Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

Asiaticoside Prevents Oxidative Stress and Apoptosis in Endothelial Cells by Activating ROS-dependent p53/Bcl-2/Caspase-3 Signaling Pathway

Author(s): Zhenwen Liang, Yu Chen, Rifang Gu, Qi Guo and Xuqiang Nie*

Volume 23, Issue 10, 2023

Published on: 21 November, 2022

Page: [1116 - 1129] Pages: 14

DOI: 10.2174/1566524023666221024120825

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Background: Asiaticoside (AC) is a triterpenoid saponin found in Centella asiatica (L.) urban extract that has a wide range of pharmacological properties. Our previous study demonstrated that AC could promote angiogenesis in diabetic wounds, but the specific mechanisms remain unknown.

Objective: This study aimed to examine the effectiveness and mechanism of AC on human umbilical vein endothelial cells (HUVECs) exposed to tert-butyl hydroperoxide (t-BHP) toxicity.

Methods: Senescence was confirmed using senescence-associated betagalactosidase (SA-β-gal) activity and expression of the cell cycle phase markers p16 and p21. The levels of SOD, NO, MDA, GSH-Px, and ROS were tested. Furthermore, several cell death-related genes and proteins (p53, Bax, Bcl-2 and Caspase-3) were assessed with RT-qPCR and Western blotting.

Results: AC significantly reduced SA-β-gal activity, with both the suppression of cellcycle inhibitors p16 and p21. We also found that the induced oxidative stress and apoptosis caused by t-BHP treatment resulted in the decrease of antioxidant enzymes activities, the surge of ROS and MDA, the up-regulation of p53, Bax and caspase-3, and the decrease of SOD, NO, GSH-Px and Bcl-2. These biochemical changes were all reversed by treatment with varying doses of AC.

Conclusion: AC alleviates t-BHP-induced oxidative injury and apoptosis in HUVECs through the ROS-dependent p53/Bcl-2/Caspase-3 signaling pathway. It may be a potential antioxidant applied in metabolic disorders and pharmaceutical products.

Keywords: Asiaticoside, human umbilical vein endothelial cells, Oxidative stress, Reactive oxygen species, p53 signaling pathway, tert-butyl hydrogen peroxide.

[1]
Pietri P, Stefanadis C. Cardiovascular aging and longevity. J Am Coll Cardiol 2021; 77(2): 189-204.
[http://dx.doi.org/10.1016/j.jacc.2020.11.023] [PMID: 33446313]
[2]
Kovacic JC, Moreno P, Nabel EG, Hachinski V, Fuster V. Cellular senescence, vascular disease, and aging: Part 2 of a 2-part review: Clinical vascular disease in the elderly. Circulation 2011; 123(17): 1900-10.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.009118] [PMID: 21537006]
[3]
Wu Z, Yu Y, Liu C, et al. Role of p38 mitogen-activated protein kinase in vascular endothelial aging: Interaction with Arginase-II and S6K1 signaling pathway. Aging 2015; 7(1): 70-81.
[http://dx.doi.org/10.18632/aging.100722] [PMID: 25635535]
[4]
Li Y, Lui KO, Zhou B. Reassessing endothelial-to-mesenchymal transition in cardiovascular diseases. Nat Rev Cardiol 2018; 15(8): 445-56.
[http://dx.doi.org/10.1038/s41569-018-0023-y] [PMID: 29748594]
[5]
Li X, Sun X, Carmeliet P. Hallmarks of endothelial cell metabolism in health and disease. Cell Metab 2019; 30(3): 414-33.
[http://dx.doi.org/10.1016/j.cmet.2019.08.011] [PMID: 31484054]
[6]
Wang W, Kang PM. Oxidative stress and antioxidant treatments in cardiovascular diseases. Antioxidants 2020; 9(12): 1292.
[http://dx.doi.org/10.3390/antiox9121292] [PMID: 33348578]
[7]
von Kobbe C. Cellular senescence: A view throughout organismal life. Cell Mol Life Sci 2018; 75(19): 3553-67.
[http://dx.doi.org/10.1007/s00018-018-2879-8] [PMID: 30030594]
[8]
Mistriotis P, Andreadis ST. Vascular aging: Molecular mechanisms and potential treatments for vascular rejuvenation. Ageing Res Rev 2017; 37: 94-116.
[http://dx.doi.org/10.1016/j.arr.2017.05.006] [PMID: 28579130]
[9]
Ungvari Z, Tarantini S, Sorond F, Merkely B, Csiszar A. Mechanisms of vascular aging, a geroscience perspective. J Am Coll Cardiol 2020; 75(8): 931-41.
[http://dx.doi.org/10.1016/j.jacc.2019.11.061] [PMID: 32130929]
[10]
Martínez de Toda I, Vida C, Sanz San Miguel L, De la Fuente M. Function, oxidative, and inflammatory stress parameters in immune cells as predictive markers of lifespan throughout aging. Oxid Med Cell Longev 2019; 2019: 1-11.
[http://dx.doi.org/10.1155/2019/4574276] [PMID: 31281577]
[11]
Hannan MA, Haque MN, Munni YA, et al. Centella asiatica promotes early differentiation, axodendritic maturation and synaptic formation in primary hippocampal neurons. Neurochem Int 2021; 144: 104957.
[http://dx.doi.org/10.1016/j.neuint.2021.104957] [PMID: 33444677]
[12]
Pharmacopoeia CoC. Chinese Pharmacopoeia. People’s Republic of China. 1st ed. Beijing: China Medical Science and 415 Technology Press 2020.
[13]
Sun B, Wu L, Wu Y, et al. Therapeutic potential of Centella asiatica and its triterpenes: A review. Front Pharmacol 2020; 11: 568032.
[http://dx.doi.org/10.3389/fphar.2020.568032] [PMID: 33013406]
[14]
Micheli L, Di Cesare Mannelli L, Mattoli L, et al. Intra-articular route for the system of molecules 14G1862 from Centella asiatica: Pain relieving and protective effects in a rat model of osteoarthritis. Nutrients 2020; 12(6): 1618.
[http://dx.doi.org/10.3390/nu12061618] [PMID: 32486519]
[15]
Sieberi BM, Omwenga GI, Wambua RK, Samoei JC, Ngugi MP. Screening of the dichloromethane: Methanolic extract of Centella asiatica for antibacterial activities against Salmonella typhi, Escherichia coli, Shigella sonnei, Bacillus subtilis, and Staphylococcus aureus. Sci World J 2020; 2020: 1-8.
[http://dx.doi.org/10.1155/2020/6378712] [PMID: 32694956]
[16]
Zweig JA, Brandes MS, Brumbach BH, et al. Loss of NRF2 accelerates cognitive decline, exacerbates mitochondrial dysfunction, and is required for the cognitive enhancing effects of Centella asiatica during aging. Neurobiol Aging 2021; 100: 48-58.
[http://dx.doi.org/10.1016/j.neurobiolaging.2020.11.019] [PMID: 33486357]
[17]
Agra LC, Ferro JNS, Barbosa FT, Barreto E. Triterpenes with healing activity: A systematic review. J Dermatolog Treat 2015; 26(5): 465-70.
[http://dx.doi.org/10.3109/09546634.2015.1021663] [PMID: 25893368]
[18]
He Y, Peng X, Zheng L, Tang Y, Li J, Huang X. Asiaticoside inhibits epithelial-mesenchymal transition and stem cell-like properties of pancreatic cancer PANC-1 cells by blocking the activation of p65 and p38MAPK. J Gastrointest Oncol 2021; 12(1): 196-206.
[http://dx.doi.org/10.21037/jgo-20-533] [PMID: 33708436]
[19]
Hossain S, Hashimoto M, Katakura M, Al Mamun A, Shido O. Medicinal value of asiaticoside for Alzheimer’s disease as assessed using single-molecule-detection fluorescence correlation spectroscopy, laser-scanning microscopy, transmission electron microscopy, and in silico docking. BMC Complement Altern Med 2015; 15(1): 118.
[http://dx.doi.org/10.1186/s12906-015-0620-9] [PMID: 25880304]
[20]
Tawinwung S, Junsaeng D, Utthiya S, Khemawoot P. Immunomodulatory effect of standardized C. asiatica extract on a promo-tion of regulatory T cells in rats. BMC Compl Med Ther 2021; 21(1): 220.
[http://dx.doi.org/10.1186/s12906-021-03394-z] [PMID: 34479568]
[21]
Sh Ahmed A, Taher M, Mandal UK, et al. Pharmacological properties of Centella asiatica hydrogel in accelerating wound healing in rabbits. BMC Complement Altern Med 2019; 19(1): 213.
[http://dx.doi.org/10.1186/s12906-019-2625-2] [PMID: 31412845]
[22]
Huang J, Zhou X, Xia L, et al. Inhibition of hypertrophic scar formation with oral asiaticoside treatment in a rabbit ear scar model. Int Wound J 2021; 18(5): 598-607.
[http://dx.doi.org/10.1111/iwj.13561] [PMID: 33666348]
[23]
Macalalad MAB, Gonzales AA III. In-silico screening and identification of phytochemicals from Centella asiatica as potential inhibitors of sodium-glucose co-transporter 2 for treating diabetes. J Biomol Struct Dyn 2021; 2021: 1-18.
[http://dx.doi.org/10.1080/07391102.2021.1969282] [PMID: 34455930]
[24]
Yin Z, Yu H, Chen S, et al. Asiaticoside attenuates diabetes-induced cognition deficits by regulating PI3K/Akt/NF-κB pathway. Behav Brain Res 2015; 292: 288-99.
[http://dx.doi.org/10.1016/j.bbr.2015.06.024] [PMID: 26097002]
[25]
Huang J, Zhou X, Gong Y, Chen J, Yang Y, Liu K. Network pharmacology and molecular docking analysis reveals the mecha-nism of asiaticoside on COVID-19. Ann Transl Med 2022; 10(4): 174.
[http://dx.doi.org/10.21037/atm-22-51] [PMID: 35280425]
[26]
Maya PG, Mahayasih W. Harizal, Herman, Ahmad I. In silico identification of natural products from Centella asiatica as severe acute respiratory syndromecoronavirus 2 main protease inhibitor. J Adv Pharm Technol Res 2021; 12(3): 261-6.
[PMID: 34345605]
[27]
Men H, Cai H, Cheng Q, et al. The regulatory roles of p53 in cardiovascular health and disease. Cell Mol Life Sci 2021; 78(5): 2001-18.
[http://dx.doi.org/10.1007/s00018-020-03694-6] [PMID: 33179140]
[28]
Donato AJ, Morgan RG, Walker AE, Lesniewski LA. Cellular and molecular biology of aging endothelial cells. J Mol Cell Cardiol 2015; 89((Pt B)): 122-35.
[http://dx.doi.org/10.1016/j.yjmcc.2015.01.021] [PMID: 25655936]
[29]
Aubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ 2018; 25(1): 104-13.
[http://dx.doi.org/10.1038/cdd.2017.169] [PMID: 29149101]
[30]
Zhang J, Yao M, Jia X, et al. Upregulation Contributes to Asiaticoside-Induced Protection of H9c2 Cardioblasts During Oxygen–Glucose Deprivation/Reoxygenation. J Cardiovasc Pharmacol 2020; 75(1): 84-90.
[http://dx.doi.org/10.1097/FJC.0000000000000754] [PMID: 31569121]
[31]
Nie X, Zhang H, Shi X, et al. Asiaticoside nitric oxide gel accelerates diabetic cutaneous ulcers healing by activating Wnt/β-catenin signaling pathway. Int Immunopharmacol 2020; 79: 106109.
[http://dx.doi.org/10.1016/j.intimp.2019.106109] [PMID: 31865242]
[32]
Jia D, Li T, Chen X, et al. Salvianic acid A sodium protects HUVEC cells against tert -butyl hydroperoxide induced oxidative injury via mitochondria-dependent pathway. Chem Biol Interact 2018; 279: 234-42.
[http://dx.doi.org/10.1016/j.cbi.2017.10.025] [PMID: 29128606]
[33]
Zhang T, Hu Q, Shi L, Qin L, Zhang Q, Mi M. Equol attenuates atherosclerosis in apolipoprotein e-deficient mice by inhibiting endoplasmic reticulum stress via activation of Nrf2 in endothelial cells. PLoS One 2016; 11(12): e0167020.
[http://dx.doi.org/10.1371/journal.pone.0167020] [PMID: 27907038]
[34]
Ibrahim AH, Li H, Al-Rawi SS, et al. Angiogenic and wound healing potency of fermented virgin coconut oil: In vitro and in vivo studies. Am J Transl Res 2017; 9(11): 4936-44.
[PMID: 29218091]
[35]
Shen M, Hu Y, Yang Y, et al. Betulinic acid induces ros-dependent apoptosis and S-phase arrest by inhibiting the NF- κ B pathway in human multiple myeloma. Oxid Med Cell Longev 2019; 2019: 1-14.
[http://dx.doi.org/10.1155/2019/5083158] [PMID: 31281581]
[36]
Sharpless NE, Sherr CJ. Forging a signature of in vivo senescence. Nat Rev Cancer 2015; 15(7): 397-408.
[http://dx.doi.org/10.1038/nrc3960] [PMID: 26105537]
[37]
Idda ML, McClusky WG, Lodde V, et al. Survey of senescent cell markers with age in human tissues. Aging 2020; 12(5): 4052-66.
[http://dx.doi.org/10.18632/aging.102903] [PMID: 32160592]
[38]
Gulcin İ. Antioxidants and antioxidant methods: An updated overview. Arch Toxicol 2020; 94(3): 651-715.
[http://dx.doi.org/10.1007/s00204-020-02689-3] [PMID: 32180036]
[39]
Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative stress in cancer. Cancer Cell 2020; 38(2): 167-97.
[http://dx.doi.org/10.1016/j.ccell.2020.06.001] [PMID: 32649885]
[40]
Rieger AM, Nelson KL, Konowalchuk JD, Barreda DR. Modified annexin V/propidium iodide apoptosis assay for accurate as-sessment of cell death. J Vis Exp 2011; (50): 2597.
[http://dx.doi.org/10.3791/2597] [PMID: 21540825]
[41]
Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart disease and stroke statistics—2017 update: A report from the American heart association. Circulation 2017; 135(10): e146-603.
[http://dx.doi.org/10.1161/CIR.0000000000000485] [PMID: 28122885]
[42]
Ghebre YT, Yakubov E, Wong WT, et al. Vascular aging: Implications for cardiovascular disease and therapy. Transl Med 2016; 6(4): 183.
[http://dx.doi.org/10.4172/2161-1025.1000183] [PMID: 28932625]
[43]
Huang MZ, Yang YJ, Liu XW, Qin Z, Li JY. Aspirin eugenol ester attenuates oxidative injury of vascular endothelial cells by regulating NOS and Nrf2 signalling pathways. Br J Pharmacol 2019; 176(7): 906-18.
[http://dx.doi.org/10.1111/bph.14592] [PMID: 30706438]
[44]
Rattan SIS, Sejersen H, Fernandes RA, Luo W. Stress-mediated hormetic modulation of aging, wound healing, and angiogen-esis in human cells. Ann Acad Sci 2007; 1119(1): 112-21.
[http://dx.doi.org/10.1196/annals.1404.005] [PMID: 18056960]
[45]
Esquivel-Muelbert A, Phillips OL, Brienen RJW, et al. Tree mode of death and mortality risk factors across Amazon forests. Nat Commun 2020; 11(1): 5515.
[http://dx.doi.org/10.1038/s41467-020-18996-3] [PMID: 33168823]
[46]
Jia G, Aroor AR, Jia C, Sowers JR. Endothelial cell senescence in aging-related vascular dysfunction. Biochim Biophys Acta Mol Basis Dis 2019; 1865(7): 1802-9.
[http://dx.doi.org/10.1016/j.bbadis.2018.08.008] [PMID: 31109450]
[47]
Alam MB, Ahmed A, Islam S, et al. Phytochemical characterization of Dillenia indica L. bark by paper spray ionization-mass spec-trometry and evaluation of its antioxidant potential against t-BHP-induced oxidative stress in RAW 264.7 cells. Antioxidants 2020; 9(11): 1099.
[http://dx.doi.org/10.3390/antiox9111099] [PMID: 33182315]
[48]
Xu X, Li M, Chen W, Yu H, Yang Y, Hang L. Apigenin attenuates oxidative injury in ARPE-19 cells thorough activation of Nrf2 pathway. Oxid Med Cell Longev 2016; 2016: 1-9.
[http://dx.doi.org/10.1155/2016/4378461] [PMID: 27656262]
[49]
Gadecka A, Bielak-Zmijewska A. Slowing down ageing: The role of nutrients and microbiota in modulation of the epigenome. Nutrients 2019; 11(6): 1251.
[http://dx.doi.org/10.3390/nu11061251] [PMID: 31159371]
[50]
Boarescu PM, Boarescu I, Bocșan IC, et al. Antioxidant and anti-inflammatory effects of curcumin nanoparticles on drug-induced acute myocardial infarction in diabetic rats. Antioxidants 2019; 8(10): 504.
[http://dx.doi.org/10.3390/antiox8100504] [PMID: 31652638]
[51]
Chai S, Davis K, Zhang Z, Zha L, Kirschner K. Effects of tart cherry juice on biomarkers of inflammation and oxidative stress in older adults. Nutrients 2019; 11(2): 228.
[http://dx.doi.org/10.3390/nu11020228] [PMID: 30678193]
[52]
Gu SX, Stevens JW, Lentz SR. Regulation of thrombosis and vascular function by protein methionine oxidation. Blood 2015; 125(25): 3851-9.
[http://dx.doi.org/10.1182/blood-2015-01-544676] [PMID: 25900980]
[53]
Sugamura K, Keaney JF Jr. Reactive oxygen species in cardiovascular disease. Free Radic Biol Med 2011; 51(5): 978-92.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.05.004] [PMID: 21627987]
[54]
Kunkemoeller B, Kyriakides TR. Redox signaling in diabetic wound healing regulates extracellular matrix deposition. Antioxid Redox Signal 2017; 27(12): 823-38.
[http://dx.doi.org/10.1089/ars.2017.7263] [PMID: 28699352]
[55]
Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 2020; 21(7): 363-83.
[http://dx.doi.org/10.1038/s41580-020-0230-3] [PMID: 32231263]
[56]
Shen J, Yang D, Zhou X, et al. Role of autophagy in zinc oxide nanoparticles-induced apoptosis of mouse LEYDIG cells. Int J Mol Sci 2019; 20(16): 4042.
[http://dx.doi.org/10.3390/ijms20164042]
[57]
Konishi T, Kato K, Araki T, Shiraki K, Takagi M, Tamaru Y. A new class of glutathione S-transferase from the hepatopancreas of the red sea bream Pagrus major. Biochem J 2005; 388(1): 299-307.
[http://dx.doi.org/10.1042/BJ20041578] [PMID: 15610066]
[58]
Wei B, Wang Y, Wu H, Liu M, Yao W, Wei M. Pharmacodynamics and pharmacokinetics of a new type of compound lansopra-zole capsule in gastric ulcer rats and beagle dogs: Importance of adjusting oxidative stress and inflammation. Pharmaceutics 2019; 11(2): 49.
[http://dx.doi.org/10.3390/pharmaceutics11020049] [PMID: 30678207]
[59]
Bulc M, Palus K, Dąbrowski M, Całka J. Hyperglycaemia-induced downregulation in expression of nnos intramural neurons of the small intestine in the pig. Int J Mol Sci 2019; 20(7): 1681.
[http://dx.doi.org/10.3390/ijms20071681] [PMID: 30987291]
[60]
Heiss C, Rodriguez-Mateos A, Kelm M. Central role of eNOS in the maintenance of endothelial homeostasis. Antioxid Redox Signal 2015; 22(14): 1230-42.
[http://dx.doi.org/10.1089/ars.2014.6158] [PMID: 25330054]
[61]
Boutelle AM, Attardi LD. p53 and Tumor suppression: It takes a network. Trends Cell Biol 2021; 31(4): 298-310.
[http://dx.doi.org/10.1016/j.tcb.2020.12.011] [PMID: 33518400]
[62]
Levine AJ. p53: 800 million years of evolution and 40 years of discovery. Nat Rev Cancer 2020; 20(8): 471-80.
[http://dx.doi.org/10.1038/s41568-020-0262-1] [PMID: 32404993]
[63]
Kędzierska H, Popławski P, Hoser G, et al. Decreased expression of SRSF2 splicing factor inhibits apoptotic pathways in renal cancer. Int J Mol Sci 2016; 17(10): 1598.
[http://dx.doi.org/10.3390/ijms17101598] [PMID: 27690003]
[64]
Wang B, Mai Z, Du M, et al. BCL-XL directly retrotranslocates the monomeric BAK. Cell Signal 2019; 61: 1-9.
[http://dx.doi.org/10.1016/j.cellsig.2019.05.001] [PMID: 31059787]
[65]
Ladokhin AS. Regulation of Apoptosis by the Bcl-2 Family of Proteins: Field on a Brink. Cells 2020; 9(9): 2121.
[http://dx.doi.org/10.3390/cells9092121] [PMID: 32961920]
[66]
Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 2019; 20(3): 175-93.
[http://dx.doi.org/10.1038/s41580-018-0089-8] [PMID: 30655609]
[67]
Zhang Z, Cai P, Zhou J, Liu M, Jiang X. Effects of asiaticoside on human umbilical vein endothelial cell apoptosis induced by Aβ1-42. Int J Clin Exp Med 2015; 8(9): 15828-33.
[PMID: 26629083]
[68]
Sharma S, Singh RL, Kakkar P. Modulation of Bax/Bcl-2 and caspases by probiotics during acetaminophen induced apoptosis in primary hepatocytes. Food Chem Toxicol 2011; 49(4): 770-9.
[http://dx.doi.org/10.1016/j.fct.2010.11.041] [PMID: 21130831]
[69]
Wang WY, Zhao YQ, Zhao GX, Chi CF, Wang B. Antioxidant peptides from collagen hydrolysate of redlip croaker (Pseudo-sciaena polyactis) scales: Preparation, characterization, and cytoprotective effects on H2O2-damaged HepG2 cells. Mar Drugs 2020; 18(3): 156.
[http://dx.doi.org/10.3390/md18030156]
[70]
Gurunathan S, Park JH, Han JW, Kim JH. Comparative assessment of the apoptotic potential of silver nanoparticles synthe-sized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: Targeting p53 for anticancer thera-py. Int J Nanomedicine 2015; 10: 4203-22.
[http://dx.doi.org/10.2147/IJN.S83953] [PMID: 26170659]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy