Review Article

The Use of Machine Learning in MicroRNA Diagnostics: Current Perspectives

Author(s): Chrysanthos D. Christou*, Angelos C. Mitsas, Ioannis Vlachavas and Georgios Tsoulfas

Volume 11, Issue 3, 2022

Published on: 07 October, 2022

Page: [175 - 184] Pages: 10

DOI: 10.2174/2211536611666220818145553

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

MicroRNAs constitute small non-coding RNAs that play a pivotal role in regulating the translation and degradation of mRNA and have been associated with many diseases. Artificial Intelligence (AI) is an evolving cluster of interrelated fields, with machine learning (ML) standing out as one of the most prominent AI fields, with a plethora of applications in almost every aspect of human life. ML could be defined as computer algorithms that learn from past data to predict future data. This review comprehensively reviews the current applications of microRNA-based ML models in healthcare. The majority of the identified studies investigated the role of microRNA-based ML models in the management of cancer and specifically gastric cancer (maximum diagnostic accuracy (Accmax): 94%), pancreatic cancer (Accmax: 93%), colorectal cancer (Accmax: 100%), breast cancer (Accmax: 97%), ovarian cancer, neck squamous cell carcinoma, liver cancer, lung cancer (Accmax: 100%), and melanoma. Except for cancer, microRNA-based ML models have been applied for a plethora of other diseases, including ulcerative colitis (Accmax: 92.8%), endometriosis, gestational diabetes mellitus (Accmax: 86%), hearing loss, ischemic stroke, coronary heart disease (Accmax: 96%), tuberculosis, pulmonary arterial hypertension (Accmax: 83%), dementia (Accmax: 82.9%), major cardiovascular events in end-stage renal disease patients, and alcohol dependence (Accmax: 79.1%). Our findings suggest that the development of microRNA-based ML models could be used to enhance the diagnostic accuracy of a plethora of diseases while at the same time substituting or minimizing the use of more invasive diagnostic means (such as endoscopy). Even not as fast as anticipated, AI will eventually infiltrate the entire healthcare industry. AI is the key to a clinical practice where medicine's inherent complexity is embraced. Therefore, AI will become a reality that physicians should conform with to avoid becoming obsolete.

Keywords: Computer algorithms, liver cancer, gestational diabetes mellitus, alcohol dependence, artificial intelligence, Alzheimer’s disease.

Next »
Graphical Abstract
[1]
Bushati N, Cohen SM. MicroRNA functions. Annu Rev Cell Dev Biol 2007; 23(1): 175-205.
[http://dx.doi.org/10.1146/annurev.cellbio.23.090506.123406] [PMID: 17506695]
[2]
Fridrichova I, Zmetakova I. MicroRNAs contribute to breast cancer invasiveness. Cells 2019; 8(11): E1361.
[http://dx.doi.org/10.3390/cells8111361] [PMID: 31683635]
[3]
Lu M, Zhang Q, Deng M, et al. An analysis of human microRNA and disease associations. PLoS One 2008; 3(10): e3420.
[http://dx.doi.org/10.1371/journal.pone.0003420] [PMID: 18923704]
[4]
Çakmak HA, Demir M. MicroRNA and cardiovascular diseases. Balkan Med J 2020; 37(2): 60-71.
[PMID: 32018347]
[5]
Christou CD, Tsoulfas G. The role of microRNA in hepatic ischemia/reperfusion injury. MicroRNA 2020; 9(4): 248-54.
[http://dx.doi.org/10.2174/2211536609666200129162531] [PMID: 31995027]
[6]
Rupaimoole R, Slack FJ. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 2017; 16(3): 203-22.
[http://dx.doi.org/10.1038/nrd.2016.246] [PMID: 28209991]
[7]
Hanna J, Hossain GS, Kocerha J. The potential for microRNA therapeutics and clinical research. Front Genet 2019; 10: 478.
[http://dx.doi.org/10.3389/fgene.2019.00478] [PMID: 31156715]
[8]
E. A. I. resource centre. ArtificiaI Intelligence : How knowledge is created, transferred, and used Artificial Intelligence: A multifaceted field. Summ Key Find 2018; 12
[9]
Russell SJ. Artificial Intelligence: A Modern Approach. Upper Saddle River, NJ, USA: Pearson 2016.
[10]
Cruz JA, Wishart DS. Applications of machine learning in cancer prediction and prognosis. Cancer Inform 2007; 2: 59-77.
[PMID: 19458758]
[11]
Christou CD, Tsoulfas G. Challenges and opportunities in the application of artificial intelligence in gastroenterology and hepatology. World J Gastroenterol 2021; 27(37): 6191-223.
[http://dx.doi.org/10.3748/wjg.v27.i37.6191] [PMID: 34712027]
[12]
Patel UK, Anwar A, Saleem S, et al. Artificial intelligence as an emerging technology in the current care of neurological disorders. J Neurol 2021; 268(5): 1623-42.
[http://dx.doi.org/10.1007/s00415-019-09518-3] [PMID: 31451912]
[13]
Yepes S, López R, Andrade RE, Rodriguez-Urrego PA, López-Kleine L, Torres MM. Co-expressed miRNAs in gastric adenocarcinoma. Genomics 2016; 108(2): 93-101.
[http://dx.doi.org/10.1016/j.ygeno.2016.07.002] [PMID: 27422560]
[14]
Huang Y, Zhu J, Li W, et al. Serum microRNA panel excavated by machine learning as a potential biomarker for the detection of gastric cancer. Oncol Rep 2018; 39(3): 1338-46.
[http://dx.doi.org/10.3892/or.2017.6163] [PMID: 29286167]
[15]
Savareh AB, Aghdaie HA, Behmanesh A, et al. A machine learning approach identified a diagnostic model for pancreatic cancer through using circulating microRNA signatures. Pancreatology 2020; 20(6): 1195-204.
[http://dx.doi.org/10.1016/j.pan.2020.07.399]
[16]
Afshar S, Afshar S, Warden E, Manochehri H, Saidijam M. Application of artificial neural network in miRNA biomarker selection and precise diagnosis of colorectal cancer. Iran Biomed J 2019; 23(3): 175-83.
[http://dx.doi.org/10.29252/ibj.23.3.175] [PMID: 30056689]
[17]
Duttagupta R, DiRienzo S, Jiang R, et al. Genome-wide maps of circulating miRNA biomarkers for ulcerative colitis. PLoS One 2012; 7(2): e31241.
[http://dx.doi.org/10.1371/journal.pone.0031241] [PMID: 22359580]
[18]
Morilla I, Uzzan M, Laharie D, et al. Colonic MicroRNA profiles, identified by a deep learning algorithm, that predict responses to therapy of patients with acute severe ulcerative colitis. Clin Gastroenterol Hepatol 2019; 17(5): 905-13.
[http://dx.doi.org/10.1016/j.cgh.2018.08.068] [PMID: 30223112]
[19]
Sherafatian M. Tree-based machine learning algorithms identified minimal set of miRNA biomarkers for breast cancer diagnosis and molecular subtyping. Gene 2018; 677: 111-8.
[http://dx.doi.org/10.1016/j.gene.2018.07.057] [PMID: 30055304]
[20]
Lopez-Rincon A, Mendoza-Maldonado L, Martinez-Archundia M, et al. Machine learning-based ensemble recursive feature selection of circulating mirnas for cancer tumor classification. Cancers (Basel) 2020; 12(7): E1785.
[http://dx.doi.org/10.3390/cancers12071785] [PMID: 32635415]
[21]
MotieGhader H. Masoudi-Sobhanzadeh Y, Ashtiani SH, Masoudi-Nejad A. mRNA and microRNA selection for breast cancer molecular subtype stratification using meta-heuristic based algorithms. Genomics 2020; 112(5): 3207-17.
[http://dx.doi.org/10.1016/j.ygeno.2020.06.014] [PMID: 32526247]
[22]
Yerukala Sathipati S, Ho S-Y. Identifying a miRNA signature for predicting the stage of breast cancer. Sci Rep 2018; 8(1): 16138.
[http://dx.doi.org/10.1038/s41598-018-34604-3] [PMID: 30382159]
[23]
Dong J, Xu M. A 19-miRNA support vector machine classifier and a 6-miRNA risk score system designed for ovarian cancer patients. Oncol Rep 2019; 41(6): 3233-43.
[http://dx.doi.org/10.3892/or.2019.7108] [PMID: 31002358]
[24]
Shi C, Yang Y, Zhang L, et al. Optimal subset of signature miRNAs consisting of 7 miRNAs that can serve as a novel diagnostic and prognostic predictor for the progression of cervical cancer. Oncol Rep 2019; 41(6): 3167-78.
[http://dx.doi.org/10.3892/or.2019.7097] [PMID: 30942460]
[25]
Ding D, Lang T, Zou D, et al. Machine learning-based prediction of survival prognosis in cervical cancer. BMC Bioinformatics 2021; 22(1): 331.
[http://dx.doi.org/10.1186/s12859-021-04261-x] [PMID: 34134623]
[26]
Moustafa S, Burn M, Mamillapalli R, Nematian S, Flores V, Taylor HS. Accurate diagnosis of endometriosis using serum microRNAs. Am J Obstet Gynecol 2020; 223(4): 557.e1-557.e11.
[http://dx.doi.org/10.1016/j.ajog.2020.02.050] [PMID: 32165186]
[27]
Yoffe L, Polsky A, Gilam A, et al. Early diagnosis of gestational diabetes mellitus using circulating microRNAs. Eur J Endocrinol 2019; 181(5): 565-77.
[http://dx.doi.org/10.1530/EJE-19-0206] [PMID: 31539877]
[28]
Liu C, Yu Z, Huang S, et al. Combined identification of three miRNAs in serum as effective diagnostic biomarkers for HNSCC. EBioMedicine 2019; 50: 135-43.
[http://dx.doi.org/10.1016/j.ebiom.2019.11.016] [PMID: 31780396]
[29]
Xia Y, Wang Q, Huang X, et al. MiRNA-based feature classifier is associated with tumor mutational burden in head and neck squamous cell carcinoma. BioMed Res Int 2020; 2020: 1686480.
[http://dx.doi.org/10.1155/2020/1686480] [PMID: 33490233]
[30]
Shew M, Wichova H, Bur A, et al. MicroRNA profiling as a methodology to diagnose ménière’s disease: Potential application of machine learning. Otolaryngol Head Neck Surg 2021; 164(2): 399-406.
[http://dx.doi.org/10.1177/0194599820940649] [PMID: 32663060]
[31]
Shew M, New J, Wichova H, Koestler DC, Staecker H. Using machine learning to predict sensorineural hearing loss based on perilymph micro RNA expression profile. Sci Rep 2019; 9(1): 3393.
[http://dx.doi.org/10.1038/s41598-019-40192-7] [PMID: 30833669]
[32]
Zhao X, Chen X, Wu X, et al. Machine learning analysis of MicroRNA expression data reveals novel diagnostic biomarker for ischemic stroke. Dis Off J Natl Stroke Assoc 2021; 30(8): 105825.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2021.105825] [PMID: 34022583]
[33]
Kayvanpour E, Gi WT, Sedaghat-Hamedani F, et al. MicroRNA neural networks improve diagnosis of acute coronary syndrome (ACS). J Mol Cell Cardiol 2021; 151: 155-62.
[http://dx.doi.org/10.1016/j.yjmcc.2020.04.014] [PMID: 32305360]
[34]
Zhao X, Dou J, Cao J, et al. Uncovering the potential differentially expressed miRNAs as diagnostic biomarkers for hepatocellular carcinoma based on machine learning in The Cancer Genome Atlas database. Oncol Rep 2020; 43(6): 1771-84.
[http://dx.doi.org/10.3892/or.2020.7551] [PMID: 32236623]
[35]
Chaudhary K, Poirion OB, Lu L, Garmire LX. Deep learning-based multi-omics integration robustly predicts survival in liver cancer. Clin Cancer Res 2018; 24(6): 1248-59.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0853] [PMID: 28982688]
[36]
Hu X, Liao S, Bai H, et al. Integrating exosomal microRNAs and electronic health data improved tuberculosis diagnosis. EBioMedicine 2019; 40: 564-73.
[http://dx.doi.org/10.1016/j.ebiom.2019.01.023] [PMID: 30745169]
[37]
Errington N, Iremonger J, Pickworth JA, et al. A diagnostic miRNA signature for pulmonary arterial hypertension using a consensus machine learning approach. EBioMedicine 2021; 69: 103444.
[http://dx.doi.org/10.1016/j.ebiom.2021.103444] [PMID: 34186489]
[38]
Ye Z, Sun B, Xiao Z. Machine learning identifies 10 feature miRNAs for lung squamous cell carcinoma. Gene 2020; 749: 144669.
[http://dx.doi.org/10.1016/j.gene.2020.144669] [PMID: 32298761]
[39]
Shigemizu D, Akiyama S, Asanomi Y, et al. A comparison of machine learning classifiers for dementia with Lewy bodies using miRNA expression data. BMC Med Genomics 2019; 12(1): 150.
[http://dx.doi.org/10.1186/s12920-019-0607-3] [PMID: 31666070]
[40]
Ludwig N, Fehlmann T, Kern F, et al. Machine learning to detect Alzheimer’s disease from circulating non-coding RNAs. Genomics Proteomics Bioinformatics 2019; 17(4): 430-40.
[http://dx.doi.org/10.1016/j.gpb.2019.09.004] [PMID: 31809862]
[41]
Torres R, Lang UE, Hejna M, et al. MicroRNA ratios distinguish melanomas from nevi. J Invest Dermatol 2020; 140(1): 164-173.e7.
[http://dx.doi.org/10.1016/j.jid.2019.06.126] [PMID: 31580842]
[42]
de Gonzalo-Calvo D, Martínez-Camblor P, Bär C, et al. Improved cardiovascular risk prediction in patients with end-stage renal disease on hemodialysis using machine learning modeling and circulating microribonucleic acids. Theranostics 2020; 10(19): 8665-76.
[http://dx.doi.org/10.7150/thno.46123] [PMID: 32754270]
[43]
Chen L, Sun H, Wang C, Yang Y, Zhang M, Wong G. miRNA arm switching identifies novel tumour biomarkers. EBioMedicine 2018; 38: 37-46.
[http://dx.doi.org/10.1016/j.ebiom.2018.11.003] [PMID: 30425004]
[44]
Rosato AJ, Chen X, Tanaka Y, et al. Salivary microRNAs identified by small RNA sequencing and machine learning as potential biomarkers of alcohol dependence. Epigenomics 2019; 11(7): 739-49.
[http://dx.doi.org/10.2217/epi-2018-0177] [PMID: 31140863]
[45]
Jović A, Brkić K, Bogunović N. A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO);. 2015 May 25-29; Opatija, Croatia ; pp. 1200-5.
[http://dx.doi.org/10.1109/MIPRO.2015.7160458]
[46]
Singh A, Thakur N, Sharma A. A review of supervised machine learning algorithms. In: 3rd International Conference on Computing for Sustainable Global Development (INDIACom). 2016 Mar 16-18; New Delhi, India; pp. 1310-5.
[47]
E. N. A. of Sciences and Medicine. Artificial Intelligence and Machine Learning to Accelerate Translational Research: Proceedings of a Workshop-In Brief. Washington (DC): National Academies Press (US). 2018.
[48]
Ruffle JK, Farmer AD, Aziz Q. Artificial intelligence-assisted gastroenterology- promises and pitfalls. Am J Gastroenterol 2019; 114(3): 422-8.
[http://dx.doi.org/10.1038/s41395-018-0268-4] [PMID: 30315284]
[49]
Ethical, social, and political challenges of artificial intelligence in health. 2018. Available from: https://wellcome.org/sites/default/files/ai-in-health-ethical-social-political-challenges.pdf
[50]
Christou CD, Tsoulfas G. Role of three-dimensional printing and artificial intelligence in the management of hepatocellular carcinoma: Challenges and opportunities. World J Gastrointest Oncol 2022; 14(4): 765-93.
[http://dx.doi.org/10.4251/wjgo.v14.i4.765] [PMID: 35582107]
[51]
Patel VL, Shortliffe EH, Stefanelli M, et al. The coming of age of artificial intelligence in medicine. Artif Intell Med 2009; 46(1): 5-17.
[http://dx.doi.org/10.1016/j.artmed.2008.07.017] [PMID: 18790621]
[52]
Panesar S, Cagle Y, Chander D, Morey J, Fernandez-Miranda J, Kliot M. Artificial intelligence and the future of surgical robotics. Ann Surg 2019; 270(2): 223-6.
[http://dx.doi.org/10.1097/SLA.0000000000003262] [PMID: 30907754]
[53]
Kassahun Y, Yu B, Tibebu AT, et al. Surgical robotics beyond enhanced dexterity instrumentation: A survey of machine learning techniques and their role in intelligent and autonomous surgical actions. Int J CARS 2016; 11(4): 553-68.
[http://dx.doi.org/10.1007/s11548-015-1305-z] [PMID: 26450107]
[54]
Wang DD, Qian Z, Vukicevic M, et al. 3D Printing, computational modeling, and artificial intelligence for structural heart disease. JACC Cardiovasc Imaging 2021; 14(1): 41-60.
[http://dx.doi.org/10.1016/j.jcmg.2019.12.022] [PMID: 32861647]
[55]
Volonté F, Pugin F, Bucher P, Sugimoto M, Ratib O, Morel P. Augmented reality and image overlay navigation with OsiriX in laparoscopic and robotic surgery: Not only a matter of fashion. J Hepatobiliary Pancreat Sci 2011; 18(4): 506-9.
[http://dx.doi.org/10.1007/s00534-011-0385-6] [PMID: 21487758]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy