Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

A Review on Aptamers Selection and Application in Heart Diseases Diagnosis

Author(s): Amina Rhouati, Adel Rhouati and Jean Louis Marty*

Volume 22, Issue 30, 2022

Published on: 12 October, 2022

Page: [2463 - 2473] Pages: 11

DOI: 10.2174/1568026622666220831114322

Price: $65

conference banner
Abstract

Biomarkers detection and quantification in biological fluids play a key role in the screening, diagnosing and treating several diseases. Recently, a large number of aptamers have been selected and applied for the sensing of different biomarkers. Combined with different transducers, aptamers provide simple and rapid tools that allow highly sensitive and selective detection. Cardiology requires an accurate assessment of cardiac biomarkers for a complete diagnosis of cardiovascular diseases. The analysis is generally performed by immunoassays using antibodies as biorecognition elements. This review paper focuses on using aptamers as a promising alternative for antibodies in cardiac biomarkers biosensing. First, the different aptamers specific to the most important cardiac biomarkers are Troponin I, the peptide of B-type natriuretic peptide and myoglobin. Then, in the second part, we overview the electrochemical aptasensors principle and characteristics reported in the literature in the last five years.

Keywords: Aptamers, SELEX, Aptasensors, Heart diseases diagnosis, Biomarkers, Nanomaterials.

Next »
Graphical Abstract
[1]
Khan, M.A.B.; Hashim, M.J.; Mustafa, H.; Baniyas, M.Y.; Al Suwaidi, S.K.B.M.; AlKatheeri, R.; Alblooshi, F.M.K.; Almatrooshi, M.E.A.H.; Alzaabi, M.E.H.; Al Darmaki, R.S.; Lootah, S.N.A.H. Global epidemiology of ischemic heart disease: Results from the global burden of disease study. Cureus, 2020, 12(7), e9349.
[http://dx.doi.org/10.7759/cureus.9349] [PMID: 32742886]
[2]
Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; Das, S.R.; de Ferranti, S.; Després, J.P.; Fullerton, H.J.; Howard, V.J.; Huffman, M.D.; Isasi, C.R.; Jiménez, M.C.; Judd, S.E.; Kissela, B.M.; Lichtman, J.H.; Lisabeth, L.D.; Liu, S.; Mackey, R.H.; Magid, D.J.; McGuire, D.K.; Mohler, E.R., III; Moy, C.S.; Muntner, P.; Mussolino, M.E.; Nasir, K.; Neumar, R.W.; Nichol, G.; Palaniappan, L.; Pandey, D.K.; Reeves, M.J.; Rodriguez, C.J.; Rosamond, W.; Sorlie, P.D.; Stein, J.; Towfighi, A.; Turan, T.N.; Virani, S.S.; Woo, D.; Yeh, R.W.; Turner, M.B. Executive summary: Heart disease and stroke statistics-2016 update: A report from the American Heart Association. Circulation, 2016, 133(4), 447-454.
[http://dx.doi.org/10.1161/CIR.0000000000000366] [PMID: 26811276]
[3]
Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; de Ferranti, S.D.; Floyd, J.; Fornage, M.; Gillespie, C.; Isasi, C.R.; Jiménez, M.C.; Jordan, L.C.; Judd, S.E.; Lackland, D.; Lichtman, J.H.; Lisabeth, L.; Liu, S.; Longenecker, C.T.; Mackey, R.H.; Matsushita, K.; Mozaffarian, D.; Mussolino, M.E.; Nasir, K.; Neumar, R.W.; Palaniappan, L.; Pandey, D.K.; Thiagarajan, R.R.; Reeves, M.J.; Ritchey, M.; Rodriguez, C.J.; Roth, G.A.; Rosamond, W.D.; Sasson, C.; Towfighi, A.; Tsao, C.W.; Turner, M.B.; Virani, S.S.; Voeks, J.H.; Willey, J.Z.; Wilkins, J.T.; Wu, J.H.Y.; Alger, H.M.; Wong, S.S.; Muntner, P. Heart disease and stroke statistics—2017 update: A report from the American Heart Association. Circulation, 2017, 135(10), e146-e603.
[http://dx.doi.org/10.1161/CIR.0000000000000485] [PMID: 28122885]
[4]
Cristea, C.; Florea, A.; Tertiș, M.; Săndulescu, R. Immunosensors In: Biosensors-Micro and Nanoscale Applications; Rinken, T., Ed.; IntechOpen: London, 2015.
[5]
Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287), 818-822.
[6]
Stoltenburg, R.; Reinemann, C.; Strehlitz, B. SELEX-A (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng., 2007, 24(4), 381-403.
[7]
Bauer, M.; Strom, M.; Hammond, D.S.; Shigdar, S.J.M. Anything you can do, I can do better: Can Aptamers replace antibodies in clinical diagnostic applications? Molecules, 2019, 24(23), 4377.
[8]
Jayasena, S.D. Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Clin. Chem., 1999, 45(9), 1628-1650.
[9]
Rapini, R.; Marrazza, G.J.B. Electrochemical aptasensors for contaminants detection in food and environment: Recent advances. Bioelectrochemistry, 2017, 118, 47-61.
[10]
Mishra, G.; Sharma, V.; Mishra, R. Electrochemical aptasensors for food and environmental safeguarding. Biosensors, 2018, 8(2), 28.
[http://dx.doi.org/10.3390/bios8020028] [PMID: 29570679]
[11]
Stanciu, L.A.; Wei, Q.; Barui, A.K.; Mohammad, N. Recent advances in aptamer-based biosensors for global health applications. Annu. Rev. Biomed. Eng., 2021, 23, 433-459.
[12]
Ronkainen, N.J.; Halsall, H.B.; Heineman, W.R.J.C.S.R. Electrochemical biosensors. Chem. Soc. Rev., 2010, 39(5), 1747-1763.
[http://dx.doi.org/10.1039/b714449k]
[13]
Rhouati, A.; Marty, J-L.; Vasilescu, A.J.N. Metal nanomaterial-assisted aptasensors for emerging pollutants detection. In: Nanotechnology and Biosensors, Nikolelis D.P; Nikoleli, G.P., Ed.; Elsevier, 2018; pp. 193-231.
[14]
Barua, S.; Dutta, H.S.; Gogoi, S.; Devi, R.; Khan, R. Nanostructured MoS2-based advanced biosensors: A review. ACS Appl. Nano Mater., 2018, 1(1), 2-25.
[15]
Huang, J.; Dong, Z.; Li, Y.; Li, J.; Wang, J.; Yang, H. High performance non-enzymatic glucose biosensor based on copper nanowires-carbon nanotubes hybrid for intracellular glucose study. Sens. Actuat. Biol. Chem., 2013, 182, 618-624.
[http://dx.doi.org/10.1016/j.snb.2013.03.065]
[16]
Nguyen, T.; Hilton, J.P.; Lin, Q.J.M. Emerging applications of aptamers to micro- and nanoscale biosensing. Microfluid. Nanofluidics, 2009, 6(3), 347-362.
[17]
D’Souza, M.; Sarkisian, L.; Saaby, L.; Poulsen, T.S.; Gerke, O.; Larsen, T.B.; Diederichsen, A.C.P.; Jangaard, N.; Diederichsen, S.Z.; Hosbond, S.; Hove, J.; Thygesen, K.; Mickley, H. Diagnosis of unstable angina pectoris has declined markedly with the advent of more sensitive troponin assays. Am. J. Med., 2015, 128(8), 852-860.
[http://dx.doi.org/10.1016/j.amjmed.2015.01.044] [PMID: 25820165]
[18]
Odqvist, M.; Andersson, P.O.; Tygesen, H.; Eggers, K.M.; Holzmann, M.J. High-sensitivity troponins and outcomes after myocardial infarction. J. Am. Coll. Cardiol., 2018, 71(23), 2616-2624.
[http://dx.doi.org/10.1016/j.jacc.2018.03.515] [PMID: 29880121]
[19]
Twerenbold, R.; Boeddinghaus, J.; Nestelberger, T.; Wildi, K.; Rubini Gimenez, M.; Badertscher, P.; Mueller, C. Clinical use of high-sensitivity cardiac troponin in patients with suspected myocardial infarction. J. Am. Coll. Cardiol., 2017, 70(8), 996-1012.
[http://dx.doi.org/10.1016/j.jacc.2017.07.718] [PMID: 28818210]
[20]
Potter, L.R.; Yoder, A.R.; Flora, D.R.; Antos, L. K Natriuretic peptides: Their structures, receptors, physiologic functions and therapeutic applications. Handb. Exp. Pharmacol., 2009, 191, 341-366.
[21]
Hamm, C.W.; Bassand, J.P.; Agewall, S.; Bax, J.; Boersma, E.; Bueno, H.; Caso, P.; Dudek, D.; Gielen, S.; Huber, K.; Ohman, M.; Petrie, M.C.; Sonntag, F.; Uva, M.S.; Storey, R.F.; Wijns, W.; Zahger, D.; Bax, J.J.; Auricchio, A.; Baumgartner, H.; Ceconi, C.; Dean, V.; Deaton, C.; Fagard, R.; Funck-Brentano, C.; Hasdai, D.; Hoes, A.; Knuuti, J.; Kolh, P.; McDonagh, T.; Moulin, C.; Poldermans, D.; Popescu, B.A.; Reiner, Z.; Sechtem, U.; Sirnes, P.A.; Torbicki, A.; Vahanian, A.; Windecker, S.; Windecker, S.; Achenbach, S.; Badimon, L.; Bertrand, M.; Botker, H.E.; Collet, J-P.; Crea, F.; Danchin, N.; Falk, E.; Goudevenos, J.; Gulba, D.; Hambrecht, R.; Herrmann, J.; Kastrati, A.; Kjeldsen, K.; Kristensen, S.D.; Lancellotti, P.; Mehilli, J.; Merkely, B.; Montalescot, G.; Neumann, F-J.; Neyses, L.; Perk, J.; Roffi, M.; Romeo, F.; Ruda, M.; Swahn, E.; Valgimigli, M.; Vrints, C.J.; Widimsky, P. ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: The Task Force for the management of Acute Coronary Syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J., 2011, 32(23), 2999-3054.
[http://dx.doi.org/10.1093/eurheartj/ehr236] [PMID: 21873419]
[22]
Dickstein, K.; Cohen-Solal, A.; Filippatos, G. Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: Task force for diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Eur. Heart J., 2008, 29, 2388.
[23]
Federico, C. Natriuretic peptide system and cardiovascular disease. Heart Views, 2010, 11(1), 10-15.
[24]
Mueller, C.; McDonald, K.; de Boer, R.A.; Maisel, A.; Cleland, J.G.F.; Kozhuharov, N.; Coats, A.J.S.; Metra, M.; Mebazaa, A.; Ruschitzka, F.; Lainscak, M.; Filippatos, G.; Seferovic, P.M.; Meijers, W.C.; Bayes-Genis, A.; Mueller, T.; Richards, M.; Januzzi, J.L. Jr Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. Eur. J. Heart Fail., 2019, 21(6), 715-731.
[http://dx.doi.org/10.1002/ejhf.1494] [PMID: 31222929]
[25]
Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V-P.; Jankowska, E.A.; Jessup, M.; Linde, C.; Nihoyannopoulos, P.; Parissis, J.T.; Pieske, B.; Riley, J.P.; Rosano, G.M.C.; Ruilope, L.M.; Ruschitzka, F.; Rutten, F.H.; van der Meer, P. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J., 2016, 37(27), 2129-2200.
[http://dx.doi.org/10.1093/eurheartj/ehw128] [PMID: 27206819]
[26]
Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968), 505-510.
[http://dx.doi.org/10.1126/science.2200121] [PMID: 2200121]
[27]
Rhouati, A.; Yang, C.; Hayat, A.; Marty, J.L. Aptamers: A promosing tool for ochratoxin A detection in food analysis. Toxins, 2013, 5(11), 1988-2008.
[http://dx.doi.org/10.3390/toxins5111988] [PMID: 24196457]
[28]
Mascini, M. Aptamers in bioanalysis; John Wiley & Sons, 2009.
[http://dx.doi.org/10.1002/9780470380772]
[29]
Zhuo, Z.; Yu, Y.; Wang, M.; Li, J.; Zhang, Z.; Liu, J.; Wu, X.; Lu, A.; Zhang, G.; Zhang, B. Recent advances in SELEX technology and aptamer applications in biomedicine. Int. J. Mol. Sci., 2017, 18(10), 2142.
[http://dx.doi.org/10.3390/ijms18102142] [PMID: 29036890]
[30]
Zhou, J.; Rossi, J. Aptamers as targeted therapeutics: Current potential and challenges. Nat. Rev. Drug Discov., 2017, 16(3), 181-202.
[http://dx.doi.org/10.1038/nrd.2016.199] [PMID: 27807347]
[31]
Chang, Y.M.; Donovan, M.J.; Tan, W. Using aptamers for cancer biomarker discovery. J. Nucleic Acids, 2013, 2013, 817350.
[http://dx.doi.org/10.1155/2013/817350]
[32]
Chandola, C.; Kalme, S.; Casteleijn, M.G.; Urtti, A.; Neerathilingam, M. Application of aptamers in diagnostics, drug-delivery and imaging. J. Biosci., 2016, 41(3), 535-561.
[http://dx.doi.org/10.1007/s12038-016-9632-y] [PMID: 27581942]
[33]
Qureshi, A.; Gurbuz, Y.; Niazi, J.H. Biosensors for cardiac biomarkers detection: A review. Sens. Actuators B Chem., 2012, 171-172, 62-76.
[http://dx.doi.org/10.1016/j.snb.2012.05.077]
[34]
Jo, H.; Gu, H.; Jeon, W.; Youn, H.; Her, J.; Kim, S.K.; Lee, J.; Shin, J.H.; Ban, C. Electrochemical aptasensor of cardiac troponin I for the early diagnosis of acute myocardial infarction. Anal. Chem., 2015, 87(19), 9869-9875.
[http://dx.doi.org/10.1021/acs.analchem.5b02312] [PMID: 26352249]
[35]
Dorraj, G.S.; Rassaee, M.J.; Latifi, A.M.; Pishgoo, B.; Tavallaei, M. Selection of DNA aptamers against Human Cardiac Troponin I for colorimetric sensor based dot blot application. J. Biotechnol., 2015, 208, 80-86.
[http://dx.doi.org/10.1016/j.jbiotec.2015.05.002] [PMID: 26003883]
[36]
Weng, C.H.; Huang, C.J.; Lee, G.B. Screening of aptamers on microfluidic systems for clinical applications. Sensors, 2012, 12(7), 9514-9529.
[http://dx.doi.org/10.3390/s120709514] [PMID: 23012556]
[37]
Sinha, A.; Gopinathan, P.; Chung, Y.D.; Lin, H.Y.; Li, K.H.; Ma, H.P.; Huang, P.C.; Shiesh, S.C.; Lee, G.B. An integrated microfluidic platform to perform uninterrupted SELEX cycles to screen affinity reagents specific to cardiovascular biomarkers. Biosens. Bioelectron., 2018, 122, 104-112.
[http://dx.doi.org/10.1016/j.bios.2018.09.040] [PMID: 30245322]
[38]
Wu, J.; Zhu, Y.; Xue, F.; Mei, Z.; Yao, L.; Wang, X.; Zheng, L.; Liu, J.; Liu, G.; Peng, C.; Chen, W. Recent trends in SELEX technique and its application to food safety monitoring. Mikrochim. Acta, 2014, 181(5-6), 479-491.
[http://dx.doi.org/10.1007/s00604-013-1156-7] [PMID: 25419005]
[39]
Wang, Y.; Wu, J.; Chen, Y.; Xue, F.; Teng, J.; Cao, J.; Lu, C.; Chen, W. Magnetic microparticle-based SELEX process for the identification of highly specific aptamers of heart marker--brain natriuretic peptide. Mikrochim. Acta, 2015, 182(1-2), 331-339.
[http://dx.doi.org/10.1007/s00604-014-1338-y]
[40]
Wang, Q.; Liu, W.; Xing, Y.; Yang, X.; Wang, K.; Jiang, R.; Wang, P.; Zhao, Q. Screening of DNA aptamers against myoglobin using a positive and negative selection units integrated microfluidic chip and its biosensing application. Anal. Chem., 2014, 86(13), 6572-6579.
[http://dx.doi.org/10.1021/ac501088q] [PMID: 24914856]
[41]
Sassolas, A.; Blum, L.J. Leca‐Bouvier, B.D. Electrochemical aptasensors. Electroanalysis, 2009, 21(11), 1237-1250.
[42]
Rhouati, A.; Catanante, G.; Nunes, G.; Hayat, A.; Marty, J.L. Label-free aptasensors for the detection of mycotoxins. Sensors, 2016, 16(12), 2178.
[http://dx.doi.org/10.3390/s16122178] [PMID: 27999353]
[43]
Feng, C.; Dai, S.; Wang, L. Optical aptasensors for quantitative detection of small biomolecules: A review. Biosens. Bioelectron., 2014, 59, 64-74.
[http://dx.doi.org/10.1016/j.bios.2014.03.014] [PMID: 24690563]
[44]
Rhouati, A.; Marty, J.L.; Vasilescu, A. Electrochemical biosensors combining aptamers and enzymatic activity: Challenges and analytical opportunities. Electrochim. Acta, 2021, 390, 138863.
[http://dx.doi.org/10.1016/j.electacta.2021.138863]
[45]
Grabowska, I.; Sharma, N.; Vasilescu, A.; Iancu, M.; Badea, G.; Boukherroub, R. Electrochemical aptamer-based biosensors for the detection of cardiac biomarkers. ACS Omega, 2018, 3(9), 12010-12018.
[http://dx.doi.org/10.1021/acsomega.8b01558]
[46]
Jo, H.; Her, J.; Lee, H.; Shim, Y.B.; Ban, C. Highly sensitive amperometric detection of cardiac troponin I using sandwich aptamers and screen-printed carbon electrodes. Talanta, 2017, 165, 442-448.
[http://dx.doi.org/10.1016/j.talanta.2016.12.091] [PMID: 28153281]
[47]
Goodman, R.P.; Schaap, I.A.T.; Tardin, C.F.; Erben, C.M.; Berry, R.M.; Schmidt, C.F.; Turberfield, A.J. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science, 2005, 310(5754), 1661-1665.
[http://dx.doi.org/10.1126/science.1120367] [PMID: 16339440]
[48]
Luo, Z.; Sun, D.; Tong, Y.; Zhong, Y.; Chen, Z. DNA nanotetrahedron linked dual-aptamer based voltammetric aptasensor for cardiac troponin I using a magnetic metal-organic framework as a label. Mikrochim. Acta, 2019, 186(6), 374.
[http://dx.doi.org/10.1007/s00604-019-3470-1]
[49]
Sun, D.; Lin, X.; Lu, J.; Wei, P.; Luo, Z.; Lu, X.; Chen, Z.; Zhang, L. DNA nanotetrahedron-assisted electrochemical aptasensor for cardiac troponin I detection based on the co-catalysis of hybrid nanozyme, natural enzyme and artificial DNAzyme. Biosens. Bioelectron., 2019, 142, 111578.
[http://dx.doi.org/10.1016/j.bios.2019.111578] [PMID: 31422223]
[50]
Sun, D.; Luo, Z.; Lu, J.; Zhang, S.; Che, T.; Chen, Z.; Zhang, L. Electrochemical dual-aptamer-based biosensor for nonenzymatic detection of cardiac troponin I by nanohybrid electrocatalysts labeling combined with DNA nanotetrahedron structure. Biosens. Bioelectron., 2019, 134, 49-56.
[http://dx.doi.org/10.1016/j.bios.2019.03.049] [PMID: 30954926]
[51]
Villalonga, A.; Estabiel, I.; Pérez-Calabuig, A.M.; Mayol, B.; Parrado, C.; Villalonga, R. Amperometric aptasensor with sandwich-type architecture for troponin I based on carboxyethylsilanetriol-modified graphene oxide coated electrodes. Biosens. Bioelectron., 2021, 183, 113203.
[http://dx.doi.org/10.1016/j.bios.2021.113203] [PMID: 33823466]
[52]
Chekin, F.; Vasilescu, A.; Jijie, R.; Singh, S.K.; Kurungot, S.; Iancu, M.; Badea, G.; Boukherroub, R.; Szunerits, S. Sensitive electrochemical detection of cardiac troponin I in serum and saliva by nitrogen-doped porous reduced graphene oxide electrode. Sens. Actuators B Chem., 2018, 262, 180-187.
[http://dx.doi.org/10.1016/j.snb.2018.01.215]
[53]
Han, Y.; Su, X.; Fan, L.; Liu, Z.; Guo, Y. Electrochemical aptasensor for sensitive detection of cardiac troponin I based on CuNWs/MoS2/rGO nanocomposite. Microchem. J., 2021, 169, 106598.
[http://dx.doi.org/10.1016/j.microc.2021.106598]
[54]
Negahdary, M.; Behjati-Ardakani, M.; Sattarahmady, N.; Yadegari, H.; Heli, H. Electrochemical aptasensing of human cardiac troponin I based on an array of gold nanodumbbells-Applied to early detection of myocardial infarction. Sens. Actuators B Chem., 2017, 252, 62-71.
[http://dx.doi.org/10.1016/j.snb.2017.05.149]
[55]
Qiao, X.; Li, K.; Xu, J.; Cheng, N.; Sheng, Q.; Cao, W.; Yue, T.; Zheng, J. Novel electrochemical sensing platform for ultrasensitive detection of cardiac troponin I based on aptamer-MoS2 nanoconjugates. Biosens. Bioelectron., 2018, 113, 142-147.
[http://dx.doi.org/10.1016/j.bios.2018.05.003] [PMID: 29754053]
[56]
Mokhtari, Z.; Khajehsharifi, H.; Hashemnia, S.; Solati, Z.; Azimpanah, R.; Shahrokhian, S. Evaluation of molecular imprinted polymerized methylene blue/aptamer as a novel hybrid receptor for Cardiac Troponin I (cTnI) detection at glassy carbon electrodes modified with new biosynthesized ZnONPs. Sens. Actuators B Chem., 2020, 320, 128316.
[http://dx.doi.org/10.1016/j.snb.2020.128316]
[57]
Nia, N.G.; Azadbakht, A. Nanostructured aptamer-based sensing platform for highly sensitive recognition of myoglobin. Mikrochim. Acta, 2018, 185(7), 333.
[http://dx.doi.org/10.1007/s00604-018-2860-0] [PMID: 29931498]
[58]
Adeel, M.; Rahman, M.M.; Lee, J.J. Label-free aptasensor for the detection of cardiac biomarker myoglobin based on gold nanoparticles decorated boron nitride nanosheets. Biosens. Bioelectron., 2019, 126, 143-150.
[http://dx.doi.org/10.1016/j.bios.2018.10.060] [PMID: 30399516]
[59]
Sharma, A.; Bhardwaj, J.; Jang, J. Label-free, highly sensitive electrochemical aptasensors using polymer-modified reduced graphene oxide for cardiac biomarker detection. ACS Omega, 2020, 5(8), 3924-3931.
[http://dx.doi.org/10.1021/acsomega.9b03368] [PMID: 32149219]
[60]
Wang, C.; Li, J.; Kang, M.; Huang, X.; Liu, Y.; Zhou, N.; Zhang, Z. Nanodiamonds and hydrogen-substituted graphdiyne heteronanostructure for the sensitive impedimetric aptasensing of myocardial infarction and cardiac troponin I. Anal. Chim. Acta, 2021, 1141, 110-119.
[http://dx.doi.org/10.1016/j.aca.2020.10.044] [PMID: 33248643]
[61]
Wong, Y.K.; Cheung, C.Y.Y.; Tang, C.S.; Hai, J.S.H.; Lee, C.H.; Lau, K.K.; Au, K.W.; Cheung, B.M.Y.; Sham, P.C.; Xu, A.; Lam, K.S.L.; Tse, H.F. High-sensitivity troponin I and B-type natriuretic peptide biomarkers for prediction of cardiovascular events in patients with coronary artery disease with and without diabetes mellitus. Cardiovasc. Diabetol., 2019, 18(1), 171.
[http://dx.doi.org/10.1186/s12933-019-0974-2] [PMID: 31847896]
[62]
Patil, M.; Umanzor, F.; Kormos, R.; Kumta, P.N. Platinum aptasensor wire arrays for cardiac biomarker detection. Mater. Today Commun., 2018, 15, 55-60.
[http://dx.doi.org/10.1016/j.mtcomm.2018.02.018]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy