Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

Anticancer Properties of Kaempferol on Cellular Signaling Pathways

Author(s): Bidisha Sengupta*, Pragnya Biswas, Debarshi Roy*, Justin Lovett, Laken Simington, Darrell R. Fry and Kaelin Travis

Volume 22, Issue 30, 2022

Published on: 03 October, 2022

Page: [2474 - 2482] Pages: 9

DOI: 10.2174/1568026622666220907112822

Price: $65

conference banner
Abstract

Polyhydroxy compounds are secondary metabolites that are ubiquitous in plants of higher genera. They possess therapeutic properties against a wide spectrum of diseases, including cancers, neurodegenerative disorders, atherosclerosis, as well as cardiovascular disease. The phytochemical flavonol (a type of flavonoid) kaempferol (KMP) (3,5,7-trihydroxy-2-(4-hydroxyphenyl)- 4Hchromen-4-one) is abundant in cruciferous vegetables, including broccoli, kale, spinach, and watercress, as well as in herbs like dill, chives, and tarragon. KMP is predominantly hydrophobic in nature due to its diphenylpropane structure (a characteristic feature of flavonoids). Recent findings have indicated the promise of applying KMP in disease prevention due to its potential antioxidant, antimutagenic, antifungal, and antiviral activities. In the literature, there is evidence that KMP exerts its anticancer effects by modulating critical elements in cellular signal transduction pathways linked to apoptosis, inflammation, angiogenesis, and metastasis in cancer cells without affecting the viability of normal cells. It has been shown that KMP triggers cancer cell death by several mechanisms, including cell cycle arrest, caspase activation, metabolic alteration, and impacting human telomerase reverse-transcriptase gene expression. This review is aimed at providing critical insights into the influence of KMP on the intracellular cascades that regulate metabolism and signaling in breast, ovarian, and cervical cancer cells.

Keywords: Natural product, Cancer therapy, Ovarian cancer, Breast cancer, Cervical cancer, Chemoresistance.

Graphical Abstract
[1]
Vander Heiden, M.G.; Lunt, S.Y.; Dayton, T.L.; Fiske, B.P.; Israelsen, W.J.; Mattaini, K.R.; Vokes, N.I.; Stephanopoulos, G.; Cantley, L.C.; Metallo, C.M.; Locasale, J.W. Metabolic pathway alterations that support cell proliferation. Cold Spring Harb. Symp. Quant. Biol., 2011, 76(0), 325-334.
[http://dx.doi.org/10.1101/sqb.2012.76.010900] [PMID: 22262476]
[2]
Velders, M.A.; Hagström, E.; James, S.K. Temporal trends in the prevalence of cancer and its impact on outcome in patients with first myocardial infarction: A nationwide study. J. Am. Heart Assoc., 2020, 9(4), e014383.
[http://dx.doi.org/10.1161/JAHA.119.014383] [PMID: 32067596]
[3]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[4]
Warburg, O. The metabolism of carcinoma cells. J. Cancer Res., 1925, 9(1), 148-163.
[http://dx.doi.org/10.1158/jcr.1925.148]
[5]
Ying, H.; Kimmelman, A.C.; Lyssiotis, C.A.; Hua, S.; Chu, G.C.; Fletcher-Sananikone, E.; Locasale, J.W.; Son, J.; Zhang, H.; Coloff, J.L.; Yan, H.; Wang, W.; Chen, S.; Viale, A.; Zheng, H.; Paik, J.; Lim, C.; Guimaraes, A.R.; Martin, E.S.; Chang, J.; Hezel, A.F.; Perry, S.R.; Hu, J.; Gan, B.; Xiao, Y.; Asara, J.M.; Weissleder, R.; Wang, Y.A.; Chin, L.; Cantley, L.C.; DePinho, R.A. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell, 2012, 149(3), 656-670.
[http://dx.doi.org/10.1016/j.cell.2012.01.058] [PMID: 22541435]
[6]
Son, J.; Lyssiotis, C.A.; Ying, H.; Wang, X.; Hua, S.; Ligorio, M.; Perera, R.M.; Ferrone, C.R.; Mullarky, E.; Shyh-Chang, N.; Kang, Y.; Fleming, J.B.; Bardeesy, N.; Asara, J.M.; Haigis, M.C.; DePinho, R.A.; Cantley, L.C.; Kimmelman, A.C. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature, 2013, 496(7443), 101-105.
[http://dx.doi.org/10.1038/nature12040] [PMID: 23535601]
[7]
Yang, P.; Ebbert, J.O.; Sun, Z.; Weinshilboum, R.M. Role of the glutathione metabolic pathway in lung cancer treatment and prognosis: A review. J. Clin. Oncol., 2006, 24(11), 1761-1769.
[http://dx.doi.org/10.1200/JCO.2005.02.7110] [PMID: 16603718]
[8]
Sanchez-Vega, F.; Mina, M.; Armenia, J.; Chatila, W.K.; Luna, A.; La, K.C.; Dimitriadoy, S.; Liu, D.L.; Kantheti, H.S.; Saghafinia, S.; Chakravarty, D.; Daian, F.; Gao, Q.; Bailey, M.H.; Liang, W.W.; Foltz, S.M.; Shmulevich, I.; Ding, L.; Heins, Z.; Ochoa, A.; Gross, B.; Gao, J.; Zhang, H.; Kundra, R.; Kandoth, C.; Bahceci, I.; Dervishi, L.; Dogrusoz, U.; Zhou, W.; Shen, H.; Laird, P.W.; Way, G.P.; Greene, C.S.; Liang, H.; Xiao, Y.; Wang, C.; Iavarone, A.; Berger, A.H.; Bivona, T.G.; Lazar, A.J.; Hammer, G.D.; Giordano, T.; Kwong, L.N.; McArthur, G.; Huang, C.; Tward, A.D.; Frederick, M.J.; McCormick, F.; Meyerson, M.; Van Allen, E.M.; Cherniack, A.D.; Ciriello, G.; Sander, C.; Schultz, N.; Caesar-Johnson, S.J.; Demchok, J.A.; Felau, I.; Kasapi, M.; Ferguson, M.L.; Hutter, C.M.; Sofia, H.J.; Tarnuzzer, R.; Wang, Z.; Yang, L.; Zenklusen, J.C.; Zhang, J.J.; Chudamani, S.; Liu, J.; Lolla, L.; Naresh, R.; Pihl, T.; Sun, Q.; Wan, Y.; Wu, Y.; Cho, J.; DeFreitas, T.; Frazer, S.; Gehlenborg, N.; Getz, G.; Heiman, D.I.; Kim, J.; Lawrence, M.S.; Lin, P.; Meier, S.; Noble, M.S.; Saksena, G.; Voet, D.; Zhang, H.; Bernard, B.; Chambwe, N.; Dhankani, V.; Knijnenburg, T.; Kramer, R.; Leinonen, K.; Liu, Y.; Miller, M.; Reynolds, S.; Shmulevich, I.; Thorsson, V.; Zhang, W.; Akbani, R.; Broom, B.M.; Hegde, A.M.; Ju, Z.; Kanchi, R.S.; Korkut, A.; Li, J.; Liang, H.; Ling, S.; Liu, W.; Lu, Y.; Mills, G.B.; Ng, K-S.; Rao, A.; Ryan, M.; Wang, J.; Weinstein, J.N.; Zhang, J.; Abeshouse, A.; Armenia, J.; Chakravarty, D.; Chatila, W.K.; de Bruijn, I.; Gao, J.; Gross, B.E.; Heins, Z.J.; Kundra, R.; La, K.; Ladanyi, M.; Luna, A.; Nissan, M.G.; Ochoa, A.; Phillips, S.M.; Reznik, E.; Sanchez-Vega, F.; Sander, C.; Schultz, N.; Sheridan, R.; Sumer, S.O.; Sun, Y.; Taylor, B.S.; Wang, J.; Zhang, H.; Anur, P.; Peto, M.; Spellman, P.; Benz, C.; Stuart, J.M.; Wong, C.K.; Yau, C.; Hayes, D.N.; Parker, J.S.; Wilkerson, M.D.; Ally, A.; Balasundaram, M.; Bowlby, R.; Brooks, D.; Carlsen, R.; Chuah, E.; Dhalla, N.; Holt, R.; Jones, S.J.M.; Kasaian, K.; Lee, D.; Ma, Y.; Marra, M.A.; Mayo, M.; Moore, R.A.; Mungall, A.J.; Mungall, K.; Robertson, A.G.; Sadeghi, S.; Schein, J.E.; Sipahimalani, P.; Tam, A.; Thiessen, N.; Tse, K.; Wong, T.; Berger, A.C.; Beroukhim, R.; Cherniack, A.D.; Cibulskis, C.; Gabriel, S.B.; Gao, G.F.; Ha, G.; Meyerson, M.; Schumacher, S.E.; Shih, J.; Kucherlapati, M.H.; Kucherlapati, R.S.; Baylin, S.; Cope, L.; Danilova, L.; Bootwalla, M.S.; Lai, P.H.; Maglinte, D.T.; Van Den Berg, D.J.; Weisenberger, D.J.; Auman, J.T.; Balu, S.; Bodenheimer, T.; Fan, C.; Hoadley, K.A.; Hoyle, A.P.; Jefferys, S.R.; Jones, C.D.; Meng, S.; Mieczkowski, P.A.; Mose, L.E.; Perou, A.H.; Perou, C.M.; Roach, J.; Shi, Y.; Simons, J.V.; Skelly, T.; Soloway, M.G.; Tan, D.; Veluvolu, U.; Fan, H.; Hinoue, T.; Laird, P.W.; Shen, H.; Zhou, W.; Bellair, M.; Chang, K.; Covington, K.; Creighton, C.J.; Dinh, H.; Doddapaneni, H.V.; Donehower, L.A.; Drummond, J.; Gibbs, R.A.; Glenn, R.; Hale, W.; Han, Y.; Hu, J.; Korchina, V.; Lee, S.; Lewis, L.; Li, W.; Liu, X.; Morgan, M.; Morton, D.; Muzny, D.; Santibanez, J.; Sheth, M.; Shinbrot, E.; Wang, L.; Wang, M.; Wheeler, D.A.; Xi, L.; Zhao, F.; Hess, J.; Appelbaum, E.L.; Bailey, M.; Cordes, M.G.; Ding, L.; Fronick, C.C.; Fulton, L.A.; Fulton, R.S.; Kandoth, C.; Mardis, E.R.; McLellan, M.D.; Miller, C.A.; Schmidt, H.K.; Wilson, R.K.; Crain, D.; Curley, E.; Gardner, J.; Lau, K.; Mallery, D.; Morris, S.; Paulauskis, J.; Penny, R.; Shelton, C.; Shelton, T.; Sherman, M.; Thompson, E.; Yena, P.; Bowen, J.; Gastier-Foster, J.M.; Gerken, M.; Leraas, K.M.; Lichtenberg, T.M.; Ramirez, N.C.; Wise, L.; Zmuda, E.; Corcoran, N.; Costello, T.; Hovens, C.; Carvalho, A.L.; de Carvalho, A.C.; Fregnani, J.H.; Longatto-Filho, A.; Reis, R.M.; Scapulatempo-Neto, C.; Silveira, H.C.S.; Vidal, D.O.; Burnette, A.; Eschbacher, J.; Hermes, B.; Noss, A.; Singh, R.; Anderson, M.L.; Castro, P.D.; Ittmann, M.; Huntsman, D.; Kohl, B.; Le, X.; Thorp, R.; Andry, C.; Duffy, E.R.; Lyadov, V.; Paklina, O.; Setdikova, G.; Shabunin, A.; Tavobilov, M.; McPherson, C.; Warnick, R.; Berkowitz, R.; Cramer, D.; Feltmate, C.; Horowitz, N.; Kibel, A.; Muto, M.; Raut, C.P.; Malykh, A.; Barnholtz-Sloan, J.S.; Barrett, W.; Devine, K.; Fulop, J.; Ostrom, Q.T.; Shimmel, K.; Wolinsky, Y.; Sloan, A.E.; De Rose, A.; Giuliante, F.; Goodman, M.; Karlan, B.Y.; Hagedorn, C.H.; Eckman, J.; Harr, J.; Myers, J.; Tucker, K.; Zach, L.A.; Deyarmin, B.; Hu, H.; Kvecher, L.; Larson, C.; Mural, R.J.; Somiari, S.; Vicha, A.; Zelinka, T.; Bennett, J.; Iacocca, M.; Rabeno, B.; Swanson, P.; Latour, M.; Lacombe, L.; Têtu, B.; Bergeron, A.; McGraw, M.; Staugaitis, S.M.; Chabot, J.; Hibshoosh, H.; Sepulveda, A.; Su, T.; Wang, T.; Potapova, O.; Voronina, O.; Desjardins, L.; Mariani, O.; Roman-Roman, S.; Sastre, X.; Stern, M-H.; Cheng, F.; Signoretti, S.; Berchuck, A.; Bigner, D.; Lipp, E.; Marks, J.; McCall, S.; McLendon, R.; Secord, A.; Sharp, A.; Behera, M.; Brat, D.J.; Chen, A.; Delman, K.; Force, S.; Khuri, F.; Magliocca, K.; Maithel, S.; Olson, J.J.; Owonikoko, T.; Pickens, A.; Ramalingam, S.; Shin, D.M.; Sica, G.; Van Meir, E.G.; Zhang, H.; Eijckenboom, W.; Gillis, A.; Korpershoek, E.; Looijenga, L.; Oosterhuis, W.; Stoop, H.; van Kessel, K.E.; Zwarthoff, E.C.; Calatozzolo, C.; Cuppini, L.; Cuzzubbo, S.; DiMeco, F.; Finocchiaro, G.; Mattei, L.; Perin, A.; Pollo, B.; Chen, C.; Houck, J.; Lohavanichbutr, P.; Hartmann, A.; Stoehr, C.; Stoehr, R.; Taubert, H.; Wach, S.; Wullich, B.; Kycler, W.; Murawa, D.; Wiznerowicz, M.; Chung, K.; Edenfield, W.J.; Martin, J.; Baudin, E.; Bubley, G.; Bueno, R.; De Rienzo, A.; Richards, W.G.; Kalkanis, S.; Mikkelsen, T.; Noushmehr, H.; Scarpace, L.; Girard, N.; Aymerich, M.; Campo, E.; Giné, E.; Guillermo, A.L.; Van Bang, N.; Hanh, P.T.; Phu, B.D.; Tang, Y.; Colman, H.; Evason, K.; Dottino, P.R.; Martignetti, J.A.; Gabra, H.; Juhl, H.; Akeredolu, T.; Stepa, S.; Hoon, D.; Ahn, K.; Kang, K.J.; Beuschlein, F.; Breggia, A.; Birrer, M.; Bell, D.; Borad, M.; Bryce, A.H.; Castle, E.; Chandan, V.; Cheville, J.; Copland, J.A.; Farnell, M.; Flotte, T.; Giama, N.; Ho, T.; Kendrick, M.; Kocher, J-P.; Kopp, K.; Moser, C.; Nagorney, D.; O’Brien, D.; O’Neill, B.P.; Patel, T.; Petersen, G.; Que, F.; Rivera, M.; Roberts, L.; Smallridge, R.; Smyrk, T.; Stanton, M.; Thompson, R.H.; Torbenson, M.; Yang, J.D.; Zhang, L.; Brimo, F.; Ajani, J.A.; Gonzalez, A.M.A.; Behrens, C.; Bondaruk, J.; Broaddus, R.; Czerniak, B.; Esmaeli, B.; Fujimoto, J.; Gershenwald, J.; Guo, C.; Lazar, A.J.; Logothetis, C.; Meric-Bernstam, F.; Moran, C.; Ramondetta, L.; Rice, D.; Sood, A.; Tamboli, P.; Thompson, T.; Troncoso, P.; Tsao, A.; Wistuba, I.; Carter, C.; Haydu, L.; Hersey, P.; Jakrot, V.; Kakavand, H.; Kefford, R.; Lee, K.; Long, G.; Mann, G.; Quinn, M.; Saw, R.; Scolyer, R.; Shannon, K.; Spillane, A.; Stretch, J.; Synott, M.; Thompson, J.; Wilmott, J.; Al-Ahmadie, H.; Chan, T.A.; Ghossein, R.; Gopalan, A.; Levine, D.A.; Reuter, V.; Singer, S.; Singh, B.; Tien, N.V.; Broudy, T.; Mirsaidi, C.; Nair, P.; Drwiega, P.; Miller, J.; Smith, J.; Zaren, H.; Park, J-W.; Hung, N.P.; Kebebew, E.; Linehan, W.M.; Metwalli, A.R.; Pacak, K.; Pinto, P.A.; Schiffman, M.; Schmidt, L.S.; Vocke, C.D.; Wentzensen, N.; Worrell, R.; Yang, H.; Moncrieff, M.; Goparaju, C.; Melamed, J.; Pass, H.; Botnariuc, N.; Caraman, I.; Cernat, M.; Chemencedji, I.; Clipca, A.; Doruc, S.; Gorincioi, G.; Mura, S.; Pirtac, M.; Stancul, I.; Tcaciuc, D.; Albert, M.; Alexopoulou, I.; Arnaout, A.; Bartlett, J.; Engel, J.; Gilbert, S.; Parfitt, J.; Sekhon, H.; Thomas, G.; Rassl, D.M.; Rintoul, R.C.; Bifulco, C.; Tamakawa, R.; Urba, W.; Hayward, N.; Timmers, H.; Antenucci, A.; Facciolo, F.; Grazi, G.; Marino, M.; Merola, R.; de Krijger, R.; Gimenez-Roqueplo, A-P.; Piché, A.; Chevalier, S.; McKercher, G.; Birsoy, K.; Barnett, G.; Brewer, C.; Farver, C.; Naska, T.; Pennell, N.A.; Raymond, D.; Schilero, C.; Smolenski, K.; Williams, F.; Morrison, C.; Borgia, J.A.; Liptay, M.J.; Pool, M.; Seder, C.W.; Junker, K.; Omberg, L.; Dinkin, M.; Manikhas, G.; Alvaro, D.; Bragazzi, M.C.; Cardinale, V.; Carpino, G.; Gaudio, E.; Chesla, D.; Cottingham, S.; Dubina, M.; Moiseenko, F.; Dhanasekaran, R.; Becker, K-F.; Janssen, K-P.; Slotta-Huspenina, J.; Abdel-Rahman, M.H.; Aziz, D.; Bell, S.; Cebulla, C.M.; Davis, A.; Duell, R.; Elder, J.B.; Hilty, J.; Kumar, B.; Lang, J.; Lehman, N.L.; Mandt, R.; Nguyen, P.; Pilarski, R.; Rai, K.; Schoenfield, L.; Senecal, K.; Wakely, P.; Hansen, P.; Lechan, R.; Powers, J.; Tischler, A.; Grizzle, W.E.; Sexton, K.C.; Kastl, A.; Henderson, J.; Porten, S.; Waldmann, J.; Fassnacht, M.; Asa, S.L.; Schadendorf, D.; Couce, M.; Graefen, M.; Huland, H.; Sauter, G.; Schlomm, T.; Simon, R.; Tennstedt, P.; Olabode, O.; Nelson, M.; Bathe, O.; Carroll, P.R.; Chan, J.M.; Disaia, P.; Glenn, P.; Kelley, R.K.; Landen, C.N.; Phillips, J.; Prados, M.; Simko, J.; Smith-McCune, K.; VandenBerg, S.; Roggin, K.; Fehrenbach, A.; Kendler, A.; Sifri, S.; Steele, R.; Jimeno, A.; Carey, F.; Forgie, I.; Mannelli, M.; Carney, M.; Hernandez, B.; Campos, B.; Herold-Mende, C.; Jungk, C.; Unterberg, A.; von Deimling, A.; Bossler, A.; Galbraith, J.; Jacobus, L.; Knudson, M.; Knutson, T.; Ma, D.; Milhem, M.; Sigmund, R.; Godwin, A.K.; Madan, R.; Rosenthal, H.G.; Adebamowo, C.; Adebamowo, S.N.; Boussioutas, A.; Beer, D.; Giordano, T.; Mes-Masson, A-M.; Saad, F.; Bocklage, T.; Landrum, L.; Mannel, R.; Moore, K.; Moxley, K.; Postier, R.; Walker, J.; Zuna, R.; Feldman, M.; Valdivieso, F.; Dhir, R.; Luketich, J.; Pinero, E.M.M.; Quintero-Aguilo, M.; Carlotti, C.G., Jr; Dos Santos, J.S.; Kemp, R.; Sankarankuty, A.; Tirapelli, D.; Catto, J.; Agnew, K.; Swisher, E.; Creaney, J.; Robinson, B.; Shelley, C.S.; Godwin, E.M.; Kendall, S.; Shipman, C.; Bradford, C.; Carey, T.; Haddad, A.; Moyer, J.; Peterson, L.; Prince, M.; Rozek, L.; Wolf, G.; Bowman, R.; Fong, K.M.; Yang, I.; Korst, R.; Rathmell, W.K.; Fantacone-Campbell, J.L.; Hooke, J.A.; Kovatich, A.J.; Shriver, C.D.; DiPersio, J.; Drake, B.; Govindan, R.; Heath, S.; Ley, T.; Van Tine, B.; Westervelt, P.; Rubin, M.A.; Lee, J.I.; Aredes, N.D.; Mariamidze, A. Oncogenic signaling pathways in the cancer genome atlas. Cell, 2018, 173(2), 321-337.e10.
[http://dx.doi.org/10.1016/j.cell.2018.03.035] [PMID: 29625050]
[9]
DeBerardinis, R.J.; Chandel, N.S. Fundamentals of cancer metabolism. Sci. Adv., 2016, 2(5), e1600200.
[http://dx.doi.org/10.1126/sciadv.1600200] [PMID: 27386546]
[10]
Pavlova, N.N.; Thompson, C.B. The emerging hallmarks of cancer metabolism. Cell Metab., 2016, 23(1), 27-47.
[http://dx.doi.org/10.1016/j.cmet.2015.12.006] [PMID: 26771115]
[11]
Reznik, E.; Luna, A.; Aksoy, B.A.; Liu, E.M.; La, K.; Ostrovnaya, I.; Creighton, C.J.; Hakimi, A.A.; Sander, C. A landscape of metabolic variation across tumor types. Cell Syst., 2018, 6(3), 301-313.e3.
[http://dx.doi.org/10.1016/j.cels.2017.12.014] [PMID: 29396322]
[12]
Ward, P.S.; Thompson, C.B. Signaling in control of cell growth and metabolism. Cold Spring Harb. Perspect. Biol., 2012, 4(7), a006783-a006783.
[http://dx.doi.org/10.1101/cshperspect.a006783] [PMID: 22687276]
[13]
Vogelstein, B.; Kinzler, K.W. Cancer genes and the pathways they control. Nat. Med., 2004, 10(8), 789-799.
[http://dx.doi.org/10.1038/nm1087] [PMID: 15286780]
[14]
Magee, J.A.; Piskounova, E.; Morrison, S.J. Cancer stem cells: Impact, heterogeneity, and uncertainty. Cancer Cell, 2012, 21(3), 283-296.
[http://dx.doi.org/10.1016/j.ccr.2012.03.003] [PMID: 22439924]
[15]
Hemmings, B.A.; Restuccia, D.F. PI3K-PKB/Akt pathway. Cold Spring Harb. Perspect. Biol., 2012, 4(9), a011189-a011189.
[http://dx.doi.org/10.1101/cshperspect.a011189] [PMID: 22952397]
[16]
Wall, M.E. Camptothecin and taxol: Discovery to clinic. Med. Res. Rev., 1998, 18(5), 299-314.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199809)18:5<299:AID-MED2>3.0.CO;2-O ] [PMID: 9735871]
[17]
Ottaviani, A.; Iacovelli, F.; Fiorani, P.; Desideri, A. Natural compounds as therapeutic agents: The case of human topoisomerase IB. Int. J. Mol. Sci., 2021, 22(8), 4138.
[http://dx.doi.org/10.3390/ijms22084138] [PMID: 33923641]
[18]
Hendriks, H.R.; Govaerts, A.S.; Fichtner, I.; Burtles, S.; Westwell, A.D.; Peters, G.J. Pharmacologically directed strategies in academic anticancer drug discovery based on the European NCI compounds initiative. Br. J. Cancer, 2017, 117(2), 195-202.
[http://dx.doi.org/10.1038/bjc.2017.167] [PMID: 28609434]
[19]
Limmroth, V.; Katsarava, Z.; Diener, H-C. Acetylsalicylic acid in the treatment of headache. Cephalalgia, 1999, 19(6), 545-551.
[http://dx.doi.org/10.1046/j.1468-2982.1999.019006545.x] [PMID: 10448540]
[20]
Salehi, B.; Mishra, A.; Nigam, M.; Sener, B.; Kilic, M.; Sharifi-Rad, M.; Fokou, P.; Martins, N.; Sharifi-Rad, J. Resveratrol: A double-edged sword in health benefits. Biomedicines, 2018, 6(3), 91.
[http://dx.doi.org/10.3390/biomedicines6030091] [PMID: 30205595]
[21]
Akinwumi, B.; Bordun, K.A.; Anderson, H. Biological activities of stilbenoids. Int. J. Mol. Sci., 2018, 19(3), 792.
[http://dx.doi.org/10.3390/ijms19030792] [PMID: 29522491]
[22]
Soundararajan, P.; Kim, J. Anti-carcinogenic glucosinolates in cruciferous vegetables and their antagonistic effects on prevention of cancers. Molecules, 2018, 23(11), 2983.
[http://dx.doi.org/10.3390/molecules23112983] [PMID: 30445746]
[23]
Teng, J.; Li, J.; Zhao, Y.; Wang, M. Hesperetin, a dietary flavonoid, inhibits AGEs-induced oxidative stress and inflammation in RAW264.7 cells. J. Funct. Foods, 2021, 81, 104480.
[http://dx.doi.org/10.1016/j.jff.2021.104480]
[24]
Piletz, J.E.; Mao, Y.; Roy, D.; Qizilbash, B.; Nkamssi, E.; Weir, E.; Graham, J.; Emmanuel, M.; Iqbal, S.; Brue, K.; Sengupta, B. Transepithelial anti-neuroblastoma response to kale among four vegetable juices using in vitro model co-culture system. Nutrients, 2021, 13(2), 488.
[http://dx.doi.org/10.3390/nu13020488] [PMID: 33540724]
[25]
Khuda-Bukhsh, A.R.; Das, S.; Saha, S.K. Molecular approaches toward targeted cancer prevention with some food plants and their products: Inflammatory and other signal pathways. Nutr. Cancer, 2014, 66(2), 194-205.
[http://dx.doi.org/10.1080/01635581.2014.864420] [PMID: 24377653]
[26]
Lipinski, B. Hydroxyl radical and its scavengers in health and disease. Oxid. Med. Cell. Longev., 2011, 2011, 809696.
[http://dx.doi.org/10.1155/2011/809696] [PMID: 21904647]
[27]
Singh, S.K.; Banerjee, S.; Acosta, E.P.; Lillard, J.W.; Singh, R. Resveratrol induces cell cycle arrest and apoptosis with docetaxel in prostate cancer cells via a p53/p21WAF1/CIP1 and p27KIP1 pathway. Oncotarget, 2017, 8(10), 17216-17228.
[http://dx.doi.org/10.18632/oncotarget.15303] [PMID: 28212547]
[28]
NavaneethaKrishnan. S.; Rosales, J.L.; Lee, K.Y.S; Rosales, J.L; Lee, K.-Y. ROS-mediated cancer cell killing through dietary phytochemicals. Oxid. Med. Cell. Longev., 2019, 2019, 1-16.
[http://dx.doi.org/10.1155/2019/9051542] [PMID: 31217841]
[29]
Yang, L.; Gao, Y.; Bajpai, V.K.; El-Kammar, H.A.; Simal-Gandara, J.; Cao, H.; Cheng, K.W.; Wang, M.; Arroo, R.R.J.; Zou, L.; Farag, M.A.; Zhao, Y.; Xiao, J. Advance toward isolation, extraction, metabolism and health benefits of kaempferol, a major dietary flavonoid with future perspectives. Crit. Rev. Food Sci. Nutr., 2021, 1980762.
[http://dx.doi.org/10.1080/10408398.2021.1980762] [PMID: 34554029]
[30]
Chen, A.Y.; Chen, Y.C. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem., 2013, 138(4), 2099-2107.
[http://dx.doi.org/10.1016/j.foodchem.2012.11.139] [PMID: 23497863]
[31]
Kashyap, D.; Sharma, A.; Tuli, H.S.; Sak, K.; Punia, S.; Mukherjee, T.K. Kaempferol–A dietary anticancer molecule with multiple mechanisms of action: Recent trends and advancements. J. Funct. Foods, 2017, 30, 203-219.
[http://dx.doi.org/10.1016/j.jff.2017.01.022] [PMID: 32288791]
[32]
Breast Cancer: Statistics. Conquer Cancer 2022.
[33]
Yi, X.; Zuo, J.; Tan, C.; Xian, S.; Luo, C.; Chen, S.; Yu, L.; Luo, Y. Kaempferol, a flavonoid compound from gynura medica induced apoptosis and growth inhibition in MCF-7 breast cancer cell. Afr. J. Tradit. Complement. Altern. Med., 2016, 13(4), 210-215.
[http://dx.doi.org/10.21010/ajtcam.v13i4.27] [PMID: 28852738]
[34]
Azevedo, C.; Correia-Branco, A.; Araújo, J.R.; Guimarães, J.T.; Keating, E.; Martel, F. The chemopreventive effect of the dietary compound kaempferol on the MCF-7 human breast cancer cell line is dependent on inhibition of glucose cellular uptake. Nutr. Cancer, 2015, 67(3), 504-513.
[http://dx.doi.org/10.1080/01635581.2015.1002625] [PMID: 25719685]
[35]
Hung, H. Inhibition of estrogen receptor alpha expression and function in MCF-7 cells by kaempferol. J. Cell. Physiol., 2004, 198(2), 197-208.
[http://dx.doi.org/10.1002/jcp.10398] [PMID: 14603522]
[36]
Liao, W.; Chen, L.; Ma, X.; Jiao, R.; Li, X.; Wang, Y. Protective effects of kaempferol against reactive oxygen species-induced hemolysis and its antiproliferative activity on human cancer cells. Eur. J. Med. Chem., 2016, 114, 24-32.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.045] [PMID: 26974372]
[37]
Choi, E.J.; Ahn, W.S. Kaempferol induced the apoptosis via cell cycle arrest in human breast cancer MDA-MB-453 cells. Nutr. Res. Pract., 2008, 2(4), 322-325.
[http://dx.doi.org/10.4162/nrp.2008.2.4.322] [PMID: 20016737]
[38]
Li, C.; Zhao, Y.; Yang, D.; Yu, Y.; Guo, H.; Zhao, Z.; Zhang, B.; Yin, X. Inhibitory effects of kaempferol on the invasion of human breast carcinoma cells by downregulating the expression and activity of matrix metalloproteinase-9. Biochem. Cell Biol., 2015, 93(1), 16-27.
[http://dx.doi.org/10.1139/bcb-2014-0067] [PMID: 25453494]
[39]
Zhu, L.; Xue, L. Kaempferol suppresses proliferation and induces cell cycle arrest, apoptosis, and DNA damage in breast cancer cells. Oncol. Res., 2019, 27(6), 629-634.
[http://dx.doi.org/10.3727/096504018X15228018559434] [PMID: 29739490]
[40]
Nandi, S.K.; Roychowdhury, T.; Chattopadhyay, S.; Basu, S.; Chatterjee, K.; Choudhury, P.; Banerjee, N.; Saha, P.; Mukhopadhyay, S.; Mukhopadhyay, A.; Bhattacharya, R. Deregulation of the CD44-NANOG-MDR1 associated chemoresistance pathways of breast cancer stem cells potentiates the anti-cancer effect of Kaempferol in synergism with Verapamil. Toxicol. Appl. Pharmacol., 2022, 437, 115887.
[http://dx.doi.org/10.1016/j.taap.2022.115887] [PMID: 35063459]
[41]
[42]
Lee, G.A.; Choi, K.C.; Hwang, K.A. Treatment with phytoestrogens reversed triclosan and bisphenol A-induced anti-apoptosis in breast cancer cells. Biomol. Ther. (Seoul), 2018, 26(5), 503-511.
[http://dx.doi.org/10.4062/biomolther.2017.160] [PMID: 29310425]
[43]
Kashafi, E.; Moradzadeh, M.; Mohamadkhani, A.; Erfanian, S. Kaempferol increases apoptosis in human cervical cancer HeLa cells via PI3K/AKT and telomerase pathways. Biomed. Pharmacother., 2017, 89, 573-577.
[http://dx.doi.org/10.1016/j.biopha.2017.02.061] [PMID: 28258039]
[44]
Tu, L.Y.; Bai, H.H.; Cai, J.Y.; Deng, S.P. The mechanism of kaempferol induced apoptosis and inhibited proliferation in human cervical cancer SiHa cell: From macro to nano. Scanning, 2016, 38(6), 644-653.
[http://dx.doi.org/10.1002/sca.21312] [PMID: 26890985]
[45]
Cancer.Net. Ovarian, Fallopian Tube; Cancer, Peritoneal Ovarian, fallopian tube, and peritoneal cancer: Statistics. 2022. Available from: https://www.cancer.net/cancer-types/ovarian-fallopian-tube-and-peritoneal-cancer/statistics
[46]
Gao, Y.; Yin, J.; Rankin, G.; Chen, Y. Kaempferol induces G2/M cell cycle arrest via checkpoint kinase 2 and promotes apoptosis via death receptors in human ovarian carcinoma A2780/CP70 cells. Molecules, 2018, 23(5), 1095.
[http://dx.doi.org/10.3390/molecules23051095] [PMID: 29734760]
[47]
Yang, S.; Si, L.; Jia, Y.; Jian, W.; Yu, Q.; Wang, M.; Lin, R. Kaempferol exerts anti-proliferative effects on human ovarian cancer cells by inducing apoptosis, G0/G1 cell cycle arrest and modulation of MEK/ERK and STAT3 pathways. J. BUON, 2019, 24(3), 975-981.
[PMID: 31424650]
[48]
Zhao, Y.; Tian, B.; Wang, Y.; Ding, H. Kaempferol sensitizes human ovarian cancer cells OVCAR-3 and SKOV-3 to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis via JNK/ERK-CHOP pathway and up-regulation of death receptors 4 and 5. Med. Sci. Monit., 2017, 23, 5096-5105.
[http://dx.doi.org/10.12659/MSM.903552] [PMID: 29070784]
[49]
El-Kott, A.F.; Shati, A.A.; Al-Kahtani, M.A.; Alharbi, S.A. Kaempferol induces cell death in A2780 ovarian cancer cells and increases their sensitivity to cisplatin by activation of cytotoxic endoplasmic reticulum-mediated autophagy and inhibition of protein kinase B. Folia Biol. (Praha), 2020, 66(1), 36-46.
[PMID: 32512657]
[50]
Luo, H.; Rankin, G.O.; Li, Z.; DePriest, L.; Chen, Y.C. Kaempferol induces apoptosis in ovarian cancer cells through activating p53 in the intrinsic pathway. Food Chem., 2011, 128(2), 513-519.
[http://dx.doi.org/10.1016/j.foodchem.2011.03.073] [PMID: 21625365]
[51]
Ashrafizadeh, M.; Tavakol, S.; Ahmadi, Z.; Roomiani, S.; Mohammadinejad, R.; Samarghandian, S. Therapeutic effects of kaempferol affecting autophagy and endoplasmic reticulum stress. Phytother. Res., 2020, 34(5), 911-923.
[http://dx.doi.org/10.1002/ptr.6577] [PMID: 31829475]
[52]
Arif, H.; Sohail, A.; Farhan, M.; Rehman, A.A.; Ahmad, A.; Hadi, S.M. Flavonoids-induced redox cycling of copper ions leads to generation of reactive oxygen species: A potential role in cancer chemoprevention. Int. J. Biol. Macromol., 2018, 106, 569-578.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.049] [PMID: 28834706]
[53]
Carver, J.H.; Carrano, A.V.; MacGregor, J.T. Genetic effects of the flavonols quercetin, kaempferol, and galangin on Chinese hamster ovary cells in vitro. Mutat. Res. Envir. Mutag. Relat. Subj., 1983, 113(1), 45-60.
[http://dx.doi.org/10.1016/0165-1161(83)90240-6] [PMID: 6828043]
[54]
Hu, Y.; Cheng, Z.; Heller, L.I.; Krasnoff, S.B.; Glahn, R.P.; Welch, R.M. Kaempferol in red and pinto bean seed (Phaseolus vulgaris L.) coats inhibits iron bioavailability using an in vitro digestion/human Caco-2 cell model. J. Agric. Food Chem., 2006, 54(24), 9254-9261.
[http://dx.doi.org/10.1021/jf0612981] [PMID: 17117818]
[55]
Ren, J.; Lu, Y.; Qian, Y.; Chen, B.; Wu, T.; Ji, G. Recent progress regarding kaempferol for the treatment of various diseases (Review). Exp. Ther. Med., 2019, 18(4), 2759-2776.
[http://dx.doi.org/10.3892/etm.2019.7886] [PMID: 31572524]
[56]
Sahu, S.C.; Gray, G.C. Kaempferol-induced nuclear DNA damage and lipid peroxidation. Cancer Lett., 1994, 85(2), 159-164.
[http://dx.doi.org/10.1016/0304-3835(94)90269-0] [PMID: 7954331]
[57]
Takanashi, H.; Aiso, S.; Hirono, I.; Matsushima, T.; Sugimura, T. Carcinogenecity test of quercetin and kaempferol in rats by oral administration. J. Food Saf., 1983, 5(2), 55-60.
[http://dx.doi.org/10.1111/j.1745-4565.1983.tb00455.x]
[58]
Yangzom, P.; Amruthanand, S.; Sharma, M.; Mahajan, S.; Lingaraju, M.C.; Parida, S.; Sahoo, M.; Kumar, D.; Singh, T.U. Subacute 28 days oral toxicity study of kaempferol and biochanin‐A in the mouse model. J. Biochem. Mol. Toxicol., 2022, 36(8), e23090.
[http://dx.doi.org/10.1002/jbt.23090] [PMID: 35502512]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy