Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Bone Marrow Stromal Stem Cell Fate Decision: A Potential Mechanism For Bone Marrow Adipose Increase with Aging-related Osteoporosis

Author(s): Li Tian, Lingyun Lu and Yang Meng*

Volume 23, Issue 10, 2023

Published on: 22 December, 2022

Page: [1046 - 1057] Pages: 12

DOI: 10.2174/1566524023666221025104629

Price: $65

conference banner
Abstract

Objective: Osteoporosis is a systemic bone disease that seriously threatens the health and quality of life in middle-aged and older adults. In this review, we describe the relationship between bone marrow adipose tissue and aging osteoporosis and mainly focus on bone marrow mesenchymal stem cell osteogenic-adipose differentiation fate with aging along with the relevant mechanisms responsible for these changes.

Methods: We summarized recent advances in regulating the bone marrow mesenchymal stem cell differentiation due to aging in this review.

Results: Aging-related bone mass loss is accompanied by expanding bone marrow adipose because of an imbalance of bone marrow mesenchymal stem cell differentiation, resulting in adipogenesis. Ectopic adipocytes in the bone marrow increase with age and are a key factor responsible for the aging-related bone mass decrease. Transcription factors and classical regulating pathways are involved in this process during aging.

Conclusion: As the global aging population increases, not only older women but also older men face a great fracture risk. Therefore, finding molecular mechanisms controlling the stimulating adipogenesis in BMSC during aging is important for providing the new cue for prevention and therapeutics for aging-related bone loss. Furthermore, upon physical examination of older people, except for the bone mineral density and bone turnover biochemical marker, the bone marrow adipose measurement should be taken into account when assessing the fracture risk and treatment plan that will be beneficial in clinical practice.

Keywords: Bone marrow, adipose, aging, osteoporosis, mesenchymal, stem cell.

[1]
Kühn MC, Willenberg HS, Schott M, et al. Adipocyte-secreted factors increase osteoblast proliferation and the OPG/RANKL ratio to influence osteoclast formation. Mol Cell Endocrinol 2012; 349(2): 180-8.
[http://dx.doi.org/10.1016/j.mce.2011.10.018] [PMID: 22040599]
[2]
Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: Now and the future. Lancet 2011; 377(9773): 1276-87.
[http://dx.doi.org/10.1016/S0140-6736(10)62349-5] [PMID: 21450337]
[3]
Hass R, Kasper C, Böhm S, Jacobs R. Different populations and sources of human Mesenchymal Stem Cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 2011; 9(1): 12.
[http://dx.doi.org/10.1186/1478-811X-9-12] [PMID: 21569606]
[4]
Fu X, Liu G, Halim A, Ju Y, Luo Q, Song AG. Mesenchymal stem cell migration and tissue repair. Cells 2019; 8(8): 784.
[http://dx.doi.org/10.3390/cells8080784] [PMID: 31357692]
[5]
Bukowska J, Frazier T, Smith S, et al. Bone marrow adipocyte developmental origin and biology. Curr Osteoporos Rep 2018; 16(3): 312-9.
[http://dx.doi.org/10.1007/s11914-018-0442-z] [PMID: 29667012]
[6]
Reyes-Farias M, Fos-Domenech J, Serra D, Herrero L, Sánchez-Infantes D. White adipose tissue dysfunction in obesity and aging. Biochem Pharmacol 2021; 192: 114723.
[http://dx.doi.org/10.1016/j.bcp.2021.114723] [PMID: 34364887]
[7]
Hildebrand S, Stümer J, Pfeifer A. PVAT and its relation to brown, beige, and white adipose tissue in development and function. Front Physiol 2018; 9: 70.
[http://dx.doi.org/10.3389/fphys.2018.00070] [PMID: 29467675]
[8]
Magni P, Dozio E, Galliera E, Ruscica M, Corsi MM. Molecular aspects of adipokine-bone interactions. Curr Mol Med 2010; 10(6): 522-32.
[http://dx.doi.org/10.2174/1566524011009060522] [PMID: 20642443]
[9]
Von Bank H Kirsh C, Simcox J. Aging adipose: Depot location dictates age-associated expansion and dysfunction. Ageing Res Rev 2021; 67: 101259.
[http://dx.doi.org/10.1016/j.arr.2021.101259] [PMID: 33515751]
[10]
Horowitz MC, Berry R, Holtrup B, et al. Bone marrow adipocytes. Adipocyte 2017; 6(3): 193-204.
[http://dx.doi.org/10.1080/21623945.2017.1367881] [PMID: 28872979]
[11]
Krings A, Rahman S, Huang S, Lu Y, Czernik PJ, Lecka-Czernik B. Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone 2012; 50(2): 546-52.
[http://dx.doi.org/10.1016/j.bone.2011.06.016] [PMID: 21723971]
[12]
Suchacki KJ, Cawthorn WP, Rosen CJ. Bone marrow adipose tissue: Formation, function and regulation. Curr Opin Pharmacol 2016; 28: 50-6.
[http://dx.doi.org/10.1016/j.coph.2016.03.001] [PMID: 27022859]
[13]
Pilkington AC, Paz HA, Wankhade UD. Beige adipose tissue identification and marker specificity-overview. Front Endocrinol 2021; 12: 599134.
[http://dx.doi.org/10.3389/fendo.2021.599134] [PMID: 33776911]
[14]
Woods K, Guezguez B. Dynamic changes of the bone marrow niche: mesenchymal stromal cells and their progeny during aging and leukemia. Front Cell Dev Biol 2021; 9: 714716.
[http://dx.doi.org/10.3389/fcell.2021.714716] [PMID: 34447754]
[15]
Cawthorn WP, Scheller EL, Learman BS, et al. Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metab 2014; 20(2): 368-75.
[http://dx.doi.org/10.1016/j.cmet.2014.06.003] [PMID: 24998914]
[16]
Fazeli PK, Horowitz MC, MacDougald OA, et al. Marrow fat and bone--new perspectives. J Clin Endocrinol Metab 2013; 98(3): 935-45.
[http://dx.doi.org/10.1210/jc.2012-3634] [PMID: 23393168]
[17]
Justesen J, Stenderup K, Ebbesen EN, Mosekilde L, Steiniche T, Kassem M. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2001; 2(3): 165-71.
[http://dx.doi.org/10.1023/A:1011513223894] [PMID: 11708718]
[18]
Lecka-Czernik B, Stechschulte LA, Czernik PJ, Sherman SB, Huang S, Krings A. Marrow adipose tissue: skeletal location, sexual dimorphism, and response to sex steroid deficiency. Front Endocrinol 2017; 8: 188.
[http://dx.doi.org/10.3389/fendo.2017.00188] [PMID: 28824548]
[19]
Scheller EL, Doucette CR, Learman BS, et al. Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nat Commun 2015; 6(1): 7808.
[http://dx.doi.org/10.1038/ncomms8808] [PMID: 26245716]
[20]
Scheller EL, Burr AA, MacDougald OA, Cawthorn WP. Inside out: Bone marrow adipose tissue as a source of circulating adiponectin. Adipocyte 2016; 5(3): 251-69.
[http://dx.doi.org/10.1080/21623945.2016.1149269] [PMID: 27617171]
[21]
Li M, Shen Y, Qi H, Wronski TJ. Comparative study of skeletal response to estrogen depletion at red and yellow marrow sites in rats. Anat Rec 1996; 245(3): 472-80.
[http://dx.doi.org/10.1002/(SICI)1097-0185(199607)245:3<472:AID-AR3>3.0.CO;2-U] [PMID: 8800405]
[22]
Zhang X, Hassan MG, Scheller EL. Neural regulation of bone marrow adipose tissue. Best Pract Res Clin Endocrinol Metab 2021; 35(4): 101522.
[http://dx.doi.org/10.1016/j.beem.2021.101522] [PMID: 33766429]
[23]
Li Z, Hardij J, Bagchi DP, Scheller EL, MacDougald OA. Development, regulation, metabolism and function of bone marrow adipose tissues. Bone 2018; 110: 134-40.
[http://dx.doi.org/10.1016/j.bone.2018.01.008] [PMID: 29343445]
[24]
Veldhuis-Vlug AG, Rosen CJ. Clinical implications of bone marrow adiposity. J Intern Med 2018; 283(2): 121-39.
[http://dx.doi.org/10.1111/joim.12718] [PMID: 29211319]
[25]
Schwartz AV, Sigurdsson S, Hue TF, et al. Vertebral bone marrow fat associated with lower trabecular BMD and prevalent vertebral fracture in older adults. J Clin Endocrinol Metab 2013; 98(6): 2294-300.
[http://dx.doi.org/10.1210/jc.2012-3949] [PMID: 23553860]
[26]
Woods GN, Ewing SK, Sigurdsson S, et al. Greater bone marrow adiposity predicts bone loss in older women. J Bone Miner Res 2020; 35(2): 326-32.
[http://dx.doi.org/10.1002/jbmr.3895] [PMID: 31618468]
[27]
McGrath C, Sankaran JS, Misaghian-Xanthos N, et al. Exercise degrades bone in caloric restriction, despite suppression of Marrow Adipose Tissue (MAT). J Bone Miner Res 2020; 35(1): 106-15.
[http://dx.doi.org/10.1002/jbmr.3872] [PMID: 31509274]
[28]
Fazeli PK, Klibanski A. The paradox of marrow adipose tissue in anorexia nervosa. Bone 2019; 118: 47-52.
[http://dx.doi.org/10.1016/j.bone.2018.02.013] [PMID: 29458121]
[29]
Gkastaris K, Goulis DG, Potoupnis M, Anastasilakis AD, Kapetanos G. Obesity, osteoporosis and bone metabolism. J Musculoskelet Neuronal Interact 2020; 20(3): 372-81.
[PMID: 32877973]
[30]
Nandy A, Rendina-Ruedy E. Bone marrow adipocytes – Good, bad, or just different? Best Pract Res Clin Endocrinol Metab 2021; 35(4): 101550.
[http://dx.doi.org/10.1016/j.beem.2021.101550] [PMID: 34210594]
[31]
Syed FA, Ng AC. The pathophysiology of the aging skeleton. Curr Osteoporos Rep 2010; 8(4): 235-40.
[http://dx.doi.org/10.1007/s11914-010-0035-y] [PMID: 20820962]
[32]
Lewiecki EM. New targets for intervention in the treatment of postmenopausal osteoporosis. Nat Rev Rheumatol 2011; 7(11): 631-8.
[http://dx.doi.org/10.1038/nrrheum.2011.130] [PMID: 21931340]
[33]
Li CJ, Xiao Y, Sun YC, et al. Senescent immune cells release grancalcin to promote skeletal aging. Cell Metab 2021; 33(10): 1957-1973.e6.
[http://dx.doi.org/10.1016/j.cmet.2021.08.009] [PMID: 34614408]
[34]
Kassem M, Marie PJ. Senescence-associated intrinsic mechanisms of osteoblast dysfunctions. Aging Cell 2011; 10(2): 191-7.
[http://dx.doi.org/10.1111/j.1474-9726.2011.00669.x] [PMID: 21210937]
[35]
Rosen CJ, Bouxsein ML. Mechanisms of disease: Is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol 2006; 2(1): 35-43.
[http://dx.doi.org/10.1038/ncprheum0070] [PMID: 16932650]
[36]
Liu Y, Tang GY, Tang RB, Peng YF, Li W. Assessment of bone marrow changes in postmenopausal women with varying bone densities: Magnetic resonance spectroscopy and diffusion magnetic resonance imaging. Chin Med J 2010; 123(12): 1524-7.
[PMID: 20819505]
[37]
Beekman KM, Veldhuis-Vlug AG, den Heijer M, et al. The effect of raloxifene on bone marrow adipose tissue and bone turnover in postmenopausal women with osteoporosis. Bone 2019; 118: 62-8.
[http://dx.doi.org/10.1016/j.bone.2017.10.011] [PMID: 29032175]
[38]
Griffith JF, Yeung DKW, Ma HT, Leung JCS, Kwok TCY, Leung PC. Bone marrow fat content in the elderly: A reversal of sex difference seen in younger subjects. J Magn Reson Imaging 2012; 36(1): 225-30.
[http://dx.doi.org/10.1002/jmri.23619] [PMID: 22337076]
[39]
Sadie-Van Gijsen H, Hough FS, Ferris WF. Determinants of bone marrow adiposity: The modulation of peroxisome proliferator-activated receptor-γ2 activity as a central mechanism. Bone 2013; 56(2): 255-65.
[http://dx.doi.org/10.1016/j.bone.2013.06.016] [PMID: 23800517]
[40]
Woods GN, Ewing SK, Schafer AL, et al. Saturated and unsaturated bone marrow lipids have distinct effects on bone density and fracture risk in older adults. J Bone Miner Res 2022; 37(4): 700-10.
[http://dx.doi.org/10.1002/jbmr.4504] [PMID: 35038186]
[41]
Patsch JM, Li X, Baum T, et al. Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures. J Bone Miner Res 2013; 28(8): 1721-8.
[http://dx.doi.org/10.1002/jbmr.1950] [PMID: 23558967]
[42]
Yu EW, Greenblatt L, Eajazi A, Torriani M, Bredella MA. Marrow adipose tissue composition in adults with morbid obesity. Bone 2017; 97: 38-42.
[http://dx.doi.org/10.1016/j.bone.2016.12.018] [PMID: 28043896]
[43]
Pino AM, Rodríguez JP. Is fatty acid composition of human bone marrow significant to bone health? Bone 2019; 118: 53-61.
[http://dx.doi.org/10.1016/j.bone.2017.12.014] [PMID: 29258874]
[44]
Yeung DKW, Griffith JF, Antonio GE, Lee FKH, Woo J, Leung PC. Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: A proton MR spectroscopy study. J Magn Reson Imaging 2005; 22(2): 279-85.
[http://dx.doi.org/10.1002/jmri.20367] [PMID: 16028245]
[45]
Li X, Shet K, Xu K, et al. Unsaturation level decreased in bone marrow fat of postmenopausal women with low bone density using high resolution magic angle spinning (HRMAS) 1H NMR spectroscopy. Bone 2017; 105: 87-92.
[http://dx.doi.org/10.1016/j.bone.2017.08.014] [PMID: 28823880]
[46]
Bao M, Zhang K, Wei Y, et al. Therapeutic potentials and modulatory mechanisms of fatty acids in bone. Cell Prolif 2020; 53(2): e12735.
[http://dx.doi.org/10.1111/cpr.12735] [PMID: 31797479]
[47]
Maurin AC, Chavassieux PM, Vericel E, Meunier PJ. Role of polyunsaturated fatty acids in the inhibitory effect of human adipocytes on osteoblastic proliferation. Bone 2002; 31(1): 260-6.
[http://dx.doi.org/10.1016/S8756-3282(02)00805-0] [PMID: 12110443]
[48]
Casado-Díaz A, Santiago-Mora R, Dorado G, Quesada-Gómez JM. The omega-6 arachidonic fatty acid, but not the omega-3 fatty acids, inhibits osteoblastogenesis and induces adipogenesis of human mesenchymal stem cells: Potential implication in osteoporosis. Osteoporos Int 2013; 24(5): 1647-61.
[http://dx.doi.org/10.1007/s00198-012-2138-z] [PMID: 23104199]
[49]
Chen Q, Shou P, Zheng C, et al. Fate decision of mesenchymal stem cells: Adipocytes or osteoblasts? Cell Death Differ 2016; 23(7): 1128-39.
[http://dx.doi.org/10.1038/cdd.2015.168] [PMID: 26868907]
[50]
Krstić J, Mojsilović S, Mojsilović SS, Santibanez JF. Regulation of the mesenchymal stem cell fate by interleukin-17: Implications in osteogenic differentiation. World J Stem Cells 2021; 13(11): 1696-713.
[http://dx.doi.org/10.4252/wjsc.v13.i11.1696] [PMID: 34909118]
[51]
Arthur A, Gronthos S. Clinical application of bone marrow mesenchymal stem/stromal cells to repair skeletal tissue. Int J Mol Sci 2020; 21(24): 9759.
[http://dx.doi.org/10.3390/ijms21249759] [PMID: 33371306]
[52]
Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 2004; 22(5): 675-82.
[http://dx.doi.org/10.1634/stemcells.22-5-675] [PMID: 15342932]
[53]
Stolzing A, Jones E, McGonagle D, Scutt A. Age-related changes in human bone marrow-derived mesenchymal stem cells: Consequences for cell therapies. Mech Ageing Dev 2008; 129(3): 163-73.
[http://dx.doi.org/10.1016/j.mad.2007.12.002] [PMID: 18241911]
[54]
Ambrosi TH, Scialdone A, Graja A, et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell 2017; 20(6): 771-784.e6.
[http://dx.doi.org/10.1016/j.stem.2017.02.009] [PMID: 28330582]
[55]
Ma Y, Qi M, An Y, et al. Autophagy controls mesenchymal stem cell properties and senescence during bone aging. Aging Cell 2018; 17(1): e12709.
[http://dx.doi.org/10.1111/acel.12709] [PMID: 29210174]
[56]
Mijit M, Caracciolo V, Melillo A, Amicarelli F, Giordano A. Role of p53 in the regulation of cellular senescence. Biomolecules 2020; 10(3): 420.
[http://dx.doi.org/10.3390/biom10030420] [PMID: 32182711]
[57]
Farr JN, Xu M, Weivoda MM, et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 2017; 23(9): 1072-9.
[http://dx.doi.org/10.1038/nm.4385] [PMID: 28825716]
[58]
He Y, de Castro LF, Shin MH, et al. p53 loss increases the osteogenic differentiation of bone marrow stromal cells. Stem Cells 2015; 33(4): 1304-19.
[http://dx.doi.org/10.1002/stem.1925] [PMID: 25524638]
[59]
Boregowda SV, Krishnappa V, Strivelli J, Haga CL, Booker CN, Phinney DG. Basal p53 expression is indispensable for mesenchymal stem cell integrity. Cell Death Differ 2018; 25(4): 679-92.
[http://dx.doi.org/10.1038/s41418-017-0004-4] [PMID: 29311623]
[60]
Calo E, Quintero-Estades JA, Danielian PS, Nedelcu S, Berman SD, Lees JA. Rb regulates fate choice and lineage commitment in vivo. Nature 2010; 466(7310): 1110-4.
[http://dx.doi.org/10.1038/nature09264] [PMID: 20686481]
[61]
Fernandez-Marcos PJ, Auwerx J. pRb, a switch between bone and brown fat. Dev Cell 2010; 19(3): 360-2.
[http://dx.doi.org/10.1016/j.devcel.2010.08.018] [PMID: 20833358]
[62]
Thomas DM, Carty SA, Piscopo DM, et al. The retinoblastoma protein acts as a transcriptional coactivator required for osteogenic differentiation. Mol Cell 2001; 8(2): 303-16.
[http://dx.doi.org/10.1016/S1097-2765(01)00327-6] [PMID: 11545733]
[63]
Skillington J, Choy L, Derynck R. Bone morphogenetic protein and retinoic acid signaling cooperate to induce osteoblast differentiation of preadipocytes. J Cell Biol 2002; 159(1): 135-46.
[http://dx.doi.org/10.1083/jcb.200204060] [PMID: 12379805]
[64]
Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: The role of PPAR-γ2 transcription factor and TGF-β/BMP signaling pathways. Aging Cell 2004; 3(6): 379-89.
[http://dx.doi.org/10.1111/j.1474-9728.2004.00127.x] [PMID: 15569355]
[65]
Wu M, Wang Y, Shao JZ, Wang J, Chen W, Li YP. Cbfβ governs osteoblast−adipocyte lineage commitment through enhancing β-catenin signaling and suppressing adipogenesis gene expression. Proc Natl Acad Sci 2017; 114(38): 10119-24.
[http://dx.doi.org/10.1073/pnas.1619294114] [PMID: 28864530]
[66]
Li H, Liu P, Xu S, et al. FOXP1 controls mesenchymal stem cell commitment and senescence during skeletal aging. J Clin Invest 2017; 127(4): 1241-53.
[http://dx.doi.org/10.1172/JCI89511] [PMID: 28240601]
[67]
Liu ZZ, Hong CG, Hu WB, et al. Autophagy receptor OPTN (optineurin) regulates mesenchymal stem cell fate and bone-fat balance during aging by clearing FABP3. Autophagy 2021; 17(10): 2766-82.
[http://dx.doi.org/10.1080/15548627.2020.1839286] [PMID: 33143524]
[68]
van Gastel N, Carmeliet G. Metabolic regulation of skeletal cell fate and function in physiology and disease. Nat Metab 2021; 3(1): 11-20.
[http://dx.doi.org/10.1038/s42255-020-00321-3] [PMID: 33398192]
[69]
Kaushik S, Tasset I, Arias E, et al. Autophagy and the hallmarks of aging. Ageing Res Rev 2021; 72: 101468.
[http://dx.doi.org/10.1016/j.arr.2021.101468] [PMID: 34563704]
[70]
Torrecillas-Baena B, Gálvez-Moreno MÁ, Quesada-Gómez JM, Dorado G, Casado-Díaz A. Influence of dipeptidyl pepTIDASE-4 (DPP4) on mesenchymal stem-cell (MSC) biology: Implications for regenerative medicine – review. Stem Cell Rev Rep 2022; 18(1): 56-76.
[http://dx.doi.org/10.1007/s12015-021-10285-w] [PMID: 34677817]
[71]
Lee SH, Lee JH, Lee HY, Min KJ. Sirtuin signaling in cellular senescence and aging. BMB Rep 2019; 52(1): 24-34.
[http://dx.doi.org/10.5483/BMBRep.2019.52.1.290] [PMID: 30526767]
[72]
Simic P, Zainabadi K, Bell E, et al. SIRT1 regulates differentiation of mesenchymal stem cells by deacetylating β‐catenin. EMBO Mol Med 2013; 5(3): 430-40.
[http://dx.doi.org/10.1002/emmm.201201606] [PMID: 23364955]
[73]
Bäckesjö CM, Li Y, Lindgren U, Haldosén LA. Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells. J Bone Miner Res 2006; 21(7): 993-1002.
[http://dx.doi.org/10.1359/jbmr.060415] [PMID: 16813520]
[74]
Louvet L, Leterme D, Delplace S, et al. Sirtuin 1 deficiency decreases bone mass and increases bone marrow adiposity in a mouse model of chronic energy deficiency. Bone 2020; 136: 115361.
[http://dx.doi.org/10.1016/j.bone.2020.115361] [PMID: 32289519]
[75]
Zhou Y, Song T, Peng J, et al. SIRT1 suppresses adipogenesis by activating Wnt/β-catenin signaling in vivo and in vitro. Oncotarget 2016; 7(47): 77707-20.
[http://dx.doi.org/10.18632/oncotarget.12774] [PMID: 27776347]
[76]
Roberts S, Colombier P, Sowman A, et al. Ageing in the musculoskeletal system Acta Orthop 2016; 87(sup363): 15-25.
[http://dx.doi.org/10.1080/17453674.2016.1244750]
[77]
Takada I, Kouzmenko AP, Kato S. Wnt and PPARγ signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol 2009; 5(8): 442-7.
[http://dx.doi.org/10.1038/nrrheum.2009.137] [PMID: 19581903]
[78]
Song L, Liu M, Ono N, Bringhurst FR, Kronenberg HM, Guo J. Loss of wnt/β-catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes. J Bone Miner Res 2012; 27(11): 2344-58.
[http://dx.doi.org/10.1002/jbmr.1694] [PMID: 22729939]
[79]
Katoh M, Katoh M. WNT signaling pathway and stem cell signaling network. Clin Cancer Res 2007; 13(14): 4042-5.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2316] [PMID: 17634527]
[80]
Stevens JR, Miranda-Carboni GA, Singer MA, Brugger SM, Lyons KM, Lane TF. Wnt10b deficiency results in age-dependent loss of bone mass and progressive reduction of mesenchymal progenitor cells. J Bone Miner Res 2010; 25(10): 2138-47.
[http://dx.doi.org/10.1002/jbmr.118] [PMID: 20499361]
[81]
Bennett CN, Longo KA, Wright WS, et al. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci 2005; 102(9): 3324-9.
[http://dx.doi.org/10.1073/pnas.0408742102] [PMID: 15728361]
[82]
Al-Azab M, Wang B, Elkhider A, et al. Indian Hedgehog regulates senescence in bone marrow-derived mesenchymal stem cell through modulation of ROS/mTOR/4EBP1, p70S6K1/2 pathway. Aging 2020; 12(7): 5693-715.
[http://dx.doi.org/10.18632/aging.102958] [PMID: 32235006]
[83]
Dwyer JR, Sever N, Carlson M, Nelson SF, Beachy PA, Parhami F. Oxysterols are novel activators of the hedgehog signaling pathway in pluripotent mesenchymal cells. J Biol Chem 2007; 282(12): 8959-68.
[http://dx.doi.org/10.1074/jbc.M611741200] [PMID: 17200122]
[84]
Zhang L, Fu X, Ni L, et al. Hedgehog signaling controls bone homeostasis by regulating osteogenic/adipogenic fate of skeletal stem/progenitor cells in mice. J Bone Miner Res 2022; 37(3): 559-76.
[http://dx.doi.org/10.1002/jbmr.4485] [PMID: 34870341]
[85]
Shi Y, Long F. Hedgehog signaling via Gli2 prevents obesity induced by high-fat diet in adult mice. eLife 2017; 6: e31649.
[http://dx.doi.org/10.7554/eLife.31649] [PMID: 29205155]
[86]
Hu Z, Chen B, Zhao Q. Hedgehog signaling regulates osteoblast differentiation in zebrafish larvae through modulation of autophagy Biol Open 2019; 8(5): bio.040840.
[http://dx.doi.org/10.1242/bio.040840] [PMID: 30992325]
[87]
Chen G, Deng C, Li YP. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 2012; 8(2): 272-88.
[http://dx.doi.org/10.7150/ijbs.2929] [PMID: 22298955]
[88]
Tominaga K, Suzuki HI. TGF-β signaling in cellular senescence and aging-related pathology. Int J Mol Sci 2019; 20(20): 5002.
[http://dx.doi.org/10.3390/ijms20205002] [PMID: 31658594]
[89]
Huang W, Yang S, Shao J, Li YP. Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front Biosci 2007; 12(8-12): 3068-92.
[http://dx.doi.org/10.2741/2296] [PMID: 17485283]
[90]
Roelen BAJ, Dijke P. Controlling mesenchymal stem cell differentiation by TGFβ family members. J Orthop Sci 2003; 8(5): 740-8.
[http://dx.doi.org/10.1007/s00776-003-0702-2] [PMID: 14557946]
[91]
Choy L, Derynck R. Transforming growth factor-beta inhibits adipocyte differentiation by Smad3 interacting with CCAAT/enhancer-binding protein (C/EBP) and repressing C/EBP transactivation function. J Biol Chem 2003; 278(11): 9609-19.
[http://dx.doi.org/10.1074/jbc.M212259200] [PMID: 12524424]
[92]
Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 2016; 4(1): 16009.
[http://dx.doi.org/10.1038/boneres.2016.9] [PMID: 27563484]
[93]
Kang Q, Song WX, Luo Q, et al. A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells. Stem Cells Dev 2009; 18(4): 545-58.
[http://dx.doi.org/10.1089/scd.2008.0130] [PMID: 18616389]
[94]
Flehr A, Källgård J, Alvén J, et al. Development of a novel method to measure bone marrow fat fraction in older women using high-resolution peripheral quantitative computed tomography. Osteoporos Int 2022; 33(7): 1545-56.
[http://dx.doi.org/10.1007/s00198-021-06224-7] [PMID: 35113175]
[95]
Jarraya M, Bredella MA. Clinical imaging of marrow adiposity. Best Pract Res Clin Endocrinol Metab 2021; 35(4): 101511.
[http://dx.doi.org/10.1016/j.beem.2021.101511] [PMID: 33648849]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy