Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Predicting Binding Affinity Between MHC-I Receptor and Peptides Based on Molecular Docking and Protein-peptide Interaction Interface Characteristics

Author(s): Songtao Huang and Yanrui Ding*

Volume 20, Issue 12, 2023

Published on: 22 September, 2022

Page: [1982 - 1993] Pages: 12

DOI: 10.2174/1570180819666220819102035

Price: $65

conference banner
Abstract

Background: Predicting protein-peptide binding affinity is one of the leading research subjects in peptide drug design and repositioning. In previous studies, models constructed by researchers just used features of peptide structures. These features had limited information and could not describe the proteinpeptide interaction mode. This made models and predicted results lack interpretability in pharmacy and biology, which led to the protein-peptide interaction mode not being reflected. Therefore, it was of little significance for the design of peptide drugs.

Objective: Considering the protein-peptide interaction mode, we extracted protein-peptide interaction interface characteristics and built machine learning models to improve the performance and enhance the interpretability of models.

Methods: Taking MHC-I protein and its binding peptides as the research object, protein-peptide complexes were obtained by molecular docking, and 94 protein-peptide interaction interface characteristics were calculated. Then ten important features were selected using recursive feature elimination to construct SVR, RF, and MLP models to predict protein-peptide binding affinity.

Results: The MAE of the SVR, RF and MLP models constructed using protein-peptide interaction interface characteristics are 0.2279, 0.2939 and 0.2041, their MSE are 0.1289, 0.1308 and 0.0780, and their R2 reached 0.8711, 0.8692 and 0.9220, respectively.

Conclusion: The model constructed using protein-peptide interaction interface characteristics showed better prediction results. The key features for predicting protein-peptide binding affinity are the bSASA of negatively charged species, hydrogen bond acceptor, hydrophobic group, planarity, and aromatic ring.

Keywords: MHC-I protein, binding affinity, protein-peptide interaction, molecular docking, recursive feature elimination, machine learning.

Graphical Abstract
[1]
Gottlieb, M.S.; Schroff, R.; Schanker, H.M.; Weisman, J.D.; Fan, P.T.; Wolf, R.A.; Saxon, A. Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men: Evidence of a new acquired cellular immunodeficiency. N. Engl. J. Med., 1981, 305(24), 1425-1431.
[http://dx.doi.org/10.1056/NEJM198112103052401] [PMID: 6272109]
[2]
Mahy, M.I.; Sabin, K.M.; Feizzadeh, A.; Wanyeki, I. Progress towards 2020 global HIV impact and treatment targets. J. Int. AIDS Soc., 2021, 24(5), 25779.
[http://dx.doi.org/10.1002/jia2.25779]
[3]
Esposito, I.; Labarga, P.; Barreiro, P.; Fernandez-Montero, J.V.; de Mendoza, C.; Benítez-Gutiérrez, L.; Peña, J.M.; Soriano, V. Dual antiviral therapy for HIV and hepatitis C - drug interactions and side effects. Expert Opin. Drug Saf., 2015, 14(9), 1421-1434.
[http://dx.doi.org/10.1517/14740338.2015.1073258] [PMID: 26212044]
[4]
Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des., 2013, 81(1), 136-147.
[http://dx.doi.org/10.1111/cbdd.12055] [PMID: 23253135]
[5]
Ercan, I.; Tufekci, K.U.; Karaca, E.; Genc, S.; Genc, K. Peptide derivatives of erythropoietin in the treatment of neuroinflammation and neurodegeneration. Adv. Protein Chem. Struct. Biol., 2018, 112, 309-357.
[http://dx.doi.org/10.1016/bs.apcsb.2018.01.007] [PMID: 29680240]
[6]
Agrawal, P.; Bhagat, D.; Mahalwal, M.; Sharma, N.; Raghava, G.P.S. AntiCP 2.0: An updated model for predicting anticancer peptides. Brief. Bioinform., 2021, 22(3), bbaa153.
[http://dx.doi.org/10.1093/bib/bbaa153] [PMID: 32770192]
[7]
Kumar, V.; Patiyal, S.; Dhall, A.; Sharma, N.; Raghava, G.P.S. B3Pred: A random-forest-based method for predicting and designing blood-brain barrier penetrating peptides. Pharmaceutics, 2021, 13(8), 1237.
[http://dx.doi.org/10.3390/pharmaceutics13081237] [PMID: 34452198]
[8]
Xu, D.; Wu, Y.; Cheng, Z.; Yang, J.; Ding, Y. ACHP: A web server for predicting anti-cancer peptide and anti-hypertensive peptide. Int. J. Pept. Res. Ther., 2021, 27(3), 1933-1944.
[http://dx.doi.org/10.1007/s10989-021-10222-y]
[9]
Hu, Z.; Ott, P.A.; Wu, C.J. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat. Rev. Immunol., 2018, 18(3), 168-182.
[http://dx.doi.org/10.1038/nri.2017.131] [PMID: 29226910]
[10]
Stefanucci, A.; Pinnen, F.; Feliciani, F.; Cacciatore, I.; Lucente, G.; Mollica, A. Conformationally constrained histidines in the design of peptidomimetics: Strategies for the χ-space control. Int. J. Mol. Sci., 2011, 12(5), 2853-2890.
[http://dx.doi.org/10.3390/ijms12052853] [PMID: 21686155]
[11]
Feliciani, F.; Pinnen, F.; Stefanucci, A.; Costante, R.; Cacciatore, I.; Lucente, G.; Mollica, A. Structure-activity relationships of biphalin analogs and their biological evaluation on opioid receptors. Mini Rev. Med. Chem., 2013, 13(1), 11-33.
[http://dx.doi.org/10.2174/138955713804484776] [PMID: 22512573]
[12]
Mollica, A.; Costante, R.; Stefanucci, A.; Pinnen, F.; Lucente, G.; Fidanza, S.; Pieretti, S. Antinociceptive profile of potent opioid peptide AM94, a fluorinated analogue of biphalin with nonhydrazine linker. J. Pept. Sci., 2013, 19(4), 233-239.
[http://dx.doi.org/10.1002/psc.2465] [PMID: 23136069]
[13]
Hau, T.T.T.; Nakamura-Hoshi, M.; Kanno, Y.; Nomura, T.; Nishizawa, M.; Seki, S.; Ishii, H.; Kawana-Tachikawa, A.; Hall, W.W.; Nguyen Thi, L.A.; Matano, T.; Yamamoto, H. CD8+ T cell-based strong selective pressure on multiple simian immunodeficiency virus targets in macaques possessing a protective MHC class I haplotype. Biochem. Biophys. Res. Commun., 2019, 512(2), 213-217.
[http://dx.doi.org/10.1016/j.bbrc.2019.03.003] [PMID: 30878187]
[14]
Choma, M.K.; Lumb, J.; Kozik, P.; Robinson, M.S. A genomewide screen for machinery involved in downregulation of MHC class I by HIV-1 Nef. PLoS One, 2015, 10(10), e0140404.
[http://dx.doi.org/10.1371/journal.pone.0140404] [PMID: 26466362]
[15]
Boucau, J.; Madouasse, J.; Kourjian, G.; Carlin, C.S.; Wambua, D.; Berberich, M.J.; Le Gall, S. The activation state of CD4 T cells alters cellular peptidase activities, HIV antigen processing, and MHC class I presentation in a sequence-dependent manner. J. Immunol., 2019, 202(10), 2856-2872.
[http://dx.doi.org/10.4049/jimmunol.1700950] [PMID: 30936293]
[16]
Edholm, E.I.; De Jesús Andino, F.; Yim, J.; Woo, K.; Robert, J. Critical role of an MHC class I-like/innate-like T cell immune surveillance system in host defense against ranavirus (frog virus 3) infection. Viruses, 2019, 11(4), E330.
[http://dx.doi.org/10.3390/v11040330] [PMID: 30959883]
[17]
Niu, T.K.; Princiotta, M.F.; Sei, J.J.; Norbury, C.C. Analysis of MHC class I processing pathways that generate a response to vaccinia virus late proteins. Immunohorizons, 2019, 3(12), 559-572.
[http://dx.doi.org/10.4049/immunohorizons.1900074] [PMID: 31791977]
[18]
Poluektov, Y.; George, M.; Daftarian, P.; Delcommenne, M.C. Assessment of SARS-CoV-2 specific CD4(+) and CD8 (+) T cell responses using MHC class I and II tetramers. Vaccine, 2021, 39(15), 2110-2116.
[http://dx.doi.org/10.1016/j.vaccine.2021.03.008] [PMID: 33744048]
[19]
Valencia, S.; Gill, R.B.; Dowdell, K.C.; Wang, Y.; Hornung, R.; Bowman, J.J.; Lacayo, J.C.; Cohen, J.I. Comparison of vaccination with rhesus CMV (RhCMV) soluble gB with a RhCMV replication-defective virus deleted for MHC class I immune evasion genes in a RhCMV challenge model. Vaccine, 2019, 37(2), 333-342.
[http://dx.doi.org/10.1016/j.vaccine.2018.08.043] [PMID: 30522906]
[20]
Franzoni, G.; Kurkure, N.V.; Essler, S.E.; Pedrera, M.; Everett, H.E.; Bodman-Smith, K.B.; Crooke, H.R.; Graham, S.P. Proteome-wide screening reveals immunodominance in the CD8 T cell response against classical swine fever virus with antigen-specificity dependent on MHC class I haplotype expression. PLoS One, 2013, 8(12), e84246.
[http://dx.doi.org/10.1371/journal.pone.0084246] [PMID: 24376799]
[21]
Yin, W.; Gorvel, L.; Zurawski, S.; Li, D.; Ni, L.; Duluc, D.; Upchurch, K.; Kim, J.; Gu, C.; Ouedraogo, R.; Wang, Z.; Xue, Y.; Joo, H.; Gorvel, J.P.; Zurawski, G.; Oh, S. Functional specialty of CD40 and dendritic cell surface lectins for exogenous antigen presentation to CD8(+) and CD4(+) T cells. EBioMedicine, 2016, 5, 46-58.
[http://dx.doi.org/10.1016/j.ebiom.2016.01.029] [PMID: 27077111]
[22]
Wearsch, P.A.; Peaper, D.R.; Cresswell, P. Essential glycan-dependent interactions optimize MHC class I peptide loading. Proc. Natl. Acad. Sci. USA, 2011, 108(12), 4950-4955.
[http://dx.doi.org/10.1073/pnas.1102524108] [PMID: 21383180]
[23]
Hinz, A.; Jedamzick, J.; Herbring, V.; Fischbach, H.; Hartmann, J.; Parcej, D.; Koch, J.; Tampé, R. Assembly and function of the major histocompatibility complex (MHC) I peptide-loading complex are conserved across higher vertebrates. J. Biol. Chem., 2014, 289(48), 33109-33117.
[http://dx.doi.org/10.1074/jbc.M114.609263] [PMID: 25320083]
[24]
Adiko, A.C.; Babdor, J.; Gutiérrez-Martínez, E.; Guermonprez, P.; Saveanu, L. Intracellular transport routes for MHC I and their relevance for antigen cross-presentation. Front. Immunol., 2015, 6, 335.
[http://dx.doi.org/10.3389/fimmu.2015.00335] [PMID: 26191062]
[25]
Hu, Y.; Wang, Z.; Hu, H.; Wan, F.; Chen, L.; Xiong, Y.; Wang, X.; Zhao, D.; Huang, W.; Zeng, J. ACME: Pan-specific peptide-MHC class I binding prediction through attention-based deep neural networks. Bioinformatics, 2019, 35(23), 4946-4954.
[http://dx.doi.org/10.1093/bioinformatics/btz427] [PMID: 31120490]
[26]
Jurtz, V.; Paul, S.; Andreatta, M.; Marcatili, P.; Peters, B.; Nielsen, M. NetMHCpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J. Immunol., 2017, 199(9), 3360-3368.
[http://dx.doi.org/10.4049/jimmunol.1700893] [PMID: 28978689]
[27]
Han, Y.; Kim, D. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction. BMC Bioinformatics, 2017, 18(1), 585.
[http://dx.doi.org/10.1186/s12859-017-1997-x] [PMID: 29281985]
[28]
Feng, P.; Zeng, J.; Ma, J. Predicting MHC-peptide binding affinity by differential boundary tree. Bioinformatics, 2021, 37(Suppl. 1), i254-i261.
[http://dx.doi.org/10.1093/bioinformatics/btab312] [PMID: 34252932]
[29]
Castle, J.C.; Uduman, M.; Pabla, S.; Stein, R.B.; Buell, J.S. Mutation-derived neoantigens for cancer immunotherapy. Front. Immunol., 2019, 10, 1856.
[http://dx.doi.org/10.3389/fimmu.2019.01856] [PMID: 31440245]
[30]
Fan, J.; Fu, A.; Zhang, L. Progress in molecular docking. Quant. Biol., 2019, 7(2), 83-89.
[http://dx.doi.org/10.1007/s40484-019-0172-y]
[31]
Rognan, D. Proteome-scale docking: Myth and reality. Drug Discov. Today. Technol., 2013, 10(3), e403-e409.
[http://dx.doi.org/10.1016/j.ddtec.2013.01.003] [PMID: 24050137]
[32]
Giguère, S.; Marchand, M.; Laviolette, F.; Drouin, A.; Corbeil, J. Learning a peptide-protein binding affinity predictor with kernel ridge regression. BMC Bioinformatics, 2013, 14, 82.
[http://dx.doi.org/10.1186/1471-2105-14-82] [PMID: 23497081]
[33]
Thakur, R.; Shankar, J. in silico identification of potential peptides or allergen shot candidates against aspergillus fumigatus. Biores. Open Access, 2016, 5(1), 330-341.
[http://dx.doi.org/10.1089/biores.2016.0035] [PMID: 27872794]
[34]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Autodock4 and autodocktools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[35]
Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. Autodock vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model., 2021, 61(8), 3891-3898.
[http://dx.doi.org/10.1021/acs.jcim.1c00203] [PMID: 34278794]
[36]
Antunes, D.A.; Moll, M.; Devaurs, D.; Jackson, K.R.; Lizée, G.; Kavraki, L.E. DINC 2.0: A new protein-peptide docking webserver using an incremental approach. Cancer Res., 2017, 77(21), e55-e57.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0511] [PMID: 29092940]
[37]
Xu, X.; Zou, X. MDockPeP: A web server for blind prediction of protein-peptide complex structures. Methods Mol. Biol., 2020, 2165, 259-272.
[http://dx.doi.org/10.1007/978-1-0716-0708-4_15] [PMID: 32621230]
[38]
Zhou, P.; Jin, B.; Li, H.; Huang, S.Y. HPEPDOCK: A web server for blind peptide-protein docking based on a hierarchical algorithm. Nucleic Acids Res., 2018, 46(W1), W443-W450.
[http://dx.doi.org/10.1093/nar/gky357] [PMID: 29746661]
[39]
Kurcinski, M.; Pawel Ciemny, M.; Oleniecki, T.; Kuriata, A.; Badaczewska-Dawid, A.E.; Kolinski, A.; Kmiecik, S. CABS-dock standalone: A toolbox for flexible protein-peptide docking. Bioinformatics, 2019, 35(20), 4170-4172.
[http://dx.doi.org/10.1093/bioinformatics/btz185] [PMID: 30865258]
[40]
de Vries, S.J.; Rey, J.; Schindler, C.E.M.; Zacharias, M.; Tuffery, P. The pepATTRACT web server for blind, large-scale peptide-protein docking. Nucleic Acids Res., 2017, 45(W1), W361-W364.
[http://dx.doi.org/10.1093/nar/gkx335] [PMID: 28460116]
[41]
Lee, H.; Heo, L.; Lee, M.S.; Seok, C. GalaxyPepDock: A protein-peptide docking tool based on interaction similarity and energy optimization. Nucleic Acids Res., 2015, 43(W1), W431-5.
[http://dx.doi.org/10.1093/nar/gkv495] [PMID: 25969449]
[42]
Weng, G.; Gao, J.; Wang, Z.; Wang, E.; Hu, X.; Yao, X.; Cao, D.; Hou, T. Comprehensive evaluation of fourteen docking programs on protein-peptide complexes. J. Chem. Theory Comput., 2020, 16(6), 3959-3969.
[http://dx.doi.org/10.1021/acs.jctc.9b01208] [PMID: 32324992]
[43]
Yan, Y.; Zhang, D.; Huang, S.Y. Efficient conformational ensemble generation of protein-bound peptides. J. Cheminform., 2017, 9(1), 59.
[http://dx.doi.org/10.1186/s13321-017-0246-7] [PMID: 29168051]
[44]
Huang, S.Y.; Zou, X. Ensemble docking of multiple protein structures: Considering protein structural variations in molecular docking. Proteins, 2007, 66(2), 399-421.
[http://dx.doi.org/10.1002/prot.21214] [PMID: 17096427]
[45]
Huang, S.Y.; Zou, X. Efficient molecular docking of NMR structures: Application to HIV-1 protease. Protein Sci., 2007, 16(1), 43-51.
[http://dx.doi.org/10.1110/ps.062501507] [PMID: 17123961]
[46]
Richards, F.M. Areas, volumes, packing and protein structure. Annu. Rev. Biophys. Bioeng., 1977, 6, 151-176.
[http://dx.doi.org/10.1146/annurev.bb.06.060177.001055] [PMID: 326146]
[47]
Ewing, T.J.; Makino, S.; Skillman, A.G.; Kuntz, I.D. DOCK 4.0: Search strategies for automated molecular docking of flexible molecule databases. J. Comput. Aided Mol. Des., 2001, 15(5), 411-428.
[http://dx.doi.org/10.1023/A:1011115820450] [PMID: 11394736]
[48]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[49]
Lu, J.; Hou, X.; Wang, C.; Zhang, Y. Incorporating explicit water molecules and ligand conformation stability in machine-learning scoring functions. J. Chem. Inf. Model., 2019, 59(11), 4540-4549.
[http://dx.doi.org/10.1021/acs.jcim.9b00645] [PMID: 31638801]
[50]
Louppe, G.; Wehenkel, L.; Sutera, A.; Geurts, P. Understanding variable importances in forests of randomized trees. In: Advances in Neural Information Processing Systems; , 2013; pp. 431-439.
[51]
Tibshirani, R. Regression shrinkage and selection via the lasso: A retrospective. J. R. Stat. Soc. Series B Stat. Methodol., 2011, 73(3), 273-282.
[http://dx.doi.org/10.1111/j.1467-9868.2011.00771.x]
[52]
Zhang, Q.; Liu, P.; Wang, X.; Zhang, Y.; Han, Y.; Yu, B.; Stack, P.D.B. Predicting DNA-binding proteins based on XGB-RFE feature optimization and stacked ensemble classifier. Appl. Soft Comput., 2021, 99, 106921.
[http://dx.doi.org/10.1016/j.asoc.2020.106921]
[53]
Chen, T.; Guestrin, C. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 785-794.
[54]
Shen, H.B.; Chou, K.C. PseAAC: A flexible web server for generating various kinds of protein pseudo amino acid composition. Anal. Biochem., 2008, 373(2), 386-388.
[http://dx.doi.org/10.1016/j.ab.2007.10.012] [PMID: 17976365]
[55]
Kumar, P.; Vahedi-Faridi, A.; Saenger, W.; Ziegler, A.; Uchanska-Ziegler, B. Conformational changes within the HLA-A1:MAGE-A1 complex induced by binding of a recombinant antibody fragment with TCR-like specificity. Protein Sci., 2009, 18(1), 37-49.
[PMID: 19177349]
[56]
Remesh, S.G.; Andreatta, M.; Ying, G.; Kaever, T.; Nielsen, M.; McMurtrey, C.; Hildebrand, W.; Peters, B.; Zajonc, D.M. Unconventional peptide presentation by major histocompatibility complex (MHC) class i allele HLA-A*02:01: Breaking confinement. J. Biol. Chem., 2017, 292(13), 5262-5270.
[http://dx.doi.org/10.1074/jbc.M117.776542] [PMID: 28179428]
[57]
Hülsmeyer, M.; Chames, P.; Hillig, R.C.; Stanfield, R.L.; Held, G.; Coulie, P.G.; Alings, C.; Wille, G.; Saenger, W.; Uchanska-Ziegler, B.; Hoogenboom, H.R.; Ziegler, A. A major histocompatibility complex-peptide-restricted antibody and t cell receptor molecules recognize their target by distinct binding modes: Crystal structure of human leukocyte antigen (HLA)-A1-MAGE-A1 in complex with FAB-HYB3. J. Biol. Chem., 2005, 280(4), 2972-2980.
[http://dx.doi.org/10.1074/jbc.M411323200] [PMID: 15537658]
[58]
Li, X.; Miltschitzky, S.; König, B. Luminescent pyrimidine hydrazide oligomers with peptide affinity. Bioorg. Med. Chem., 2006, 14(17), 6075-6084.
[http://dx.doi.org/10.1016/j.bmc.2006.05.003] [PMID: 16714117]
[59]
Wang, W.; Woodbury, N.W. Selective protein-peptide interactions at surfaces. Acta Biomater., 2014, 10(2), 761-768.
[http://dx.doi.org/10.1016/j.actbio.2013.10.025] [PMID: 24184177]
[60]
Balliu, A.; Baltzer, L. Exploring non-obvious hydrophobic binding pockets on protein surfaces: Increasing affinities in peptide-protein interactions. ChemBioChem, 2017, 18(14), 1396-1407.
[http://dx.doi.org/10.1002/cbic.201700048] [PMID: 28432776]
[61]
Guedes, I.A.; de Magalhães, C.S.; Dardenne, L.E. Receptor-ligand molecular docking. Biophys. Rev., 2014, 6(1), 75-87.
[http://dx.doi.org/10.1007/s12551-013-0130-2] [PMID: 28509958]
[62]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19(14), 1639-1662.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B]
[63]
Dhanik, A.; McMurray, J.S.; Kavraki, L.E. DINC: A new autodock-based protocol for docking large ligands. BMC Struct. Biol., 2013, 13(1), 11.
[http://dx.doi.org/10.1186/1472-6807-13-S1-S11]
[64]
Vengadesan, K.; Gautham, N. Enhanced sampling of the molecular potential energy surface using mutually orthogonal latin squares: Application to peptide structures. Biophys. J., 2003, 84(5), 2897-2906.
[http://dx.doi.org/10.1016/S0006-3495(03)70017-4] [PMID: 12719222]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy