Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Evaluation of Cytotoxic, COX Inhibitory, and Antimicrobial Activities of Novel Isoxazole-carboxamide Derivatives

Author(s): Mohammed Hawash*, Nidal Jaradat, Murad Abualhasan, Mohammad Qneibi, Hama Rifai, Tala Saqfelhait, Yaqeen Shqirat, Alaa Nazal, Salam Omarya, Tymaa Ibrahim, Shorooq Sobuh, Abdulraziq Zarour and Ahmed Mousa

Volume 20, Issue 12, 2023

Published on: 23 September, 2022

Page: [1994 - 2002] Pages: 9

DOI: 10.2174/1570180819666220819151002

Price: $65

conference banner
Abstract

Isoxazole derivatives are one of the heterocyclic structures that have various biological activities.

Objective: This study aimed to design and synthesize novel isoxazole derivatives and evaluate their cytotoxic, cyclooxygenase (COX) inhibitory, and antimicrobial activities.

Methods: Coupling reactions of aniline derivatives and isoxazole carboxylic acid have been established to synthesize chloro-fluorophenyl-isoxazole carboxamide derivatives. The synthesized compounds were characterized using 1H, 13C-NMR, IR, and HRMS spectrum analysis and evaluated by MTS, COX kit, and antimicrobial microdilution assays.

Results: The synthesized compounds showed moderate to potent cytotoxic activity against all the screened cancer cell lines (except 2b against HepG2) with an IC50 range of 0.107-77.83 μg/ml. The results showed that the most potent compound against cervical cancer cell line (HeLa) was the 2b compound, with an IC50 value of 0.11±0.10 μg/ml, which is less than the IC50 for the potent anticancer drug Doxorubicin. While the 2a and 2b compounds have potential antiproliferative activities against Hep3B with IC50 doses of 2.774±0.53 and 3.621±1.56 μg/ml, respectively. Furthermore, 2c compound was the most active against MCF7, with an IC50 value of 1.59±1.60 μg/ml. In addition, the most potent isoxazole derivative against the COX1 enzyme was the 2b compound, with an IC50 value of 0.391 μg/ml, and compound 2a had a good selectivity ratio of 1.44 compared to the Ketoprofen positive control. However, compound 2c showed antifungal activity against Candida albicans with an MIC value of 2.0 mg/ml in comparison to the antifungal drug Fluconazole (MIC = 1.65 mg/ml).

Conclusion: The synthesized compounds could be candidates for anticancer drugs in the future, and other analogues and cytotoxicity evaluations should be conducted

Keywords: Isoxazole, anticancer, doxorubicin, COX, ketoprofen, antifungal.

Graphical Abstract
[1]
Feng, R.M.; Zong, Y.N.; Cao, S.M.; Xu, R.H. Current cancer situation in China: Good or bad news from the 2018 Global Cancer Statistics? Cancer Commun. (Lond.), 2019, 39(1), 22.
[http://dx.doi.org/10.1186/s40880-019-0368-6] [PMID: 31030667]
[2]
Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global cancer incidence and mortality rates and trends-an update. Cancer Epidemiol. Biomarkers Prev., 2016, 25(1), 16-27.
[http://dx.doi.org/10.1158/1055-9965.EPI-15-0578] [PMID: 26667886]
[3]
Wenzel, E.S.; Singh, A.T.K. Cell-cycle checkpoints and aneuploidy on the path to cancer. In Vivo, 2018, 32(1), 1-5.
[PMID: 29275292]
[4]
Villanueva, A. Hepatocellular carcinoma. N. Engl. J. Med., 2019, 380(15), 1450-1462.
[http://dx.doi.org/10.1056/NEJMra1713263] [PMID: 30970190]
[5]
Hartke, J.; Johnson, M.; Ghabril, M. The diagnosis and treatment of hepatocellular carcinoma. Semin. Diagn. Pathol., 2017, 34(2), 153-159.
[http://dx.doi.org/10.1053/j.semdp.2016.12.011] [PMID: 28108047]
[6]
Li, H.; Wu, X.; Cheng, X. Advances in diagnosis and treatment of metastatic cervical cancer. J. Gynecol. Oncol., 2016, 27(4), e43.
[http://dx.doi.org/10.3802/jgo.2016.27.e43] [PMID: 27171673]
[7]
Fisusi, F.A.; Akala, E.O. Drug combinations in breast cancer therapy. Pharm. Nanotechnol., 2019, 7(1), 3-23.
[http://dx.doi.org/10.2174/2211738507666190122111224] [PMID: 30666921]
[8]
Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A.U. Awareness and current knowledge of breast cancer. Biol. Res., 2017, 50(1), 33.
[http://dx.doi.org/10.1186/s40659-017-0140-9] [PMID: 28969709]
[9]
Wang, J.J.; Lei, K.F.; Han, F. Tumor microenvironment: Recent advances in various cancer treatments. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(12), 3855-3864.
[PMID: 29949179]
[10]
Ratan, R.; Patel, S.R. Chemotherapy for soft tissue sarcoma. Cancer, 2016, 122(19), 2952-2960.
[http://dx.doi.org/10.1002/cncr.30191] [PMID: 27434055]
[11]
Dzierzbicka, K.; Kołodziejczyk, A. Combretastatin A-4 and its analogues as antineoplastic agents. ChemInform, 2004, 78(3), 323-341.
[http://dx.doi.org/10.1002/chin.200428234]
[12]
West, C.M.; Price, P. Combretastatin A4 phosphate. Anticancer Drugs, 2004, 15(3), 179-187.
[http://dx.doi.org/10.1097/00001813-200403000-00001] [PMID: 15014350]
[13]
Nainwal, L.M.; Alam, M.M.; Shaquiquzzaman, M.; Marella, A.; Kamal, A. Combretastatin-based compounds with therapeutic characteristics: A patent review. Expert Opin. Ther. Pat., 2019, 29(9), 703-731.
[http://dx.doi.org/10.1080/13543776.2019.1651841] [PMID: 31369715]
[14]
Kamal, A.; Reddy, V.S.; Shaik, A.B.; Kumar, G.B.; Vishnuvardhan, M.V.; Polepalli, S.; Jain, N. Synthesis of (Z)-(arylamino)-pyrazolyl/isoxazolyl-2-propenones as tubulin targeting anticancer agents and apoptotic inducers. Org. Biomol. Chem., 2015, 13(11), 3416-3431.
[http://dx.doi.org/10.1039/C4OB02449D] [PMID: 25661328]
[15]
Hawash, M.; Jaradat, N.; Abualhasan, M.; Amer, J.; Levent, S.; Issa, S.; Ibrahim, S.; Ayaseh, A.; Shtayeh, T.; Mousa, A. Synthesis, chemo-informatics, and anticancer evaluation of fluorophenyl-isoxazole derivatives. Open Chem., 2021, 19(1), 855-863.
[http://dx.doi.org/10.1515/chem-2021-0078]
[16]
Jadala, C.; Sathish, M.; Anchi, P.; Tokala, R.; Lakshmi, U.J.; Reddy, V.G.; Shankaraiah, N.; Godugu, C.; Kamal, A. Synthesis of combretastatin-A4 carboxamidest that mimic sulfonyl piperazines by a molecular hybridization approach: In vitro cytotoxicity evaluation and inhibition of tubulin polymerization. ChemMedChem, 2019, 14(24), 2052-2060.
[http://dx.doi.org/10.1002/cmdc.201900541] [PMID: 31674147]
[17]
Hawash, M.; Eid, A.M.; Jaradat, N.; Abualhasan, M.; Amer, J.; Naser Zaid, A.; Draghmeh, S.; Daraghmeh, D.; Daraghmeh, H.; Shtayeh, T.; Sawaftah, H.; Mousa, A. Synthesis and biological evaluation of benzodioxole derivatives as potential anticancer and antioxidant agents. Heterocycl. Commun., 2020, 26(1), 157-167.
[http://dx.doi.org/10.1515/hc-2020-0105]
[18]
Caneschi, W.; Enes, K.B.; Carvalho de Mendonça, C.; de Souza Fernandes, F.; Miguel, F.B.; da Silva Martins, J.; Le Hyaric, M.; Pinho, R.R.; Duarte, L.M.; Leal de Oliveira, M.A.; Dos Santos, H.F.; Paz Lopes, M.T.; Dittz, D.; Silva, H.; Costa Couri, M.R. Synthesis and anticancer evaluation of new lipophilic 1,2,4 and 1,3,4-oxadiazoles. Eur. J. Med. Chem., 2019, 165, 18-30.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.001] [PMID: 30654237]
[19]
Eid, A.M.; Hawash, M.; Amer, J.; Jarrar, A.; Qadri, S.; Alnimer, I.; Sharaf, A.; Zalmoot, R.; Hammoudie, O.; Hameedi, S.; Mousa, A. Synthesis and biological evaluation of novel isoxazole-amide analogues as anticancer and antioxidant agents. BioMed Res. Int., 2021, 2021, 6633297.
[http://dx.doi.org/10.1155/2021/6633297] [PMID: 33763478]
[20]
Hawash, M.; Jaradat, N.; Bawwab, N.; Salem, K.; Arafat, H.; Hajyousef, Y.; Shtayeh, T.; Sobuh, S. Design, synthesis, and biological evaluation of phenyl-isoxazole-carboxamide derivatives as anticancer agents. Heterocycl. Commun., 2021, 27(1), 133-141.
[http://dx.doi.org/10.1515/hc-2020-0134]
[21]
Inceler, N.; Yılmaz, A.; Baytas, S.N. Synthesis of ester and amide derivatives of 1-phenyl-3-(thiophen-3-yl)-1 H-pyrazole-4-carboxylic acid and study of their anticancer activity. Med. Chem. Res., 2013, 22(7), 3109-3118.
[http://dx.doi.org/10.1007/s00044-012-0317-2]
[22]
Inceler, N.; Ozkan, Y.; Turan, N.N.; Kahraman, D.C.; Cetin-Atalay, R.; Baytas, S.N. Design, synthesis and biological evaluation of novel 1,3-diarylpyrazoles as cyclooxygenase inhibitors, antiplatelet and anticancer agents. MedChemComm, 2018, 9(5), 795-811.
[http://dx.doi.org/10.1039/C8MD00022K] [PMID: 30108969]
[23]
Agrawal, N.; Mishra, P. The synthetic and therapeutic expedition of isoxazole and its analogs. Med. Chem. Res., 2018, 27(5), 1309-1344.
[http://dx.doi.org/10.1007/s00044-018-2152-6] [PMID: 32214770]
[24]
Barmade, M.A.; Murumkar, P.R.; Sharma, M.K.; Yadav, M.R. Medicinal chemistry perspective of fused isoxazole derivatives. Curr. Top. Med. Chem., 2016, 16(26), 2863-2883.
[http://dx.doi.org/10.2174/1568026616666160506145700] [PMID: 27150366]
[25]
Yong, J.P.; Lu, C.Z.; Wu, X. Potential anticancer agents. I. Synthesis of isoxazole moiety containing quinazoline derivatives and preliminarily in vitro anticancer activity. Anticancer. Agents Med. Chem., 2015, 15(1), 131-136.
[http://dx.doi.org/10.2174/1871520614666140812105445] [PMID: 25142319]
[26]
Naresh Kumar, R.; Jitender Dev, G.; Ravikumar, N.; Krishna Swaroop, D.; Debanjan, B.; Bharath, G.; Narsaiah, B.; Nishant Jain, S.; Gangagni Rao, A. Synthesis of novel triazole/isoxazole functionalized 7-(trifluoromethyl)pyrido[2,3-d]pyrimidine derivatives as promising anticancer and antibacterial agents. Bioorg. Med. Chem. Lett., 2016, 26(12), 2927-2930.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.038] [PMID: 27130357]
[27]
Hawash, M.; Kahraman, D.C.; Ergun, S.G.; Cetin-Atalay, R.; Baytas, S.N. Synthesis of novel indole-isoxazole hybrids and evaluation of their cytotoxic activities on hepatocellular carcinoma cell lines. BMC Chem., 2021, 15(1), 66.
[http://dx.doi.org/10.1186/s13065-021-00793-8] [PMID: 34930409]
[28]
Sysak, A.; Obmińska-Mrukowicz, B. Isoxazole ring as a useful scaffold in a search for new therapeutic agents. Eur. J. Med. Chem., 2017, 137, 292-309.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.002] [PMID: 28605676]
[29]
Govindappa, V.K.; Prabhashankar, J.; Khatoon, B.B.A.; Ningappa, M.B.; Kariyappa, A.K. Synthesis of 3, 5-diaryl-isoxazole-4-carbonitriles and their efficacy as antimicrobial agents. Pharma Chem., 2012, 4(6), 2283-2287.
[30]
Pedada, S.R.; Yarla, N.S.; Tambade, P.J.; Dhananjaya, B.L.; Bishayee, A.; Arunasree, K.M.; Philip, G.H.; Dharmapuri, G.; Aliev, G.; Putta, S.; Rangaiah, G. Synthesis of new secretory phospholipase A2-inhibitory indole containing isoxazole derivatives as anti-inflammatory and anticancer agents. Eur. J. Med. Chem., 2016, 112, 289-297.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.025] [PMID: 26907155]
[31]
Kumar, C.; Veeresh, B.; Ramesha, K.; Raj, C.; Mahadevaiah, K.; Prasad, S.; Naveen, S.; Madaiah, M.; Rangappa, K. Antidiabetic studies of 1-benzhydryl-piperazine sulfonamide and carboxamide derivatives. J Applicable Chem, 2017, 6(2), 232-240.
[32]
Majewsky, M.; Wagner, D.; Delay, M.; Bräse, S.; Yargeau, V.; Horn, H. Antibacterial activity of sulfamethoxazole transformation products (TPs): General relevance for sulfonamide TPs modified at the para position. Chem. Res. Toxicol., 2014, 27(10), 1821-1828.
[http://dx.doi.org/10.1021/tx500267x] [PMID: 25211553]
[33]
Mani, S.S.R.; Iyyadurai, R. Cloxacillin induced agranulocytosis: A rare adverse event of a commonly used antibiotic. Int. J. Immunopathol. Pharmacol., 2017, 30(3), 297-301.
[http://dx.doi.org/10.1177/0394632017724320] [PMID: 28786715]
[34]
Conti, P.; Roda, G.; Stabile, H.; Vanoni, M.A.; Curti, B.; De Amici, M. Synthesis and biological evaluation of new amino acids structurally related to the antitumor agent acivicin. Farmaco, 2003, 58(9), 683-690.
[http://dx.doi.org/10.1016/S0014-827X(03)00107-1] [PMID: 13679161]
[35]
Cheng, L.; Wang, H.; Wang, Z.; Huang, H.; Zhuo, D.; Lin, J. Leflunomide inhibits proliferation and induces apoptosis via suppressing autophagy and PI3K/Akt signaling pathway in human bladder cancer cells. Drug Des. Devel. Ther., 2020, 14, 1897-1908.
[http://dx.doi.org/10.2147/DDDT.S252626] [PMID: 32546957]
[36]
Assali, M.; Abualhasan, M.; Sawaftah, H.; Hawash, M.; Mousa, A. Synthesis, biological activity, and molecular modeling studies of pyrazole and triazole derivatives as selective COX-2 inhibitors. J. Chem., 2020, 2020, 6393428.
[37]
Khalil, A.; Jaradat, N.; Hawash, M.; Issa, L. In vitro biological evaluation of benzodioxol derivatives as antimicrobial and antioxidant agents. Arab. J. Sci. Eng., 2021, 46(6), 5447-5453.
[http://dx.doi.org/10.1007/s13369-021-05332-0]
[38]
Nacak, S.; ÖKÇELİK, B.; ÜNLÜ, S.; ŞAHİN, S.; ÖZKAN, S.; ABBASOĞLU, S. Synthesis and antimicrobial activity of some new mannich bases of 7-acyl-5-chloro-2-oxo-3H-benzoxazole derivatives. Turkish J. Pharm. Sci, 2005, 2(1), 25-33.
[39]
Hawash, M.; Jaradat, N.; Hameedi, S.; Mousa, A. Design, synthesis and biological evaluation of novel benzodioxole derivatives as COX inhibitors and cytotoxic agents. BMC Chem., 2020, 14(1), 54.
[http://dx.doi.org/10.1186/s13065-020-00706-1] [PMID: 32944715]
[40]
Jaradat, N.; Khasati, A.; Hawi, M.; Qadi, M.; Amer, J.; Hawash, M. In vitro antitumor, antibacterial, and antifungal activities of phenylthio-ethyl benzoate derivatives. Arab. J. Sci. Eng., 2021, 46(6), 5339-5344.
[http://dx.doi.org/10.1007/s13369-020-05114-0]
[41]
Jaradat, N.; Hawash, M.; Murad, N.A. Synthesis and biological evaluation of benzodioxol derivatives as cyclooxygenase Inhibitors. Lett. Drug Des. Discov., 2020, 17(1), 1117-1125.
[http://dx.doi.org/10.2174/1570180817999200420114402]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy