Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Polymer based Gels: Recent and Future Applications in Drug Delivery Field

Author(s): Panoraia I. Siafaka*, Evren Atlıhan Gündoğdu, Emre Sefik Cağlar, Emre Özgenç, Marta Gonzalez-Alvarez, Isabel Gonzalez-Alvarez and Neslihan Üstündağ Okur*

Volume 20, Issue 9, 2023

Published on: 23 September, 2022

Page: [1288 - 1313] Pages: 26

DOI: 10.2174/1567201819666220907124040

Price: $65

conference banner
Abstract

Background: Currently, there is ongoing research in the pharmaceutical technology field to develop innovative drug delivery systems with improved therapeutic efficacy.

Objectives: Although there is a high need for new drug molecules, most scientists focus on the advancement of novel pharmaceutical formulations since the present excipients lack important properties such as low release rate leading to repeated dosing. Aside from this, pharmaceutical technologists aim to develop drug formulations that can target specific organs and tissues, lowering the possibility of adverse effects.

Methods: This review aims to cover the different polymer-based gel types, the development and characterization methods, as well as applications thereof. Finally, the recent advancements and future perspectives focusing on radiolabeled gels will be addressed.

Results: In the last decades, polymer based pharmaceutical gels have shown attractive properties and therefore have raised the attention of pharmaceutical scientists. Gels are either chemically or physically cross-linked networks that can absorb fluids such as water (hydrogels), oil (organogels) and even air(aerogels). A variety of polymers, either synthetic or natural, have been employed as components for the gels. Stimuli-responsive gels based on stimuli-sensitive polymers are among the most studied gel class of last years.

Conclusion: The use of polymer-based gels as drug delivery systems would be beneficial for targeting numerous diseases.

Keywords: Gels, polymers, drug delivery, advancements, radiolabeling, hydrogels.

Graphical Abstract
[1]
Laffleur, F.; Keckeis, V. Advances in drug delivery systems: Work in progress still needed? Int. J. Pharm., 2020, 590, 119912.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119912] [PMID: 32971178]
[2]
Abasian, P.; Ghanavati, S.; Rahebi, S.; Nouri Khorasani, S.; Khalili, S. Polymeric nanocarriers in targeted drug delivery systems: A review. Polym. Adv. Technol., 2020, 31(12), 2939-2954.
[http://dx.doi.org/10.1002/pat.5031]
[3]
Öztürk-Atar, K.; Eroğlu, H.; Çalış, S. Novel advances in targeted drug delivery. J. Drug Target., 2018, 26(8), 633-642.
[http://dx.doi.org/10.1080/1061186X.2017.1401076] [PMID: 29096554]
[4]
Alshehri, S.; Imam, S.S.; Hussain, A.; Altamimi, M.A.; Alruwaili, N.K.; Alotaibi, F.; Alanazi, A.; Shakeel, F. Potential of solid dispersions to enhance solubility, bioavailability, and therapeutic efficacy of poorly water-soluble drugs: Newer formulation techniques, current marketed scenario and patents. Drug Deliv., 2020, 27(1), 1625-1643.
[http://dx.doi.org/10.1080/10717544.2020.1846638] [PMID: 33207947]
[5]
Okur, N.Ü.; Yağcılar, A.P.; Siafaka, P.I. Promising polymeric drug carriers for local delivery: The case of in situ gels. Curr. Drug Deliv., 2020, 17(8), 675-693.
[http://dx.doi.org/10.2174/1567201817666200608145748] [PMID: 32510291]
[6]
Uskoković, V.; Ghosh, S. Carriers for the tunable release of therapeutics: Etymological classification and examples. Expert Opin. Drug Deliv., 2016, 13(12), 1729-1741.
[http://dx.doi.org/10.1080/17425247.2016.1200558] [PMID: 27322661]
[7]
Li, J.; Mooney, D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater., 2016, 1(12), 16071.
[http://dx.doi.org/10.1038/natrevmats.2016.71] [PMID: 29657852]
[8]
Sharma, M.; Deohra, A.; Reddy, K.R.; Sadhu, V. Biocompatible In situ Gelling Polymer Hydrogels for Treating Ocular Infection, 1st ed; Elsevier Ltd., 2019.
[http://dx.doi.org/10.1016/bs.mim.2019.01.001]
[9]
Hoque, J.; Prakash, R.G.; Paramanandham, K.; Shome, B.R.; Haldar, J. Biocompatible injectable hydrogel with potent wound healing and antibacterial properties. Mol. Pharm., 2017, 14(4), 1218-1230.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b01104] [PMID: 28207269]
[10]
Aderibigbe, B.A. In situ-based gels for nose to brain delivery for the treatment of neurological diseases. Pharmaceutics, 2018, 10(2), 40.
[http://dx.doi.org/10.3390/pharmaceutics10020040] [PMID: 29601486]
[11]
Veiga, M-D.; Ruiz-Caro, R.; Martín-Illana, A.; Notario-Pérez, F.; Cazorla-Luna, R. Polymer gels in vaginal drug delivery systems. In: Polymer Gels; Pal, K.; Banerjee, I., Eds.; Woodhead Publishing: Sawston, United Kingdom, 2018; pp. 197-246.
[http://dx.doi.org/10.1007/978-981-10-6083-0_8]
[12]
Nayak, A.K.; Das, B. Introduction to polymeric gels. In: Polymer Gels; Pal, K.; Banerjee, I., Eds.; Woodhead Publishing: Sawston, United Kingdom, 2018; pp. 3-27.
[http://dx.doi.org/10.1016/B978-0-08-102179-8.00001-6]
[13]
Ban, E.; Park, M.; Jeong, S.; Kwon, T.; Kim, E-H.; Jung, K.; Kim, A. Poloxamer-based thermoreversible gel for topical delivery of emodin: Influence of P407 and P188 on solubility of emodin and its application in cellular activity screening. Molecules, 2017, 22(2), 246.
[http://dx.doi.org/10.3390/molecules22020246] [PMID: 28178225]
[14]
Wu, Y.; Wang, H.; Gao, F.; Xu, Z.; Dai, F.; Liu, W. An injectable supramolecular polymer nanocomposite hydrogel for prevention of breast cancer recurrence with theranostic and mammoplastic functions. Adv. Funct. Mater., 2018, 28(21), 1801000.
[http://dx.doi.org/10.1002/adfm.201801000]
[15]
Üstündağ Okur, N.; Çağlar, E.Ş.; Arpa, M.D.; Karasulu, H.Y. Preparation and evaluation of novel microemulsion-based hydrogels for dermal delivery of benzocaine. Pharm. Dev. Technol., 2017, 22(4), 500-510.
[http://dx.doi.org/10.3109/10837450.2015.1131716] [PMID: 26738443]
[16]
Sharma, S.; Sarkar, G.; Srestha, B.; Chattopadhyay, D.; Bhowmik, M. In situ fast gelling formulation for oral sustained drug delivery of paracetamol to dysphagic patients. Int. J. Biol. Macromol., 2019, 134, 864-868.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.092] [PMID: 31102679]
[17]
Makwana, S.B.; Patel, V.A.; Parmar, S.J. Development and characterization of in situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride. Results Pharma Sci., 2015, 6, 1-6.
[http://dx.doi.org/10.1016/j.rinphs.2015.06.001] [PMID: 26949596]
[18]
Bhattaccharjee, S.; Beck-Broichsitter, M.; Banga, A.K. In situ gel formation in microporated skin for enhanced topical delivery of niacinamide. Pharmaceutics, 2020, 12(5), 472.
[http://dx.doi.org/10.3390/pharmaceutics12050472] [PMID: 32455797]
[19]
Soni, K.S.; Desale, S.S.; Bronich, T.K. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J. Control. Release, 2016, 240, 109-126.
[http://dx.doi.org/10.1016/j.jconrel.2015.11.009] [PMID: 26571000]
[20]
Kaewruethai, T.; Laomeephol, C.; Pan, Y.; Luckanagul, J.A. Multifunctional polymeric nanogels for biomedical applications. Gels, 2021, 7(4), 228.
[http://dx.doi.org/10.3390/gels7040228] [PMID: 34842728]
[21]
Sunshine, J.C.; Akanda, M.I.; Li, D.; Kozielski, K.L.; Green, J.J. Effects of base polymer hydrophobicity and end-group modification on polymeric gene delivery. Biomacromolecules, 2011, 12(10), 3592-3600.
[http://dx.doi.org/10.1021/bm200807s] [PMID: 21888340]
[22]
Wang, Y.; Li, J.; Chen, Y.; Oupický, D. Balancing polymer hydrophobicity for ligand presentation and siRNA delivery in dual function CXCR4 inhibiting polyplexes. Biomater. Sci., 2015, 3(7), 1114-1123.
[http://dx.doi.org/10.1039/C5BM00003C] [PMID: 26146552]
[23]
Liu, D.; Ma, L.; An, Y.; Li, Y.; Liu, Y.; Wang, L.; Guo, J.; Wang, J.; Zhou, J. Thermoresponsive nanogel-encapsulated PEDOT and HSP70 inhibitor for improving the depth of the photothermal therapeutic effect. Adv. Funct. Mater., 2016, 26(26), 4749-4759.
[http://dx.doi.org/10.1002/adfm.201600031]
[24]
Ji, Y.; Winter, L.; Navarro, L.; Ku, M.C.; Periquito, J.S.; Pham, M.; Hoffmann, W.; Theune, L.E.; Calderón, M.; Niendorf, T. Controlled release of therapeutics from thermoresponsive nanogels: A thermal magnetic resonance feasibility study. Cancers (Basel), 2020, 12(6), E1380.
[http://dx.doi.org/10.3390/cancers12061380] [PMID: 32471299]
[25]
Shi, X.; Ma, X.; Hou, M.; Gao, Y.E.; Bai, S.; Xiao, B.; Xue, P.; Kang, Y.; Xu, Z.; Li, C.M. pH-Responsive unimolecular micelles based on amphiphilic star-like copolymers with high drug loading for effective drug delivery and cellular imaging. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(33), 6847-6859.
[http://dx.doi.org/10.1039/C7TB01477E] [PMID: 32264334]
[26]
Liu, S.; Ono, R.J.; Yang, C.; Gao, S.; Ming Tan, J.Y.; Hedrick, J.L.; Yang, Y.Y. Dual pH-responsive shell-cleavable polycarbonate micellar nanoparticles for in vivo anticancer drug delivery. ACS Appl. Mater. Interfaces, 2018, 10(23), 19355-19364.
[http://dx.doi.org/10.1021/acsami.8b01954] [PMID: 29757607]
[27]
Cazotti, J.C.; Fritz, A.T.; Garcia-Valdez, O.; Smeets, N.M.B.; Dubé, M.A.; Cunningham, M.F. Graft modification of starch nanoparticles with pH-responsive polymers via nitroxide-mediated polymerization. J. Polym. Sci., 2020, 58(16), 2211-2220.
[http://dx.doi.org/10.1002/pol.20200337]
[28]
Maiti, C.; Parida, S.; Kayal, S.; Maiti, S.; Mandal, M.; Dhara, D. Redox-responsive core-cross-linked block copolymer micelles for overcoming multidrug resistance in cancer cells. ACS Appl. Mater. Interfaces, 2018, 10(6), 5318-5330.
[http://dx.doi.org/10.1021/acsami.7b18245] [PMID: 29355017]
[29]
Aramoto, H.; Osaki, M.; Konishi, S.; Ueda, C.; Kobayashi, Y.; Takashima, Y.; Harada, A.; Yamaguchi, H. Redox-responsive supramolecular polymeric networks having double-threaded inclusion complexes. Chem. Sci. (Camb.), 2020, 11(17), 4322-4331.
[http://dx.doi.org/10.1039/C9SC05589D] [PMID: 34122890]
[30]
The potential of stimuli-responsive nanogels in drug and active molecule delivery for targeted therapy. Gels, 2017, 3(2), 16.
[http://dx.doi.org/10.3390/gels3020016]
[31]
Zhang, Y.; Dosta, P.; Conde, J.; Oliva, N.; Wang, M.; Artzi, N. Prolonged local in vivo delivery of stimuli-responsive nanogels that rapidly release doxorubicin in triple-negative breast cancer cells. Adv. Healthc. Mater., 2020, 9(4), e1901101.
[http://dx.doi.org/10.1002/adhm.201901101] [PMID: 31957227]
[32]
Li, S.; Zhang, T.; Xu, W.; Ding, J.; Yin, F.; Xu, J.; Sun, W.; Wang, H.; Sun, M.; Cai, Z.; Hua, Y. Sarcoma-targeting peptide-decorated polypeptide nanogel intracellularly delivers shikonin for upregulated osteosarcoma necroptosis and diminished pulmonary metastasis. Theranostics, 2018, 8(5), 1361-1375.
[http://dx.doi.org/10.7150/thno.18299] [PMID: 29507626]
[33]
Pan, G.; Guo, Q.; Cao, C.; Yang, H.; Li, B. Thermo-responsive molecularly imprinted nanogels for specific recognition and controlled release of proteins. Soft Matter, 2013, 9(14), 3840-3850.
[http://dx.doi.org/10.1039/c3sm27505a]
[34]
Caro, C.; García-Martín, M.L.; Pernia Leal, M. Manganese-based nanogels as pH switches for magnetic resonance imaging. Biomacromolecules, 2017, 18(5), 1617-1623.
[http://dx.doi.org/10.1021/acs.biomac.7b00224] [PMID: 28368576]
[35]
Zhang, X.; Chen, X.; Wang, H.Y.; Jia, H.R.; Wu, F.G. Supramolecular nanogel-based universal drug carriers formed by “Soft–Hard” co-assembly: Accurate cancer diagnosis and hypoxia-activated cancer therapy. Adv. Ther., 2019, 2(5), 1800140.
[http://dx.doi.org/10.1002/adtp.201800140]
[36]
Zhang, H.; Ba, S.; Lee, J.Y.; Xie, J.; Loh, T.P.; Li, T. Cancer biomarker-triggered disintegrable DNA nanogels for intelligent drug delivery. Nano Lett., 2020, 20(11), 8399-8407.
[http://dx.doi.org/10.1021/acs.nanolett.0c03671] [PMID: 33118827]
[37]
Sung, Y.K.; Kim, S.W. Recent advances in polymeric drug delivery systems. Biomater. Res., 2020, 24(1), 12.
[http://dx.doi.org/10.1186/s40824-020-00190-7] [PMID: 32537239]
[38]
Sharifi, E.; Chehelgerdi, M.; Fatahian-Kelishadrokhi, A.; Yazdani-Nafchi, F.; Ashrafi-Dehkordi, K. Comparison of therapeutic effects of encapsulated Mesenchymal stem cells in Aloe vera gel and Chitosan-based gel in healing of grade-II burn injuries. Regen. Ther., 2021, 18, 30-37.
[http://dx.doi.org/10.1016/j.reth.2021.02.007] [PMID: 33816723]
[39]
Campos, L.M.; de Oliveira Lemos, A.S.; da Cruz, L.F.; de Freitas Araújo, M.G.; de Mello Botti, G.C.R.; Júnior, J.L.R.; Rocha, V.N.; Denadai, Â.M.L.; da Silva, T.P.; Tavares, G.D.; Scio, E.; Fabri, R.L.; Pinto, P.F. Development and in vivo evaluation of chitosan-gel containing Mitracarpus frigidus methanolic extract for vulvovaginal candidiasis treatment. Biomed. Pharmacother., 2020, 130, 110609.
[http://dx.doi.org/10.1016/j.biopha.2020.110609] [PMID: 34321177]
[40]
Kahya, N.; Erim, F.B. Surfactant modified alginate composite gels for controlled release of protein drug. Carbohydr. Polym., 2019, 224, 115165.
[http://dx.doi.org/10.1016/j.carbpol.2019.115165] [PMID: 31472829]
[41]
Günter, E.A.; Markov, P.A.; Melekhin, A.K.; Belozerov, V.S.; Martinson, E.A.; Litvinets, S.G.; Popov, S.V. Preparation and release characteristics of mesalazine loaded calcium pectin-silica gel beads based on callus cultures pectins for colon-targeted drug delivery. Int. J. Biol. Macromol, 2018, 120((Pt B)), 2225-2233.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.078] [PMID: 30012483]
[42]
Cai, X.J.; Mesquida, P.; Jones, S.A. Investigating the ability of nanoparticle-loaded hydroxypropyl methylcellulose and xanthan gum gels to enhance drug penetration into the skin. Int. J. Pharm., 2016, 513(1-2), 302-308.
[http://dx.doi.org/10.1016/j.ijpharm.2016.08.055] [PMID: 27576666]
[43]
Zhao, J.; Sun, C.; Li, H.; Dong, X.; Zhang, X. Studies on the physicochemical properties, gelling behavior and drug release performance of agar/κ-carrageenan mixed hydrogels. Int. J. Biol. Macromol., 2020, 154, 878-887.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.087] [PMID: 32173428]
[44]
Kumar, D.; Pandey, J.; Raj, V.; Kumar, P. A review on the modification of polysaccharide through graft copolymerization for various potential applications. Open Med. Chem. J., 2017, 11(1), 109-126.
[http://dx.doi.org/10.2174/1874104501711010109] [PMID: 29151987]
[45]
Takata, K.; Takai, H.; Yoshizaki, Y.; Nagata, T.; Kawahara, K.; Yoshida, Y.; Kuzuya, A.; Ohya, Y. Peptide drug release behavior from biodegradable temperature-responsive injectable hydrogels exhibiting irreversible gelation. Gels, 2017, 3(4), 38.
[http://dx.doi.org/10.3390/gels3040038] [PMID: 30920533]
[46]
Tripathi, P.; Kumar, A.; Jain, P.K.; Patel, J.R. Carbomer gel bearing methotrexate loaded lipid nanocontainers shows improved topical delivery intended for effective management of psoriasis. Int. J.Biol. Macromol.,, 2018, 120((Pt A)), 1322-1334.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.136 ] [PMID: 30171962]
[47]
Khurana, B.; Arora, D.; Narang, R.K. QbD based exploration of resveratrol loaded polymeric micelles based carbomer gel for topical treatment of plaque psoriasis: in vitro, ex vivo and in vivo Studies. J. Drug Deliv. Sci. Technol., 2020, 59, 101901.
[http://dx.doi.org/10.1016/j.jddst.2020.101901]
[48]
Zhang, T.; Chen, S.; Dou, H.; Liu, Q.; Shu, G.; Lin, J.; Zhang, W.; Peng, G.; Zhong, Z.; Fu, H. Novel glucosamine-loaded thermosensitive hydrogels based on poloxamers for osteoarthritis therapy by intra-articular injection. Mater. Sci. Eng. C, 2021, 118, 111352.
[http://dx.doi.org/10.1016/j.msec.2020.111352] [PMID: 33254972]
[49]
Jeswani, G.; Das Paul, S. Design of vincristine sulfate loaded poloxamer in situ nanogel: Formulation and in vitro evaluation. J. Drug Deliv. Sci. Technol., 2021, 61, 102246.
[http://dx.doi.org/10.1016/j.jddst.2020.102246]
[50]
Singh, B. Designing Moringa gum-sterculia gum-polyacrylamide hydrogel wound dressings for drug delivery applications. Carbohydr. Polym. Technol. Appl., 2021, 2, 100062.
[http://dx.doi.org/10.1016/j.carpta.2021.100062]
[51]
Xu, J.; Tan, X.; Chen, L.; Li, X.; Xie, F. Starch/microcrystalline cellulose hybrid gels as gastric-floating drug delivery systems. Carbohydr. Polym., 2019, 215, 151-159.
[http://dx.doi.org/10.1016/j.carbpol.2019.03.078] [PMID: 30981340]
[52]
Baroli, B. Hydrogels for tissue engineering and delivery of tissue-inducing substances. J. Pharm. Sci., 2007, 96(9), 2197-2223.
[http://dx.doi.org/10.1002/jps.20873] [PMID: 17593553]
[53]
Jin, R.; Dijkstra, P.J. Hydrogels for tissue engineering applications. In: Biomedical Applications of Hydrogels Handbook; Ottenbrite, R.; Park, K.; Okano, T., Eds.; Springer New York: New York, NY, 2010; pp. 203-225.
[http://dx.doi.org/10.1007/978-1-4419-5919-5_11]
[54]
Guiseppi-Elie, A. Electroconductive hydrogels: Synthesis, characterization and biomedical applications. Biomaterials, 2010, 31(10), 2701-2716.
[http://dx.doi.org/10.1016/j.biomaterials.2009.12.052] [PMID: 20060580]
[55]
Annabi, N.; Rana, D.; Shirzaei Sani, E.; Portillo-Lara, R.; Gifford, J.L.; Fares, M.M.; Mithieux, S.M.; Weiss, A.S. Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing. Biomaterials, 2017, 139, 229-243.
[http://dx.doi.org/10.1016/j.biomaterials.2017.05.011] [PMID: 28579065]
[56]
Yan, C.; Liang, J.; Fang, H.; Meng, X.; Chen, J.; Zhong, Z.; Liu, Q.; Hu, H.; Zhang, X. Fabrication and evaluation of silk sericin-derived hydrogel for the release of the model drug berberine. Gels, 2021, 7(1), 23.
[http://dx.doi.org/10.3390/gels7010023] [PMID: 33672687]
[57]
Suhail, M.; Khan, A.; Rosenholm, J.M.; Minhas, M.U.; Wu, P-C. Fabrication and characterization of diclofenac sodium loaded hydrogels of sodium alginate as sustained release carrier. Gels, 2021, 7(1), 10.
[http://dx.doi.org/10.3390/gels7010010] [PMID: 33514036]
[58]
Villalba-Rodríguez, A.M.; Martínez-González, S.; Sosa-Hernández, J.E.; Parra-Saldívar, R.; Bilal, M.; Iqbal, H.M.N. Nanoclay/polymer-based hydrogels and enzyme-loaded nanostructures for wound healing applications. Gels, 2021, 7(2), 59.
[http://dx.doi.org/10.3390/gels7020059] [PMID: 34068868]
[59]
Yoo, K.M.; Murphy, S.V.; Skardal, A. A rapid crosslinkable maleimide-modified hyaluronic acid and gelatin hydrogel delivery system for regenerative applications. Gels, 2021, 7(1), 13.
[http://dx.doi.org/10.3390/gels7010013] [PMID: 33535669]
[60]
Kasiński, A.; Zielińska-Pisklak, M.; Oledzka, E.; Sobczak, M. Smart hydrogels - synthetic stimuli-responsive antitumor drug release systems. Int. J. Nanomedicine, 2020, 15, 4541-4572.
[http://dx.doi.org/10.2147/IJN.S248987] [PMID: 32617004]
[61]
Mohamad, N.; Mohd Amin, M.C.I.; Pandey, M.; Ahmad, N.; Rajab, N.F. Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: Accelerated burn wound healing in an animal model. Carbohydr. Polym., 2014, 114, 312-320.
[http://dx.doi.org/10.1016/j.carbpol.2014.08.025] [PMID: 25263896]
[62]
Hennink, W.E.; van Nostrum, C.F. Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev., 2012, 64, 223-236.
[http://dx.doi.org/10.1016/j.addr.2012.09.009] [PMID: 11755704]
[63]
Hu, W.; Wang, Z.; Xiao, Y.; Zhang, S.; Wang, J. Advances in crosslinking strategies of biomedical hydrogels. Biomater. Sci., 2019, 7(3), 843-855.
[http://dx.doi.org/10.1039/C8BM01246F] [PMID: 30648168]
[64]
Shoukat, H.; Pervaiz, F.; Noreen, S.; Nawaz, M.; Qaiser, R.; Anwar, M. Fabrication and evaluation studies of novel polyvinylpyrrolidone and 2-acrylamido-2-methylpropane sulphonic acid-based crosslinked matrices for controlled release of acyclovir. Polym. Bull., 2020, 77(4), 1869-1891.
[http://dx.doi.org/10.1007/s00289-019-02837-5]
[65]
Lo, Y.W.; Sheu, M.T.; Chiang, W.H.; Chiu, Y.L.; Tu, C.M.; Wang, W.Y.; Wu, M.H.; Wang, Y.C.; Lu, M.; Ho, H.O. In situ chemically crosslinked injectable hydrogels for the subcutaneous delivery of trastuzumab to treat breast cancer. Acta Biomater., 2019, 86, 280-290.
[http://dx.doi.org/10.1016/j.actbio.2019.01.003] [PMID: 30616077]
[66]
Eke, G.; Mangir, N.; Hasirci, N.; MacNeil, S.; Hasirci, V. Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials, 2017, 129, 188-198.
[http://dx.doi.org/10.1016/j.biomaterials.2017.03.021] [PMID: 28343005]
[67]
Kim, M.H.; Park, H.; Nam, H.C.; Park, S.R.; Jung, J.Y.; Park, W.H. Injectable methylcellulose hydrogel containing silver oxide nanoparticles for burn wound healing. Carbohydr. Polym., 2018, 181, 579-586.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.109] [PMID: 29254010]
[68]
Oh, J.K.; Drumright, R.; Siegwart, D.J.; Matyjaszewski, K. The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci., 2008, 33(4), 448-477.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.01.002]
[69]
Lim, H.L.; Hwang, Y.; Kar, M.; Varghese, S. Smart hydrogels as functional biomimetic systems. Biomater. Sci., 2014, 2(5), 603-618.
[http://dx.doi.org/10.1039/C3BM60288E] [PMID: 32481841]
[70]
Tanan, W.; Panichpakdee, J.; Saengsuwan, S. Novel biodegradable hydrogel based on natural polymers: Synthesis, characterization, swelling/reswelling and biodegradability. Eur. Polym. J., 2019, 112, 678-687.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.10.033]
[71]
Zong, H.; Wang, B.; Li, G.; Yan, S.; Zhang, K.; Shou, Y.; Yin, J. Biodegradable high-strength hydrogels with injectable performance based on poly(l-glutamic acid) and gellan gum. ACS Biomater. Sci. Eng., 2020, 6(8), 4702-4713.
[http://dx.doi.org/10.1021/acsbiomaterials.0c00915] [PMID: 33455199]
[72]
Clapacs, Z.; Neal, S.; Schuftan, D.; Tan, X.; Jiang, H.; Guo, J.; Rudra, J.; Huebsch, N. Biocompatible and enzymatically degradable gels for 3D cellular encapsulation under extreme compressive strain. Gels, 2021, 7(3), 101.
[http://dx.doi.org/10.3390/gels7030101] [PMID: 34449624]
[73]
Vasil’kov, A.; Rubina, M.; Naumkin, A.; Buzin, M.; Dorovatovskii, P.; Peters, G.; Zubavichus, Y. Cellulose-based hydrogels and aerogels embedded with silver nanoparticles: Preparation and characterization. Gels, 2021, 7(3), 82.
[http://dx.doi.org/10.3390/gels7030082] [PMID: 34287283]
[74]
Madau, M.; Le Cerf, D.; Dulong, V.; Picton, L. Hyaluronic acid functionalization with jeffamine® M2005: A Comparison of the thermo-responsiveness properties of the hydrogel obtained through two different synthesis routes. Gels, 2021, 7(3), 88.
[http://dx.doi.org/10.3390/gels7030088] [PMID: 34287299]
[75]
Valot, L.; Maumus, M.; Brunel, L.; Martinez, J.; Amblard, M.; Noël, D.; Mehdi, A.; Subra, G. A collagen-mimetic organic-inorganic hydrogel for cartilage engineering. Gels, 2021, 7(2), 73.
[http://dx.doi.org/10.3390/gels7020073] [PMID: 34203914]
[76]
Tamahkar, E.; Özkahraman, B.; Süloğlu, A.K.; İdil, N.; Perçin, I. A novel multilayer hydrogel wound dressing for antibiotic release. J. Drug Deliv. Sci. Technol., 2019, 2020(58), 1-7.
[http://dx.doi.org/10.1016/j.jddst.2020.101536]
[77]
Mazzarotta, A.; Caputo, T.M.; Raiola, L.; Battista, E.; Netti, P.A.; Causa, F. Small oligonucleotides detection in three-dimensional polymer network of DNA-PEG hydrogels. Gels, 2021, 7(3), 90.
[http://dx.doi.org/10.3390/gels7030090] [PMID: 34287281]
[78]
Madduma‐Bandarage, U.S.K.; Madihally, S.V. Synthetic hydrogels: Synthesis, novel trends, and applications. J. Appl. Polym. Sci., 2021, 138(19), 50376.
[http://dx.doi.org/10.1002/app.50376]
[79]
Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res., 2015, 6(2), 105-121.
[http://dx.doi.org/10.1016/j.jare.2013.07.006] [PMID: 25750745]
[80]
Suhail, M.; Hsieh, Y-H.; Khan, A.; Minhas, M.U.; Wu, P-C. Preparation and in vitro evaluation of aspartic/alginic acid based semi-interpenetrating network hydrogels for controlled release of ibuprofen. Gels, 2021, 7(2), 68.
[http://dx.doi.org/10.3390/gels7020068] [PMID: 34207688]
[81]
Crosby, C.O.; Stern, B.; Kalkunte, N.; Pedahzur, S.; Ramesh, S.; Zoldan, J. Interpenetrating polymer network hydrogels as bioactive scaffolds for tissue engineering. Rev. Chem. Eng., 2020.
[http://dx.doi.org/10.1515/revce-2020-0039] [PMID: 35400772]
[82]
Esposito, C.L.; Kirilov, P.; Roullin, V.G. Organogels, promising drug delivery systems: An update of state-of-the-art and recent applications. J. Control. Release, 2018, 271, 1-20.
[http://dx.doi.org/10.1016/j.jconrel.2017.12.019] [PMID: 29269143]
[83]
Vintiloiu, A.; Leroux, J-C. Organogels and their use in drug delivery- A review. J. Control. Release, 2008, 125(3), 179-192.
[http://dx.doi.org/10.1016/j.jconrel.2007.09.014] [PMID: 18082283]
[84]
Mujawar, N.K.; Ghatage, S.L.; Yeligar, V.C. Organogel: Factors and its importance. Int. J. Biol. Chem. Sci., 2014, 4(3), 758-773.
[85]
Li, Z.; Zhang, B.; Jia, S.; Ma, M.; Hao, J. Novel supramolecular organogel based on β-cyclodextrin as a green drug carrier for enhancing anticancer effects. J. Mol. Liq., 2018, 250, 19-25.
[http://dx.doi.org/10.1016/j.molliq.2017.11.154]
[86]
Hu, B.; Wang, W.; Wang, Y.; Yang, Y.; Xu, L.; Li, S. Degradation of glutamate-based organogels for biodegradable implants: In vitro study and in vivo observation. Mater. Sci. Eng. C, 2018, 82, 80-90.
[http://dx.doi.org/10.1016/j.msec.2017.08.065] [PMID: 29025677]
[87]
Martinez, R.M.; Rosado, C.; Velasco, M.V.R.; Lannes, S.C.S.; Baby, A.R. Main features and applications of organogels in cosmetics. Int. J. Cosmet. Sci., 2019, 41(2), 109-117.
[http://dx.doi.org/10.1111/ics.12519] [PMID: 30994939]
[88]
Hirst, A.R.; Coates, I.A.; Boucheteau, T.R.; Miravet, J.F.; Escuder, B.; Castelletto, V.; Hamley, I.W.; Smith, D.K. Low-molecular-weight gelators: Elucidating the principles of gelation based on gelator solubility and a cooperative self-assembly model. J. Am. Chem. Soc., 2008, 130(28), 9113-9121.
[http://dx.doi.org/10.1021/ja801804c] [PMID: 18558681]
[89]
Salehi, M.B.; Sefti, M.V.; Moghadam, A.M.; Koohi, A.D. Study of salinity and pH effects on gelation time of a polymer gel using central composite design method. J. Macromol. Sci. Part B, 2012, 51(3), 438-451.
[http://dx.doi.org/10.1080/00222348.2011.597331]
[90]
Suzuki, M.; Hanabusa, K. Polymer organogelators that make supramolecular organogels through physical cross-linking and self-assembly. Chem. Soc. Rev., 2010, 39(2), 455-463.
[http://dx.doi.org/10.1039/B910604A] [PMID: 20111770]
[91]
Liu, D-E.; Chen, Q.; Long, Y-B.; Ma, J.; Gao, H. A thermo-responsive polyurethane organogel for norfloxacin delivery. Polym. Chem., 2018, 9(2), 228-235.
[http://dx.doi.org/10.1039/C7PY01803G]
[92]
Zou, J.; Zhang, F.; Chen, Y.; Raymond, J.E.; Zhang, S.; Fan, J.; Zhu, J.; Li, A.; Seetho, K.; He, X.; Pochan, D.J.; Wooley, K.L. Responsive organogels formed by supramolecular self assembly of PEG-block-allyl-functionalized racemic polypeptides into β-sheet-driven polymeric ribbons. Soft Matter, 2013, 9(25), 5951-5958.
[http://dx.doi.org/10.1039/c3sm50582k] [PMID: 25788968]
[93]
Sahoo, S.; Kumar, N.; Bhattacharya, C.; Sagiri, S.S.; Jain, K.; Pal, K.; Ray, S.S.; Nayak, B. Organogels: Properties and applications in drug delivery. Des. Monomers Polym., 2011, 14(2), 95-108.
[http://dx.doi.org/10.1163/138577211X555721]
[94]
Raut, S.; Bhadoriya, S.S.; Uplanchiwar, V.; Mishra, V.; Gahane, A.; Jain, S.K. Lecithin Organogel: A unique micellar system for the delivery of bioactive agents in the treatment of skin aging. Acta Pharm. Sin. B, 2012, 2(1), 8-15.
[http://dx.doi.org/10.1016/j.apsb.2011.12.005]
[95]
Sangale, P.T. Organogel : A novel approch for transdermal drug. World J. Pharm. Res., 2015, 4(3), 423-442.
[96]
Gökçe, E.H.; Yurdasiper, A.; Korkmaz, E.; Özer, Ö. A novel preparation method for organogels: High-speed homogenization and micro-irradiation. AAPS PharmSciTech, 2013, 14(1), 391-397.
[http://dx.doi.org/10.1208/s12249-013-9922-8] [PMID: 23344854]
[97]
Jones, D.S.; Muldoon, B.C.O.; Woolfson, A.D.; Sanderson, F.D. An examination of the rheological and mucoadhesive properties of poly(acrylic acid) organogels designed as platforms for local drug delivery to the oral cavity. J. Pharm. Sci., 2007, 96(10), 2632-2646.
[http://dx.doi.org/10.1002/jps.20771] [PMID: 17702045]
[98]
Dai, M.; Bai, L.; Zhang, H.; Ma, Q.; Luo, R.; Lei, F.; Fei, Q.; He, N. A novel flunarizine hydrochloride-loaded organogel for intraocular drug delivery in situ: Design, physicochemical characteristics and inspection. Int. J. Pharm., 2020, 576, 119027.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119027] [PMID: 31953090]
[99]
Charoensumran, P.; Ajiro, H. Controlled release of testosterone by polymer-polymer interaction enriched organogel as a novel transdermal drug delivery system: Effect of limonene/PG and carbon-chain length on drug permeability. React. Funct. Polym., 2020, 148, 104461.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2019.104461]
[100]
Bourdon, F.; Lecoeur, M.; Leconte, L.; Ultré, V.; Kouach, M.; Odou, P.; Vaccher, C.; Foulon, C. Evaluation of Pentravan®, Pentravan® Plus, Phytobase®, Lipovan® and Pluronic Lecithin Organogel for the transdermal administration of antiemetic drugs to treat chemotherapy-induced nausea and vomiting at the hospital. Int. J. Pharm., 2016, 515(1-2), 774-787.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.014] [PMID: 27826027]
[101]
Querobino, S.M.; de Faria, N.C.; Vigato, A.A.; da Silva, B.G.M.; Machado, I.P.; Costa, M.S.; Costa, F.N.; de Araujo, D.R.; Alberto-Silva, C. Sodium alginate in oil-poloxamer organogels for intravaginal drug delivery: Influence on structural parameters, drug release mechanisms, cytotoxicity and in vitro antifungal activity. Mater. Sci. Eng. C, 2019, 99, 1350-1361.
[http://dx.doi.org/10.1016/j.msec.2019.02.036] [PMID: 30889669]
[102]
García-González, C.A.; Budtova, T.; Durães, L.; Erkey, C.; Del Gaudio, P.; Gurikov, P.; Koebel, M.; Liebner, F.; Neagu, M.; Smirnova, I. An opinion paper on aerogels for biomedical and environmental applications. Molecules, 2019, 24(9), 1815.
[http://dx.doi.org/10.3390/molecules24091815] [PMID: 31083427]
[103]
García-González, C.A.; Sosnik, A.; Kalmár, J.; De Marco, I.; Erkey, C.; Concheiro, A.; Alvarez-Lorenzo, C. Aerogels in drug delivery: From design to application. J. Control. Release, 2021, 332, 40-63.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.012] [PMID: 33600880]
[104]
Smirnova, I.; Suttiruengwong, S.; Seiler, M.; Arlt, W. Dissolution rate enhancement by adsorption of poorly soluble drugs on hydrophilic silica aerogels. Pharm. Dev. Technol., 2004, 9(4), 443-452.
[http://dx.doi.org/10.1081/PDT-200035804] [PMID: 15581080]
[105]
Caputo, G. Fixed bed adsorption of drugs on silica aerogel from supercritical carbon dioxide solutions. Int. J. Chem. Eng., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/752719]
[106]
Ganonyan, N.; Bar, G.; Gvishi, R.; Avnir, D. Gradual hydrophobization of silica aerogel for controlled drug release. RSC Advances, 2021, 11(14), 7824-7838.
[http://dx.doi.org/10.1039/D1RA00671A] [PMID: 35423309]
[107]
Soleimani Dorcheh, A.; Abbasi, M.H. Silica aerogel; Synthesis, properties and characterization. J. Mater. Process. Technol., 2008, 199(1–3), 10-26.
[http://dx.doi.org/10.1016/j.jmatprotec.2007.10.060]
[108]
Dervin, S.; Pillai, S.C. An introduction to sol-gel processing for aerogels. In: Sol-Gel Materials for Energy; Environment and Electronic Applications; Pillai, S.; Hehir, S., Eds.; Springer: Cham, 2017; pp. 1-22.
[http://dx.doi.org/10.1007/978-3-319-50144-4_1]
[109]
El-Naggar, M.E.; Othman, S.I.; Allam, A.A.; Morsy, O.M. Synthesis, drying process and medical application of polysaccharide-based aerogels. Int. J. Biol. Macromol., 2020, 145, 1115-1128.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.037] [PMID: 31678101]
[110]
Jiménez-Saelices, C.; Seantier, B.; Cathala, B.; Grohens, Y. Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties. Carbohydr. Polym., 2017, 157, 105-113.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.068] [PMID: 27987805]
[111]
Ozen, E.; Yildirim, N.; Dalkilic, B.; Ergun, M.E. Effects of microcrystalline cellulose on some performance properties of chitosan aerogels. Maderas Cienc. Tecnol., 2021, 23.
[http://dx.doi.org/10.4067/S0718-221X2021000100426]
[112]
Baldino, L.; Concilio, S.; Cardea, S.; Reverchon, E. Interpenetration of natural polymer aerogels by supercritical drying. Polymers (Basel), 2016, 8(4), 106.
[http://dx.doi.org/10.3390/polym8040106] [PMID: 30979196]
[113]
Şahin, İ.; Özbakır, Y.; İnönü, Z.; Ulker, Z.; Erkey, C. Kinetics of supercritical drying of gels. Gels, 2017, 4(1), 3.
[http://dx.doi.org/10.3390/gels4010003] [PMID: 30674780]
[114]
Veronovski, A.; Tkalec, G.; Knez, Ž.; Novak, Z. Characterisation of biodegradable pectin aerogels and their potential use as drug carriers. Carbohydr. Polym., 2014, 113, 272-278.
[http://dx.doi.org/10.1016/j.carbpol.2014.06.054] [PMID: 25256485]
[115]
Valo, H.; Arola, S.; Laaksonen, P.; Torkkeli, M.; Peltonen, L.; Linder, M.B.; Serimaa, R.; Kuga, S.; Hirvonen, J.; Laaksonen, T. Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur. J. Pharm. Sci., 2013, 50(1), 69-77.
[http://dx.doi.org/10.1016/j.ejps.2013.02.023] [PMID: 23500041]
[116]
Santos-Rosales, V.; Alvarez-Rivera, G.; Hillgärtner, M.; Cifuentes, A.; Itskov, M.; García-González, C.A.; Rege, A. Stability studies of starch aerogel formulations for biomedical applications. Biomacromolecules, 2020, 21(12), 5336-5344.
[http://dx.doi.org/10.1021/acs.biomac.0c01414] [PMID: 33259188]
[117]
Lovskaya, D.; Menshutina, N. Alginate-based aerogel particles as drug delivery systems: Investigation of the supercritical adsorption and in vitro evaluations. Materials (Basel), 2020, 13(2), 329.
[http://dx.doi.org/10.3390/ma13020329] [PMID: 31936834]
[118]
Radwan-Pragłowska, J.; Piątkowski, M.; Janus, Ł.; Bogdał, D.; Matysek, D. Biodegradable, pH-responsive chitosan aerogels for biomedical applications. RSC Adv., 2017, 7(52), 32960-32965.
[http://dx.doi.org/10.1039/C6RA27474A]
[119]
Wong, R.S.H.; Dodou, K. Effect of drug loading method and drug physicochemical properties on the material and drug release properties of poly (ethylene oxide) hydrogels for transdermal delivery. Polymers (Basel), 2017, 9(7), 286.
[http://dx.doi.org/10.3390/polym9070286] [PMID: 30970963]
[120]
Czarnobaj, K. Preparation and characterization of silica xerogels as carriers for drugs. Drug Deliv., 2008, 15(8), 485-492.
[http://dx.doi.org/10.1080/10717540802321495] [PMID: 18798086]
[121]
Costache, M.C.; Qu, H.; Ducheyne, P.; Devore, D.I. Polymer-xerogel composites for controlled release wound dressings. Biomaterials, 2010, 31(24), 6336-6343.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.065] [PMID: 20510447]
[122]
Keil, C.; Hübner, C.; Richter, C.; Lier, S.; Barthel, L.; Meyer, V.; Subrahmanyam, R.; Gurikov, P.; Smirnova, I.; Haase, H. Ca-Zn-Ag alginate aerogels for wound healing applications: Swelling behavior in simulated human body fluids and effect on macrophages. Polymers (Basel), 2020, 12(11), 2741.
[http://dx.doi.org/10.3390/polym12112741] [PMID: 33218195]
[123]
Wu, D.Q.; Zhu, J.; Han, H.; Zhang, J.Z.; Wu, F.F.; Qin, X.H.; Yu, J.Y. Synthesis and characterization of arginine-NIPAAm hybrid hydrogel as wound dressing: In vitro and in vivo study. Acta Biomater., 2018, 65, 305-316.
[http://dx.doi.org/10.1016/j.actbio.2017.08.048] [PMID: 28867649]
[124]
Subramani, R.; Izquierdo-Alvarez, A.; Bhattacharya, P.; Meerts, M.; Moldenaers, P.; Ramon, H.; Van Oosterwyck, H. The influence of swelling on elastic properties of polyacrylamide hydrogels. Front. Mater., 2020, 7, 212.
[http://dx.doi.org/10.3389/fmats.2020.00212]
[125]
Katime, I.A.; Katime Trabanca, A.O.; Katime Trabanca, D. Smart materials: Macromolecular hydrogels, some biomedical applications Ann. Royal Spanish Soc. Chem.,, 2005, 35-50.
[126]
Geever, L.M.; Cooney, C.C.; Lyons, J.G.; Kennedy, J.E.; Nugent, M.J.; Devery, S.; Higginbotham, C.L. Characterisation and controlled drug release from novel drug-loaded hydrogels. Eur. J. Pharm. Biopharm., 2008, 69(3), 1147-1159.
[http://dx.doi.org/10.1016/j.ejpb.2007.12.021] [PMID: 18502627]
[127]
Gupta, N.V.; Shivakumar, H.G. Investigation of swelling behavior and mechanical properties of a pH-sensitive superporous hydrogel composite. Iran. J. Pharm. Res., 2012, 11(2), 481-493.
[PMID: 24250471]
[128]
Kipcak, A.S.; Ismail, O.; Doymaz, I.; Piskin, S. Modeling and investigation of the swelling kinetics of acrylamide-sodium acrylate hydrogel. J. Chem., 2014, 2014, 1-8.
[http://dx.doi.org/10.1155/2014/281063]
[129]
Sheth, S.; Barnard, E.; Hyatt, B.; Rathinam, M.; Zustiak, S.P. Predicting drug release from degradable hydrogels using fluorescence correlation spectroscopy and mathematical modeling. Front. Bioeng. Biotechnol., 2019, 7, 410.
[http://dx.doi.org/10.3389/fbioe.2019.00410] [PMID: 31956651]
[130]
Khodaverdi, E.; Golmohammadian, A.; Mohajeri, S.A.; Zohuri, G.; Mirzazadeh Tekie, F.S.; Hadizadeh, F. Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) hydrogel. ISRN Pharm., 2012, 2012, 976879.
[http://dx.doi.org/10.5402/2012/976879] [PMID: 23227366]
[131]
Danyuo, Y.; Ani, C.J.; Salifu, A.A.; Obayemi, J.D.; Dozie-Nwachukwu, S.; Obanawu, V.O.; Akpan, U.M.; Odusanya, O.S.; Abade-Abugre, M.; McBagonluri, F.; Soboyejo, W.O. Anomalous release kinetics of prodigiosin from poly-N-isopropyl-acrylamid based hydrogels for the treatment of triple negative breast cancer. Sci. Rep., 2019, 9(1), 3862.
[http://dx.doi.org/10.1038/s41598-019-39578-4] [PMID: 30846795]
[132]
Bhasarkar, J.; Bal, D. Kinetic investigation of a controlled drug delivery system based on alginate scaffold with embedded voids. J. Appl. Biomater. Funct. Mater., 2019, 17(2), 2280800018817462.
[http://dx.doi.org/10.1177/2280800018817462] [PMID: 31230497]
[133]
Amasya, G.; Şen, T.; Tarimci, N.; Karavana, S.Y.; Baloǧlu, E. Bioadhesive and mechanical properties of triamcinolone acetonide buccal gels. Turkish J. Pharm. Sci., 2012, 9(1), 1-11.
[134]
Okur, N.Ü.; Bülbül, E.Ö.; Yağcılar, A.P.; Siafaka, P.I. Current status of mucoadhesive gel systems for buccal drug delivery. Curr. Pharm. Des., 2021, 27(17), 2015-2025.
[http://dx.doi.org/10.2174/1381612824666210316101528] [PMID: 33726644]
[135]
Russo, E.; Selmin, F.; Baldassari, S.; Gennari, C.G.M.; Caviglioli, G.; Cilurzo, F.; Minghetti, P.; Parodi, B. A focus on mucoadhesive polymers and their application in buccal dosage forms. J. Drug Deliv. Sci. Technol., 2016, 32, 113-125.
[http://dx.doi.org/10.1016/j.jddst.2015.06.016]
[136]
Nagai, N.; Minami, M.; Deguchi, S.; Otake, H.; Sasaki, H.; Yamamoto, N. An in situ gelling system based on methylcellulose and tranilast solid nanoparticles enhances ocular residence time and drug absorption into the cornea and conjunctiva. Front. Bioeng. Biotechnol., 2020, 8, 764.
[http://dx.doi.org/10.3389/fbioe.2020.00764] [PMID: 32733870]
[137]
Baus, R.A.; Zahir-Jouzdani, F.; Dünnhaupt, S.; Atyabi, F.; Bernkop-Schnürch, A. Mucoadhesive hydrogels for buccal drug delivery: In vitro-in vivo correlation study. Eur. J. Pharm. Biopharm., 2019, 142, 498-505.
[http://dx.doi.org/10.1016/j.ejpb.2019.07.019] [PMID: 31330258]
[138]
Vázquez-González, M.; Willner, I. Stimuli-responsive biomolecule-based hydrogels and their applications. Angew. Chem. Int. Ed. Engl., 2020, 59(36), 15342-15377.
[http://dx.doi.org/10.1002/anie.201907670] [PMID: 31730715]
[139]
Kirchhof, S.; Goepferich, A.M.; Brandl, F.P. Hydrogels in ophthalmic applications. Eur. J. Pharm. Biopharm, 2015, 95((Pt B)), 227-238.
[http://dx.doi.org/10.1016/j.ejpb.2015.05.016 ] [PMID: 26032290]
[140]
El Moussaoui, S.; Fernández-Campos, F.; Alonso, C.; Limón, D.; Halbaut, L.; Garduño-Ramirez, M.L.; Calpena, A.C.; Mallandrich, M. Topical mucoadhesive alginate-based hydrogel loading ketorolac for pain management after pharmacotherapy, ablation, or surgical removal in Condyloma acuminata. Gels, 2021, 7(1), 8.
[http://dx.doi.org/10.3390/gels7010008] [PMID: 33498627]
[141]
Gad, S.E. Polymers. In: Encyclopedia of Toxicology; Wexler, P., Ed.; Elsevier: Amsterdam, Netherlands, 2014; pp. 1045-1050.
[http://dx.doi.org/10.1016/B978-0-12-386454-3.00912-X]
[142]
Deb, P.K.; Kokaz, S.F.; Abed, S.N.; Paradkar, A.; Tekade, R.K. Pharmaceutical and Biomedical Applications of Polymers. In: Basic Fundamentals of Drug Delivery; Tekade, R.K., Ed.; Elsevier: Amsterdam, Netherlands, 2019; pp. 203-267.
[http://dx.doi.org/10.1016/B978-0-12-817909-3.00006-6]
[143]
Abhilash, M.; Thomas, D. Biopolymers for biocomposites and chemical sensor applications. In: Biopolymer Composites in Electronics; Sadasivuni, K.K.; Ponnamma, D.; Kim, J.; Cabibihan, J-J.; AlMaadeed, M.A., Eds.; Elsevier: Amsterdam, Netherlands, 2017; pp. 405-435.
[http://dx.doi.org/10.1016/B978-0-12-809261-3.00015-2]
[144]
Ng, H.W.; Zhang, Y.; Naffa, R.; Prabakar, S. Monitoring the degradation of collagen hydrogels by collagenase Clostridium histolyticum. Gels, 2020, 6(4), 46.
[http://dx.doi.org/10.3390/gels6040046] [PMID: 33260949]
[145]
Kean, T.; Thanou, M. Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug Deliv. Rev., 2010, 62(1), 3-11.
[http://dx.doi.org/10.1016/j.addr.2009.09.004] [PMID: 19800377]
[146]
Puertas-Bartolomé, M.; Mora-Boza, A.; García-Fernández, L. Emerging biofabrication techniques: A review on natural polymers for biomedical applications. Polymers (Basel), 2021, 13(8), 1209.
[http://dx.doi.org/10.3390/polym13081209] [PMID: 33918049]
[147]
Asadi, N.; Del Bakhshayesh, A.R.; Davaran, S.; Akbarzadeh, A. Common biocompatible polymeric materials for tissue engineering and regenerative medicine. Mater. Chem. Phys., 2020, 242, 122528.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122528]
[148]
Tutar, R.; Motealleh, A.; Khademhosseini, A.; Kehr, N.S. Functional nanomaterials on 2D surfaces and in 3D nanocomposite hydrogels for biomedical applications. Adv. Funct. Mater., 2019, 29(46), 1904344.
[http://dx.doi.org/10.1002/adfm.201904344]
[149]
Chou, S-F.; Luo, L-J.; Lai, J-Y.; Ma, D.H-K. On the importance of Bloom number of gelatin to the development of biodegradable in situ gelling copolymers for intracameral drug delivery. Int. J. Pharm., 2016, 511(1), 30-43.
[http://dx.doi.org/10.1016/j.ijpharm.2016.06.129] [PMID: 27374201]
[150]
Hu, H.; Ye, B.; Lv, Y.; Zhang, Q. Preparing antibacterial and in situ formable double crosslinking chitosan/hyaluronan composite hydrogels. Mater. Lett., 2019, 254, 17-20.
[http://dx.doi.org/10.1016/j.matlet.2019.06.102]
[151]
Bagheri, B.; Zarrintaj, P.; Surwase, S.S.; Baheiraei, N.; Saeb, M.R.; Mozafari, M.; Kim, Y.C.; Park, O.O. Self-gelling electroactive hydrogels based on chitosan-aniline oligomers/agarose for neural tissue engineering with on-demand drug release. Colloids Surf. B Biointerfaces, 2019, 184, 110549.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110549] [PMID: 31610417]
[152]
He, Z.; Liu, C.; Zhao, J.; Li, W.; Wang, Y. Physicochemical properties of a ginkgo seed protein-pectin composite gel. Food Hydrocoll., 2021, 118, 106781.
[http://dx.doi.org/10.1016/j.foodhyd.2021.106781]
[153]
Destruel, P-L.; Zeng, N.; Seguin, J.; Douat, S.; Rosa, F.; Brignole-Baudouin, F.; Dufaÿ, S.; Dufaÿ-Wojcicki, A.; Maury, M.; Mignet, N.; Boudy, V. Novel in situ gelling ophthalmic drug delivery system based on gellan gum and hydroxyethylcellulose: Innovative rheological characterization, in vitro and in vivo evidence of a sustained precorneal retention time. Int. J. Pharm., 2019, 118734.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118734] [PMID: 31705970]
[154]
Alpaslan, D.; Dudu, T.E.; Aktaş, N. Synthesis and characterization of novel organo-hydrogel based agar, glycerol and peppermint oil as a natural drug carrier/release material. Mater. Sci. Eng. C, 2021, 118, 111534.
[http://dx.doi.org/10.1016/j.msec.2020.111534] [PMID: 33255087]
[155]
Yadav, H.K.S.; Anwar, N.; Halabi, A.; Alsalloum, G.A. Nanogels as novel drug delivery systems - A review. J. Pharm. Pharmacogn. Res., 2017, 1(1), 1-5.
[156]
Vlaia, L.; Coneac, G.; Olariu, I.; Vlaia, V.; Lupuleasa, D. Cellulose-derivatives-based hydrogels as vehicles for dermal and transdermal drug delivery. In: Emerging Concepts in Analysis and Applications of Hydrogels; Majee, S.B., Ed.; IntechOpen: London, UK, 2016.
[http://dx.doi.org/10.5772/63953]
[157]
Skorik, Y.A.; Golyshev, A.A.; Kritchenkov, A.S.; Gasilova, E.R.; Poshina, D.N.; Sivaram, A.J.; Jayakumar, R. Development of drug delivery systems for taxanes using ionic gelation of carboxyacyl derivatives of chitosan. Carbohydr. Polym., 2017, 162, 49-55.
[http://dx.doi.org/10.1016/j.carbpol.2017.01.025] [PMID: 28224894]
[158]
He, F.; Wang, L.; Yang, S.; Qin, W.; Feng, Y.; Liu, Y.; Zhou, Y.; Yu, G.; Li, J. Highly stretchable and tough alginate-based cyclodextrin/Azo-polyacrylamide interpenetrating network hydrogel with self-healing properties. Carbohydr. Polym., 2021, 256, 117595.
[http://dx.doi.org/10.1016/j.carbpol.2020.117595] [PMID: 33483080]
[159]
Jiang, Q.; Zhang, P.; Li, J. Elucidation of colloid performances of thermosensitive in situ-forming ophthalmic gel formed by poloxamer 407 for loading drugs. J. Pharm. Sci., 2020, 109(5), 1703-1713.
[http://dx.doi.org/10.1016/j.xphs.2020.01.021] [PMID: 32014396]
[160]
Tsuru, T.; Sugimura, K.; Nishio, Y. Superparamagnetic IPN gels of carrageenan/PHEMA excelling in shape retention. Carbohydr. Polym., 2017, 178, 1-7.
[http://dx.doi.org/10.1016/j.carbpol.2017.09.018] [PMID: 29050574]
[161]
Fekete, T.; Borsa, J. Polysaccharide-Based Polymer Gels. In: Gels Horizons; From Science to Smart Materials, 2018; pp. 147-229.
[http://dx.doi.org/10.1007/978-981-10-6086-1_5]
[162]
Interaction between chitosan and mucin: Fundamentals and applications. Biomimetics, 2019, 4(2), 32.
[http://dx.doi.org/10.3390/biomimetics4020032]
[163]
Morris, G.; Kök, S.; Harding, S.; Adams, G. Polysaccharide drug delivery systems based on pectin and chitosan. Biotechnol. Genet. Eng. Rev., 2010, 27(1), 257-284.
[http://dx.doi.org/10.1080/02648725.2010.10648153] [PMID: 21415901]
[164]
Kumar Gupta, P.; Sai Raghunath, S.; Venkatesh Prasanna, D.; Venkat, P.; Shree, V.; Chithananthan, C.; Choudhary, S.; Surender, K.; Geetha, K. An update on overview of cellulose, its structure and applications. In: Cellulose; Pascual, A.R.; Martin, M.E.E., Eds.; IntechOpen: London, UK, 2019.
[http://dx.doi.org/10.5772/intechopen.84727]
[165]
Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci., 2012, 37(1), 106-126.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003] [PMID: 22125349]
[166]
Smith, A.M.; Moxon, S.; Morris, G.A. Biopolymers as Wound Healing Materials. In: Wound Healing Biomaterials; Agren, M.S., Ed.; Elsevier: Amsterdam, Netherlands, 2016; pp. 261-287.
[http://dx.doi.org/10.1016/B978-1-78242-456-7.00013-1]
[167]
Kumari, L.; Badwaik, H.R. Polysaccharide-Based Nanogels for Drug and Gene Delivery. In: Polysaccharide Carriers for Drug Delivery; Maiti, S.; Jana, S., Eds.; Elsevier: Amsterdam, Netherlands, 2019; pp. 497-557.
[http://dx.doi.org/10.1016/B978-0-08-102553-6.00018-0]
[168]
Zia, K.M.; Tabasum, S.; Khan, M.F.; Akram, N.; Akhter, N.; Noreen, A.; Zuber, M. Recent trends on gellan gum blends with natural and synthetic polymers: A review. Int. J. Biol. Macromol., 2018, 109, 1068-1087.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.099] [PMID: 29157908]
[169]
Oliveira, J.T.; Reis, R.L. Hydrogels from polysaccharide-based materials: Fundamentals and applications in regenerative medicine. In: Natural-Based Polymers for Biomedical Applications; Reis, R.L., Ed.; Elsevier: Amsterdam, Netherlands, 2008; pp. 485-514.
[http://dx.doi.org/10.1533/9781845694814.4.485]
[170]
Zeng, W.; Li, Y.; Wang, Y.; Cao, Y. Tissue Engineering of Blood Vessels. In: Encyclopedia of Tissue Engineering and Regenerative Medicine; Elsevier, 2019; pp. 413-424.
[http://dx.doi.org/10.1016/B978-0-12-801238-3.65848-8]
[171]
Deshmukh, K.; Basheer Ahamed, M.; Deshmukh, R.R.; Khadheer Pasha, S.K.; Bhagat, P.R.; Chidambaram, K. Biopolymer composites with high dielectric performance: Interface engineering. In: Biopolymer Composites in Electronics; Sadasivuni, K.K.; Ponnamma, D.; Kim, J.; Cabibihan, J-J.; AlMaadeed, M.A., Eds.; Elsevier: Amsterdam, Netherlands, 2017; pp. 27-128.
[http://dx.doi.org/10.1016/B978-0-12-809261-3.00003-6]
[172]
Boustta, M.; Vert, M. Hyaluronic acid-poly(N-acryloyl glycinamide) copolymers as sources of degradable thermoresponsive hydrogels for therapy. Gels, 2020, 6(4), 42.
[http://dx.doi.org/10.3390/gels6040042] [PMID: 33238369]
[173]
Boustta, M.; Vert, M. Poly[(N-acryloyl glycinamide)-co-(N-acryloyl l-alaninamide)] and their ability to form thermo-responsive hydrogels for sustained drug delivery. Gels, 2019, 5(1), 13.
[http://dx.doi.org/10.3390/gels5010013] [PMID: 30832445]
[174]
Aggarwal, G.; Nagpal, M. Pharmaceutical polymer gels in drug delivery. In: Gels Horizons; Thakur, V.; Thakur, M.; Voicu, S., Eds.; Springer: Singapore, 2018; pp. 249-284.
[http://dx.doi.org/10.1007/978-981-10-6080-9_10]
[175]
Dmour, I.; Taha, M.O. Natural and semisynthetic polymers in pharmaceutical nanotechnology. In: Organic Materials as Smart Nanocarriers for Drug Delivery; Grumezescu, A.M., Ed.; Elsevier Inc.: Amsterdam, Netherlands, 2018; pp. 35-100.
[http://dx.doi.org/10.1016/B978-0-12-813663-8.00002-6]
[176]
Confederat, L.G.; Tuchilus, C.G.; Dragan, M.; Sha’at, M.; Dragostin, O.M. Preparation and antimicrobial activity of chitosan and its derivatives: A concise review. Molecules, 2021, 26(12), 3694.
[http://dx.doi.org/10.3390/molecules26123694] [PMID: 34204251]
[177]
Siafaka, P.I.; Titopoulou, A.; Koukaras, E.N.; Kostoglou, M.; Koutris, E.; Karavas, E.; Bikiaris, D.N. Chitosan derivatives as effective nanocarriers for ocular release of timolol drug. Int. J. Pharm., 2015, 495(1), 249-264.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.100] [PMID: 26341322]
[178]
Yazdani-Pedram, M.; Retuert, J.; Guo, C.; Zhou, L.; Lv, J.; Casettari, L.; Vllasaliu, D.; Castagnino, E.; Stolnik, S.; Howdle, S.; Illum, L.; Mourya, V.K.; Inamdar, N.N.; Jayakumar, R.; Nwe, N.; Tokura, S.; Tamura, H. Synthesis and swelling behavior of hydrogels based on grafted chitosan. Prog. Polym. Sci., 2013, 68(3), 923-930.
[http://dx.doi.org/10.1016/j.ijbiomac.2006.06.021]
[179]
Dev, S.K.; Choudhury, P.K.; Srivastava, R.; Sharma, M. Antimicrobial, anti-inflammatory and wound healing activity of polyherbal formulation. Biomed. Pharmacother., 2019, 111(111), 555-567.
[http://dx.doi.org/10.1016/j.biopha.2018.12.075] [PMID: 30597309]
[180]
Başaran, B.; Bozkir, A. Thermosensitive and pH induced in situ ophthalmic gelling system for ciprofloxacin hydrochloride: hydroxypropyl-β-cyclodextrin complex. Acta Pol. Pharm., 2012, 69(6), 1137-1147.
[PMID: 23285675]
[181]
Zahedi, E.; Ansari, S.; Wu, B.M.; Bencharit, S.; Moshaverinia, A. Hydrogels in craniofacial tissue engineering. In: Biomaterials for Oral and Dental Tissue Engineering; Tayebi, L.; Moharamzadeh, K., Eds.; Elsevier: Amsterdam, 2017; pp. 47-64.
[http://dx.doi.org/10.1016/B978-0-08-100961-1.00004-9]
[182]
Sanzari, I.; Buratti, E.; Huang, R.; Tusan, C.G.; Dinelli, F.; Evans, N.D.; Prodromakis, T.; Bertoldo, M. Poly(N-isopropylacrylamide) based thin microgel films for use in cell culture applications. Sci. Rep., 2020, 10(1), 6126.
[http://dx.doi.org/10.1038/s41598-020-63228-9] [PMID: 32273560]
[183]
Bandyopadhyay, S.; Sharma, A.; Glomm, W.R. The Influence of differently shaped gold nanoparticles functionalized with NIPAM-based hydrogels on the release of cytochrome C. Gels, 2017, 3(4), 42.
[http://dx.doi.org/10.3390/gels3040042] [PMID: 30920537]
[184]
Ayhan, H.; Ayhan, F. Water based PHEMA hydrogels for controlled drug delivery. Turkish J. Biochem., 2018, 43(3), 228-239.
[http://dx.doi.org/10.1515/tjb-2017-0250]
[185]
Rizwan, M.; Yahya, R.; Hassan, A.; Yar, M.; Azzahari, A.D.; Selvanathan, V.; Sonsudin, F.; Abouloula, C.N. pH sensitive hydrogels in drug delivery: Brief history, properties, swelling, and release mechanism, material selection and applications. Polymers (Basel), 2017, 9(4), E137.
[http://dx.doi.org/10.3390/polym9040137] [PMID: 30970818]
[186]
Ruiz, M.E.; Montoto, S.S. Routes of drug administration. ADME Process. Pharm. Sci, 2018, 97-133.
[http://dx.doi.org/10.1007/978-3-319-99593-9_6]
[187]
Dollery, C.T.; Davies, D.S. Routes of Administration and Drug Response. In: Concepts in Biochemical Pharmacology; Gillette, J.R.; Mitchell, J.R., Eds.; Springer: Berlin, Heidelberg, 1975; pp. 150-168.
[http://dx.doi.org/10.1007/978-3-642-46314-3_6]
[188]
Javadzadeh, Y.; Azharshekoufeh Bahari, L. Therapeutic nanostructures for dermal and transdermal drug delivery. In: Nano- and Microscale Drug Delivery Systems: Design and Fabrication; Grumezescu, A.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 131-146.
[http://dx.doi.org/10.1016/B978-0-323-52727-9.00008-X]
[189]
Zhang, J.; Michniak-Kohn, B.B. Investigation of microemulsion and microemulsion gel formulations for dermal delivery of clotrimazole. Int. J. Pharm., 2018, 536(1), 345-352.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.041] [PMID: 29170117]
[190]
Akbari, J.; Saeedi, M.; Enayatifard, R.; Morteza-Semnani, K.; Hassan Hashemi, S.M.; Babaei, A.; Rahimnia, S.M.; Rostamkalaei, S.S.; Nokhodchi, A. Curcumin niosomes (curcusomes) as an alternative to conventional vehicles: A potential for efficient dermal delivery. J. Drug Deliv. Sci. Technol., 2020, 60, 102035.
[http://dx.doi.org/10.1016/j.jddst.2020.102035]
[191]
Chen, P.; Zhang, H.; Cheng, S.; Zhai, G.; Shen, C. Development of curcumin loaded nanostructured lipid carrier based thermosensitive in situ gel for dermal delivery. Colloids Surf. A Physicochem. Eng. Asp., 2016, 506, 356-362.
[http://dx.doi.org/10.1016/j.colsurfa.2016.06.054]
[192]
Radwan, S.A.A.; ElMeshad, A.N.; Shoukri, R.A. Microemulsion loaded hydrogel as a promising vehicle for dermal delivery of the antifungal sertaconazole: Design, optimization and ex vivo evaluation. Drug Dev. Ind. Pharm., 2017, 43(8), 1351-1365.
[http://dx.doi.org/10.1080/03639045.2017.1318899] [PMID: 28420288]
[193]
Rady, M.; Gomaa, I.; Afifi, N.; Abdel-Kader, M. Dermal delivery of Fe-chlorophyllin via ultradeformable nanovesicles for photodynamic therapy in melanoma animal model. Int. J. Pharm., 2018, 548(1), 480-490.
[http://dx.doi.org/10.1016/j.ijpharm.2018.06.057] [PMID: 29959090]
[194]
Devi, N.; Kumar, S.; Prasad, M.; Rao, R. Eudragit RS100 based microsponges for dermal delivery of clobetasol propionate in psoriasis management. J. Drug Deliv. Sci. Technol., 2020, 55, 101347.
[http://dx.doi.org/10.1016/j.jddst.2019.101347]
[195]
Ay Şenyiğit, Z.; Coşkunmeriç, N.; Çağlar, E.Ş.; Öztürk, İ.; Atlıhan Gündoğdu, E.; Siafaka, P.I.; Üstündağ Okur, N. Chitosan-bovine serum albumin-Carbopol 940 nanogels for mupirocin dermal delivery: Ex vivo permeation and evaluation of cellular binding capacity via radiolabeling. Pharm. Dev. Technol., 2021, 26(8), 852-866.
[http://dx.doi.org/10.1080/10837450.2021.1948570] [PMID: 34193003]
[196]
Alhakamy, N.A.; Aldawsari, H.M.; Ali, J.; Gupta, D.K.; Warsi, M. H.; Bilgrami, A.L.; Asfour, H.Z.; Noor, A.O.; Md, S. Brucineloadedtransliposomes nanogel for topical delivery in skin cancer:Statistical optimization in vitro and dermatokinetic evaluation. 3 Biotech, 2021, 11(6), 1-13.
[http://dx.doi.org/10.1007/s13205-021-02841-5]
[197]
Mahmood, A.; Rapalli, V.K.; Gorantla, S.; Waghule, T.; Singhvi, G. Dermatokinetic assessment of luliconazole-loaded Nanostructured Lipid Carriers (NLCs) for topical delivery: QbD-driven design, optimization, and in vitro and ex vivo evaluations. Drug Deliv. Transl. Res., 2021, 1-18.
[http://dx.doi.org/10.1007/s13346-021-00986-7] [PMID: 33895936]
[198]
Iqubal, M.K.; Iqubal, A.; Imtiyaz, K.; Rizvi, M.M.A.; Gupta, M.M.; Ali, J.; Baboota, S. Combinatorial lipid-nanosystem for dermal delivery of 5-fluorouracil and resveratrol against skin cancer: Delineation of improved dermatokinetics and epidermal drug deposition enhancement analysis. Eur. J. Pharm. Biopharm., 2021, 163, 223-239.
[http://dx.doi.org/10.1016/j.ejpb.2021.04.007] [PMID: 33864904]
[199]
Chandrashekar, H.; Bhattacharyya, S. Statistical optimization amalgamated approach on formulation development of nano lipid carrier loaded hydrophilic gel of fluticasone propionate. Indian J. Pharm. Educ. Res., 2021, 55(2), 418-427.
[http://dx.doi.org/10.5530/ijper.55.2.79]
[200]
Karakucuk, A.; Tort, S.; Han, S.; Oktay, A.N.; Celebi, N. Etodolac nanosuspension based gel for enhanced dermal delivery: In vitro and in vivo evaluation. J. Microencapsul., 2021, 38(4), 218-232.
[http://dx.doi.org/10.1080/02652048.2021.1895344] [PMID: 33752553]
[201]
Gökçe, B.B.; Boran, T.; Emlik Çalık, F.; Özhan, G.; Sanyal, R.; Güngör, S. Dermal delivery and follicular targeting of adapalene using PAMAM dendrimers. Drug Deliv. Transl. Res., 2021, 11(2), 626-646.
[http://dx.doi.org/10.1007/s13346-021-00933-6] [PMID: 33666878]
[202]
Md, S.; Alhakamy, N.A.; Aldawsari, H.M.; Husain, M.; Khan, N.; Alfaleh, M.A.; Asfour, H.Z.; Riadi, Y.; Bilgrami, A.L.; Akhter, M.H. Plumbagin-loaded glycerosome gel as topical delivery system for skin cancer therapy. Polymers (Basel), 2021, 13(6), 923.
[http://dx.doi.org/10.3390/polym13060923] [PMID: 33802819]
[203]
Çulcu, Ö.; Tunçel, E.; Iibasmis-Tamer, S. Characterization of thermosensitive gels for the sustained delivery of dexketoprofen trometamol for dermal applications. J. Gazi Univ. Health Sci. Inst., 2020, 2(2), 1-12.
[204]
Aksu, N.B.; Yozgatlı, V.; Okur, M.E.; Ayla, Ş.; Yoltaş, A.; Üstündağ Okur, N. Preparation and evaluation of QbD based fusidic acid loaded in situ gel formulations for burn wound treatment. J. Drug Deliv. Sci. Technol., 2019, 52, 110-121.
[http://dx.doi.org/10.1016/j.jddst.2019.04.015]
[205]
Hatahet, T.; Morille, M.; Hommoss, A.; Dorandeu, C.; Müller, R.H.; Bégu, S. Dermal quercetin smartCrystals®: Formulation development, antioxidant activity and cellular safety. Eur. J. Pharm. Biopharm., 2016, 102, 51-63.
[http://dx.doi.org/10.1016/j.ejpb.2016.03.004] [PMID: 26948977]
[206]
Sosnik, A.; Seremeta, K.P. Polymeric hydrogels as technology platform for drug delivery applications. Gels, 2017, 3(3), 25.
[http://dx.doi.org/10.3390/gels3030025] [PMID: 30920522]
[207]
Nogami, S.; Uchiyama, H.; Kadota, K.; Tozuka, Y. Design of a pH-responsive oral gel formulation based on the matrix systems of gelatin/hydroxypropyl methylcellulose phthalate for controlled drug release. Int. J. Pharm., 2021, 592, 120047.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120047] [PMID: 33171262]
[208]
Shastri, D.H.; Dodiya, H.D.; Shelat, P.; Bhanupriy, A.K. Formulation development and evaluation of a gastroretentive in situ oral gel of cefuroxime axetil. J. Young Pharm., 2016, 8(4), 324-329.
[http://dx.doi.org/10.5530/jyp.2016.4.6]
[209]
Pandya, K.; Aggarwal, P.; Dashora, A.; Sahu, D.; Garg, R.; Pareta, L.K.; Menaria, M.; Joshi, B. Formulation and evaluation of oral floatable in situ gel of ranitidine hydrochloride. J. Drug Deliv. Ther., 2013, 3(3), 90-97.
[http://dx.doi.org/10.22270/jddt.v3i3.516]
[210]
Xu, H.; Shi, M.; Liu, Y.; Jiang, J.; Ma, T. A novel in situ gel formulation of ranitidine for oral sustained delivery. Biomol. Ther. (Seoul), 2014, 22(2), 161-165.
[http://dx.doi.org/10.4062/biomolther.2013.109] [PMID: 24753823]
[211]
Cikrikci, S.; Mert, B.; Oztop, M.H. Development of pH sensitive alginate/gum tragacanth based hydrogels for oral insulin delivery. J. Agric. Food Chem., 2018, 66(44), 11784-11796.
[http://dx.doi.org/10.1021/acs.jafc.8b02525] [PMID: 30346766]
[212]
Reddy Hv, R.; Bhattacharyya, S. In vitro evaluation of mucoadhesive in situ nanogel of celecoxib for buccal delivery. Ann. Pharm. Fr., 2021, 79(4), 418-430.
[http://dx.doi.org/10.1016/j.pharma.2021.01.006] [PMID: 33515589]
[213]
Pagano, C.; Giovagnoli, S.; Perioli, L.; Tiralti, M.C.; Ricci, M. Development and characterization of mucoadhesive-thermoresponsive gels for the treatment of oral mucosa diseases. Eur. J. Pharm. Sci., 2020, 142, 105125.
[http://dx.doi.org/10.1016/j.ejps.2019.105125] [PMID: 31682975]
[214]
Li, T.; Bao, Q.; Shen, J.; Lalla, R.V.; Burgess, D.J. Mucoadhesive in situ forming gel for oral mucositis pain control. Int. J. Pharm., 2020, 580, 119238.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119238] [PMID: 32194210]
[215]
Nair, A.B.; Shah, J.; Jacob, S.; Al-Dhubiab, B.E.; Sreeharsha, N.; Morsy, M.A.; Gupta, S.; Attimarad, M.; Shinu, P.; Venugopala, K.N. Experimental design, formulation and in vivo evaluation of a novel topical in situ gel system to treat ocular infections. PLoS One, 2021, 16(3), e0248857.
[http://dx.doi.org/10.1371/journal.pone.0248857] [PMID: 33739996]
[216]
Okur, N.Ü.; Yozgatli, V.; Okur, M.E. In vitro-in vivo evaluation of tetrahydrozoline-loaded ocular in situ gels on rabbits for allergic conjunctivitis management. Drug Dev. Res., 2020, 81(6), 716-727.
[http://dx.doi.org/10.1002/ddr.21677] [PMID: 32359095]
[217]
Alkholief, M.; Kalam, M.A.; Almomen, A.; Alshememry, A.; Alshamsan, A. Thermoresponsive sol-gel improves ocular bioavailability of Dipivefrin hydrochloride and potentially reduces the elevated intraocular pressure in vivo. Saudi Pharm. J., 2020, 28(8), 1019-1029.
[http://dx.doi.org/10.1016/j.jsps.2020.07.001] [PMID: 32792847]
[218]
Kurniawansyah, I.S.; Rusdiana, T.; Sopyan, I.; Ramoko, H.; Wahab, H.A.; Subarnas, A. In situ ophthalmic gel forming systems of poloxamer 407 and hydroxypropyl methyl cellulose mixtures for sustained ocular delivery of chloramphenicole: Optimization study by factorial design. Heliyon, 2020, 6(11), e05365.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05365] [PMID: 33251348]
[219]
Fu, J. In Het Panhuis, M. Hydrogel properties and applications. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(10), 1523-1525.
[http://dx.doi.org/10.1039/C9TB90023C] [PMID: 32254899]
[220]
Catoira, M.C.; Fusaro, L.; Di Francesco, D.; Ramella, M.; Boccafoschi, F. Overview of natural hydrogels for regenerative medicine applications. J. Mater. Sci. Mater. Med., 2019, 30(10), 115.
[http://dx.doi.org/10.1007/s10856-019-6318-7] [PMID: 31599365]
[221]
Yue, K.; Trujillo-de Santiago, G.; Alvarez, M.M.; Tamayol, A.; Annabi, N.; Khademhosseini, A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 2015, 73, 254-271.
[http://dx.doi.org/10.1016/j.biomaterials.2015.08.045] [PMID: 26414409]
[222]
Freudenberg, U.; Liang, Y.; Kiick, K.L.; Werner, C. Glycosaminoglycan-based biohybrid hydrogels: A sweet and smart choice for multifunctional biomaterials. Adv. Mater., 2016, 28(40), 8861-8891.
[http://dx.doi.org/10.1002/adma.201601908] [PMID: 27461855]
[223]
Schuurmans, C.C.L.; Mihajlovic, M.; Hiemstra, C.; Ito, K.; Hennink, W.E.; Vermonden, T. Hyaluronic acid and chondroitin sulfate (meth)acrylate-based hydrogels for tissue engineering: Synthesis, characteristics and pre-clinical evaluation. Biomaterials, 2021, 268, 120602.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120602] [PMID: 33360302]
[224]
Must, I.; Kaasik, F.; Põldsalu, I.; Mihkels, L.; Johanson, U.; Punning, A.; Aabloo, A. Ionic and capacitive artificial muscle for biomimetic soft robotics. Adv. Eng. Mater., 2015, 17(1), 84-94.
[http://dx.doi.org/10.1002/adem.201400246]
[225]
Meng, H.; Li, G. A review of stimuli-responsive shape memory polymer composites. Polymer (Guildf.), 2013, 54(9), 2199-2221.
[http://dx.doi.org/10.1016/j.polymer.2013.02.023]
[226]
Björklund, S.; Andersson, J.M.; Pham, Q.D.; Nowacka, A.; Topgaard, D.; Sparr, E. Stratum corneum molecular mobility in the presence of natural moisturizers. Soft Matter, 2014, 10(25), 4535-4546.
[http://dx.doi.org/10.1039/C4SM00137K] [PMID: 24817485]
[227]
Pelrine, J.R.; Kornbluh, R.; Pei, Q. High-speed electrically actuated elastomer with strain greater than 100%. Science, 2014, 46, 63-64.
[228]
Wang, J.; Liang, M.; Fang, Y.; Qiu, T.; Zhang, J.; Zhi, L. Rod-coating: Towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Adv. Mater., 2012, 24(21), 2874-2878.
[http://dx.doi.org/10.1002/adma.201200055] [PMID: 22539114]
[229]
Xu, S.C.; Man, B.Y.; Jiang, S.Z.; Chen, C.S.; Yang, C.; Liu, M.; Gao, X.G.; Sun, Z.C.; Zhang, C. Flexible and transparent graphene-based loudspeakers. Appl. Phys. Lett., 2013, 102(15), 151902.
[http://dx.doi.org/10.1063/1.4802079]
[230]
Kim, J-S.; Ko, D.; Yoo, D-J.; Jung, D.S.; Yavuz, C.T.; Kim, N-I.; Choi, I-S.; Song, J.Y.; Choi, J.W. A half millimeter thick coplanar flexible battery with wireless recharging capability. Nano Lett., 2015, 15(4), 2350-2357.
[http://dx.doi.org/10.1021/nl5045814] [PMID: 25730382]
[231]
Duan, J.; Zhang, L. Robust and smart hydrogels based on natural polymers. Chin. J. Polym. Sci., 2017, 35(10), 1165-1180.
[http://dx.doi.org/10.1007/s10118-017-1983-9]
[232]
Li, Y.; Hashimoto, M. PVC gel based artificial muscles: Characterizations and actuation modular constructions. Sens. Actuators A Phys., 2015, 233, 246-258.
[http://dx.doi.org/10.1016/j.sna.2015.07.010]
[233]
Sun, J-Y.; Keplinger, C.; Whitesides, G.M.; Suo, Z. Ionic skin. Adv. Mater., 2014, 26(45), 7608-7614.
[http://dx.doi.org/10.1002/adma.201403441] [PMID: 25355528]
[234]
Cheng, X.; Yang, W.; Cheng, L.; Yan, H.; Jiao, Z. Tunable-focus negative poly(vinyl chloride) gel microlens driven by unilateral electrodes. J. Appl. Polym. Sci., 2018, 135(15), 46136.
[http://dx.doi.org/10.1002/app.46136]
[235]
Sood, N.; Bhardwaj, A.; Mehta, S.; Mehta, A. Stimuli-responsive hydrogels in drug delivery and tissue engineering. Drug Deliv., 2016, 23(3), 758-780.
[http://dx.doi.org/10.3109/10717544.2014.940091] [PMID: 25045782]
[236]
Manti, M.; Cacucciolo, V.; Cianchetti, M. Stiffening in soft robotics: A review of the state of the art. IEEE Robot. Autom. Mag., 2016, 23(3), 93-106.
[http://dx.doi.org/10.1109/MRA.2016.2582718]
[237]
Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them. Gels, 2017, 3(1), 6.
[http://dx.doi.org/10.3390/gels3010006] [PMID: 30920503]
[238]
Tran, B.Q.; Miller, P.R.; Taylor, R.M.; Boyd, G.; Mach, P.M.; Rosenzweig, C.N.; Baca, J.T.; Polsky, R.; Glaros, T. Proteomic characterization of dermal interstitial fluid extracted using a novel microneedle-assisted technique. J. Proteome Res., 2018, 17(1), 479-485.
[http://dx.doi.org/10.1021/acs.jproteome.7b00642] [PMID: 29172549]
[239]
Samant, P.P.; Prausnitz, M.R. Mechanisms of sampling interstitial fluid from skin using a microneedle patch. Proc. Natl. Acad. Sci. USA, 2018, 115(18), 4583-4588.
[http://dx.doi.org/10.1073/pnas.1716772115] [PMID: 29666252]
[240]
Migdadi, E.M.; Courtenay, A.J.; Tekko, I.A.; McCrudden, M.T.C.; Kearney, M-C.; McAlister, E.; McCarthy, H.O.; Donnelly, R.F. Hydrogel-forming microneedles enhance transdermal delivery of metformin hydrochloride. J. Control. Release, 2018, 285, 142-151.
[http://dx.doi.org/10.1016/j.jconrel.2018.07.009] [PMID: 29990526]
[241]
Donnelly, R.F.; McCrudden, M.T.C.; Zaid Alkilani, A.; Larrañeta, E.; McAlister, E.; Courtenay, A.J.; Kearney, M-C.; Singh, T.R.R.; McCarthy, H.O.; Kett, V.L.; Caffarel-Salvador, E.; Al-Zahrani, S.; Woolfson, A.D. Hydrogel-forming microneedles prepared from “super swelling” polymers combined with lyophilised wafers for transdermal drug delivery. PLoS One, 2014, 9(10), e111547.
[http://dx.doi.org/10.1371/journal.pone.0111547] [PMID: 25360806]
[242]
Liu, W.; Zhang, W.; Yu, X.; Zhang, G.; Su, Z. Synthesis and biomedical applications of fluorescent nanogels. Polym. Chem., 2016, 7(37), 5749-5762.
[http://dx.doi.org/10.1039/C6PY01021K]
[243]
Mehwish, N.; Dou, X.; Zhao, Y.; Feng, C-L. Supramolecular fluorescent hydrogelators as bio-imaging probes. Mater. Horiz., 2019, 6(1), 14-44.
[http://dx.doi.org/10.1039/C8MH01130C]
[244]
Li, Y.; Young, D.J.; Loh, X. J. Fluorescent gels: A review of synthesis, properties, applications and challenges. Mater. Chem. Front., 2019, 3(8), 1489-1502.
[http://dx.doi.org/10.1039/C9QM00127A]
[245]
Wang, H.; Ji, X.; Li, Y.; Li, Z.; Tang, G.; Huang, F. An ATP/ATPase responsive supramolecular fluorescent hydrogel constructed via electrostatic interactions between poly(sodium p-styrenesulfonate) and a tetraphenylethene derivative. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(18), 2728-2733.
[http://dx.doi.org/10.1039/C8TB00366A] [PMID: 32254225]
[246]
Ma, C.; Lu, W.; Yang, X.; He, J.; Le, X.; Wang, L.; Zhang, J.; Serpe, M.J.; Huang, Y.; Chen, T. Bioinspired anisotropic hydrogel actuators with on-off switchable and color-tunable fluorescence behaviors. Adv. Funct. Mater., 2018, 28(7), 1704568.
[http://dx.doi.org/10.1002/adfm.201704568]
[247]
Li, Z.; Hou, Z.; Fan, H.; Li, H. Organic-inorganic hierarchical self-assembly into robust luminescent supramolecular hydrogel. Adv. Funct. Mater., 2017, 27(2), 1604379.
[http://dx.doi.org/10.1002/adfm.201604379]
[248]
Cayuela, A.; Soriano, M.L.; Kennedy, S.R.; Steed, J.W.; Valcárcel, M. Fluorescent carbon quantum dot hydrogels for direct determination of silver ions. Talanta, 2016, 151, 100-105.
[http://dx.doi.org/10.1016/j.talanta.2016.01.029] [PMID: 26946015]
[249]
Guo, Y.; Bae, J.; Fang, Z.; Li, P.; Zhao, F.; Yu, G. Hydrogels and hydrogel-derived materials for energy and water sustainability. Chem. Rev., 2020, 120(15), 7642-7707.
[http://dx.doi.org/10.1021/acs.chemrev.0c00345] [PMID: 32639747]
[250]
Yu, J.; Wang, K.; Fan, C.; Zhao, X.; Gao, J.; Jing, W.; Zhang, X.; Li, J.; Li, Y.; Yang, J.; Liu, W. An ultrasoft self-fused supramolecular polymer hydrogel for completely preventing postoperative tissue adhesion. Adv. Mater., 2021, 33(16), e2008395.
[http://dx.doi.org/10.1002/adma.202008395] [PMID: 33734513]
[251]
Sharma, K.; Kaith, B.S.; Kumar, V.; Kalia, S.; Kumar, V.; Swart, H.C. Synthesis and biodegradation studies of gamma irradiated electrically conductive hydrogels. Complete, 2014, (107), 166-177.
[http://dx.doi.org/10.1016/j.polymdegradstab.2014.05.014]
[252]
Zhao, L.; Ma, Z. Facile synthesis of polyaniline-polythionine redox hydrogel: Conductive, antifouling and enzyme-linked material for ultrasensitive label-free amperometric immunosensor toward carcinoma antigen-125. Anal. Chim. Acta, 2018, 997, 60-66.
[http://dx.doi.org/10.1016/j.aca.2017.10.017] [PMID: 29149995]
[253]
Moussa, M.; El-Kady, M.F.; Dubal, D.; Tung, T.T.; Nine, M.J.; Mohamed, N.; Kaner, R.B.; Losic, D. Self-assembly and cross-linking of conducting polymers into 3D hydrogel electrodes for supercapacitor applications. ACS Appl. Energy Mater., 2020, 3(1), 923-932.
[http://dx.doi.org/10.1021/acsaem.9b02007]
[254]
Xu, Y.; Yang, M.; Ma, Q.; Di, X.; Wu, G. A bio-inspired fluorescent nano-injectable hydrogel as a synergistic drug delivery system. New J. Chem., 2021, 45(6), 3079-3087.
[http://dx.doi.org/10.1039/D0NJ05719C]
[255]
Vashist, A.; Atluri, V.; Raymond, A.; Kaushik, A.; Parira, T.; Huang, Z.; Durygin, A.; Tomitaka, A.; Nikkhah-Moshaie, R.; Vashist, A.; Agudelo, M.; Chand, H.S.; Saytashev, I.; Ramella-Roman, J.C.; Nair, M. Development of multifunctional biopolymeric auto-fluorescent micro- and nanogels as a platform for biomedical applications. Front. Bioeng. Biotechnol., 2020, 8, 315.
[http://dx.doi.org/10.3389/fbioe.2020.00315] [PMID: 32426338]
[256]
Wang, Y.; Zhao, J.; Dong, Z.; Wang, C.; Meng, H.; Li, Y.; Jin, H.; Wang, C. Aggregation-induced emission-active antibacterial hydrogel with self-indicating ability for real-time monitoring of drug release process. Mater. Today Chem., 2021, 21, 100537.
[http://dx.doi.org/10.1016/j.mtchem.2021.100537]
[257]
Spirou, S.V.; Costa Lima, S.A.; Bouziotis, P.; Vranješ-Djurić, S.; Efthimiadou, E.K.; Laurenzana, A.; Barbosa, A.I.; Garcia-Alonso, I.; Jones, C.; Jankovic, D.; Gobbo, O.L. Recommendations for in vitro and in vivo testing of magnetic nanoparticle hyperthermia combined with radiation therapy. Nanomaterials (Basel), 2018, 8(5), 306.
[http://dx.doi.org/10.3390/nano8050306] [PMID: 29734795]
[258]
Mirković, M.; Radović, M.; Stanković, D.; Milanović, Z.; Janković, D.; Matović, M.; Jeremić, M.; Antić, B.; Vranješ-Đurić, S. 99mTc-bisphosphonate-coated magnetic nanoparticles as potential theranostic nanoagent. Mater. Sci. Eng. C, 2019, 102, 124-133.
[http://dx.doi.org/10.1016/j.msec.2019.04.034] [PMID: 31146983]
[259]
Ognjanović, M.; Radović, M.; Mirković, M.; Prijović, Ž.; Puerto Morales, M.D.; Čeh, M.; Vranješ-Đurić, S.; Antić, B. 99mTc-, 90Y-, and 177Lu-labeled iron oxide nanoflowers designed for potential use in dual magnetic hyperthermia/radionuclide cancer therapy and diagnosis. ACS Appl. Mater. Interfaces, 2019, 11(44), 41109-41117.
[http://dx.doi.org/10.1021/acsami.9b16428] [PMID: 31610125]
[260]
Kunjachan, S.; Ehling, J.; Storm, G.; Kiessling, F.; Lammers, T. Noninvasive imaging of nanomedicines and nanotheranostics: Principles, progress, and prospects. Chem. Rev., 2015, 115(19), 10907-10937.
[http://dx.doi.org/10.1021/cr500314d] [PMID: 26166537]
[261]
Ojha, T.; Rizzo, L.; Storm, G.; Kiessling, F.; Lammers, T. Image-guided drug delivery: Preclinical applications and clinical translation. Expert Opin. Drug Deliv., 2015, 12(8), 1203-1207.
[http://dx.doi.org/10.1517/17425247.2015.1059420] [PMID: 26083469]
[262]
Dos Santos, A.M.; Meneguin, A.B.; Akhter, D.T.; Fletcher, N.; Houston, Z.H.; Bell, C.; Thurecht, K.J.; Gremião, M.P.D. Understanding the role of colon-specific microparticles based on retrograded starch/pectin in the delivery of chitosan nanoparticles along the gastrointestinal tract. Eur. J. Pharm. Biopharm., 2021, 158, 371-378.
[http://dx.doi.org/10.1016/j.ejpb.2020.12.004] [PMID: 33309846]
[263]
Meneguin, A.B.; Silvestre, A.L.P.; Sposito, L.; de Souza, M.P.C.; Sábio, R.M.; Araújo, V.H.S.; Cury, B.S.F.; Chorilli, M. The role of polysaccharides from natural resources to design oral insulin micro- and nanoparticles intended for the treatment of diabetes mellitus: A review. Carbohydr. Polym., 2021, 256, 117504.
[http://dx.doi.org/10.1016/j.carbpol.2020.117504] [PMID: 33483027]
[264]
Mahinroosta, M.; Farsangi, Z.J.; Allahverdi, A.; Shakoori, Z. Hydrogels as intelligent materials: A brief review of synthesis, properties and applications. Mater. Today Chem., 2018, 8, 42-55.
[http://dx.doi.org/10.1016/j.mtchem.2018.02.004]
[265]
Kwon, J. The alginate layer for improving doxorubicin release and radiolabeling stability of chitosan hydrogels. Nucl. Med. Mol. Imaging, 2015, 49(4), 312-317.
[http://dx.doi.org/10.1007/s13139-015-0337-1]
[266]
Abouhussein, D.M.N.; Khattab, A.; Bayoumi, N.A.; Mahmoud, A.F.; Sakr, T.M. Brain targeted rivastigmine mucoadhesive thermosensitive in situ gel: Optimization, in vitro evaluation, radiolabeling, in vivo pharmacokinetics and biodistribution. J. Drug Deliv. Sci. Technol., 2017, 2018(43), 129-140.
[http://dx.doi.org/10.1016/j.jddst.2017.09.021]
[267]
Chung, E.P.; Wells, A.R.; Kiamco, M.M.; Leung, K.P. Dual asymmetric centrifugation efficiently produces a poloxamer-based nanoemulsion gel for topical delivery of pirfenidone. AAPS PharmSciTech, 2020, 21(7), 265.
[http://dx.doi.org/10.1208/s12249-020-01798-7] [PMID: 33006045]
[268]
Tomić, I.; Juretić, M.; Jug, M.; Pepić, I.; Cetina Čižmek, B.; Filipović-Grčić, J. Preparation of in situ hydrogels loaded with azelaic acid nanocrystals and their dermal application performance study. Int. J. Pharm., 2019, 563, 249-258.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.016] [PMID: 30965120]
[269]
Preparation and ex vivo ocular delivery of thermo-responsible pluronic F- 127 hydrogel containing propranolol hydrochloride- loaded liposomes. Nanomed. J., 2021, 8(1), 80-88.
[http://dx.doi.org/10.22038/NMJ.2021.08.09]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy