol., 2008, 37(5), 366-368.
[http://dx.doi.org/10.1111/j.1439-0264.2008.00858.x] [PMID: 18400043]
[49]
Howie, A.J. Scanning and transmission electron microscopy on the epithelium of human palatine tonsils. J. Pathol., 1980, 130(2), 91-98.
[http://dx.doi.org/10.1002/path.1711300205] [PMID: 7365575]
[50]
Ganzer, U.; Bachert, C. Localization of IgE synthesis in immediate-type allergy of the upper respiratory tract. ORL J. Otorhinolaryngol. Relat. Spec., 1988, 50(4), 257-264.
[http://dx.doi.org/10.1159/000276000] [PMID: 3050715]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy