Review Article

有机硒化合物的合成及抗氧化特性

卷 30, 期 21, 2023

发表于: 09 September, 2022

页: [2421 - 2448] 页: 28

弟呕挨: 10.2174/0929867329666220801165849

价格: $65

conference banner
摘要

背景:有机硒试剂的化学性质为有机合成提供了一种资产。这些试剂作为亲电试剂和亲核试剂的多功能性使它们成为有机合成的关键组分之一。在温和的反应条件下,使用有机硒试剂成功地实现了各种合成转化,如氧硒化、硒环化和硒氧化物消除。一些哺乳动物酶中硒代半胱氨酸的存在是硒化学家探索硒化合物生物化学的关键信息。众所周知,谷胱甘肽过氧化物酶 (GPx)是一种哺乳动物硒酶,可通过解毒活性氧来维持氧化还原平衡。 目的:旨在批判性地分析有机硒化合物的合成和抗氧化性能的最新进展和前景。 方法:在这篇综述中,我们总结了 PubMed 和 Scopus 数据库中的研究和综述论文。主要主题与有机硒化合物的合成及其在暴露于氧化应激时维持细胞氧化还原平衡的能力有关。 结果:研究表明,与硒化物相比,通过各种方法合成的二硒化物显示出更好的抗氧化活性。在少数情况下,活性被发现优于标准化合物依布硒啉。此外,还包括硒基纳米粒子的合成和抗氧化活性。 结论:在过去的二十年里,有机硒化合物的各种生物学特性得到了广泛的研究,包括抗氧化特性。这篇评论文章将深入了解不同类型的最近合成的有机硒化合物的合成。该综述将有助于药物化学领域的研究人员指导合成新的有机硒化合物作为抗氧化剂。

关键词: 有机硒,抗氧化活性,谷胱甘肽过氧化物酶模拟物,二硒,硒化物,酶。

[1]
Lowig, C.J. Poggendorff’s. Ann. Phys., 1836, 37, 552.
[2]
(a) Huguet, J.L. Oxidation of olefins catalyzed by selenium. Adv. Chem. Ser., 1967, 76, 345-351.
[http://dx.doi.org/10.1021/ba-1968-0076.ch051];
(b) Jones, D.N.; Mundy, D.; Whitehouse, R.D. Steroidal selenoxides diastereoisomeric at selenium; syn-elimination, absolute configuration, and optical rotatory dispersion characteristics. J. Chem. Soc. D, 1970, 86-87(2), 86.
[http://dx.doi.org/10.1039/c29700000086];
(c) Walter, R.; Roy, J. Selenomethionine, a potential catalytic antioxidant in biological systems. J. Org. Chem., 1971, 36(17), 2561-2563.
[http://dx.doi.org/10.1021/jo00816a045] [PMID: 5133874]
[3]
(a) Wilkins, L.C.; Günther, B.A.R.; Walther, M.; Lawson, J.R.; Wirth, T.; Melen, R.L. Contrasting frustrated lewis pair reactivity with selenium- and boron-based lewis acids. Angew. Chem. Int. Ed. Engl., 2016, 55(37), 11292-11295.
[http://dx.doi.org/10.1002/anie.201605239] [PMID: 27484052];
(b) Tancock, J.; Wirth, T. Selenium-mediated synthesis of tetrasubstituted naphthalenes through rearrangement. Molecules, 2015, 20(6), 10866-10872.
[http://dx.doi.org/10.3390/molecules200610866] [PMID: 26076108];
(c) Shahzad, S.A.; Vivant, C.; Wirth, T. Selenium-mediated synthesis of biaryls through rearrangement. Org. Lett., 2010, 12(6), 1364-1367.
[http://dx.doi.org/10.1021/ol100274e] [PMID: 20178316];
(d) Shahzad, S.A.; Wirth, T. Fast synthesis of benzofluorenes by selenium-mediated carbocyclizations. Angew. Chem. Int. Ed. Engl., 2009, 48(14), 2588-2591.
[http://dx.doi.org/10.1002/anie.200806148] [PMID: 19241429];
(e) Freudendahl, D.M.; Shahzad, S.A.; Wirth, T. Recent advances in organoselenium chemistry. Eur. J. Org. Chem., 2009, 2009(11), 1649-1664.
[http://dx.doi.org/10.1002/ejoc.200801171];
(f) Freudendahl, D.M.; Santoro, S.; Shahzad, S.A.; Santi, C.; Wirth, T. Green chemistry with selenium reagents: Development of efficient catalytic reactions. Angew. Chem. Int. Ed. Engl., 2009, 48(45), 8409-8411.
[http://dx.doi.org/10.1002/anie.200903893] [PMID: 19802863];
(g) Browne, D. M.; Wirth, T. New developments with chiral electrophilic selenium reagents. Curr. Org. Chem., 2006, 10, 1893-1903.
[http://dx.doi.org/10.2174/138527206778521213]
[4]
(a) Santi, C.; Di Lorenzo, R.; Tidei, C.; Bagnoli, L.; Wirth, T. Stereoselective selenium catalyzed dihydroxylation and hydroxymethoxylation of alkenes. Tetrahedron, 2012, 68(51), 10530-10535.
[http://dx.doi.org/10.1016/j.tet.2012.08.078];
(b) Singh, F.V.; Wirth, T. Selenium-catalyzed regioselective cyclization of unsaturated carboxylic acids using hypervalent iodine oxidants. Org. Lett., 2011, 13(24), 6504-6507.
[http://dx.doi.org/10.1021/ol202800k] [PMID: 22085140];
(c) Singh, F.V.; Wirth, T. Organoselenium Chemistry; Wirth, T., Ed.; Wiley-VCH, 2011, pp. 321-356.
[http://dx.doi.org/10.1002/9783527641949.ch8];
(d) Browne, D.M.; Niyomura, O.; Wirth, T. Catalytic use of selenium electrophiles in cyclizations. Org. Lett., 2007, 9(16), 3169-3171.
[http://dx.doi.org/10.1021/ol071223y] [PMID: 17608489];
(e) Braga, A.L.; Ludtke, D.S.; Vargas, F.; Braga, R.C. Catalytic applications of chiral organoselenium compounds in asymmetric synthesis. Synlett, 2006, 10(10), 1453-1466.
[http://dx.doi.org/10.1055/s-2006-941592]
[5]
(a) Thomas, S.P.; Satheeshkumar, K.; Mugesh, G.; Guru Row, T.N. Unusually short chalcogen bonds involving organoselenium: Insights into the Se-N bond cleavage mechanism of the antioxidant ebselen and analogues. Chemistry, 2015, 21(18), 6793-6800.
[http://dx.doi.org/10.1002/chem.201405998] [PMID: 25766307];
(b) Wirth, T. Small organoselenium compounds: More than just glutathione peroxidase mimics. Angew. Chem. Int. Ed. Engl., 2015, 54(35), 10074-10076.
[http://dx.doi.org/10.1002/anie.201505056] [PMID: 26192066];
(c) Akhoon, S.A.; Naqvi, T.; Nisar, S.; Rizvi, M.A. Synthestic organo- selenium compounds in medicinal domain. Asian J. Chem., 2015, 27(8), 2745-2752.
[http://dx.doi.org/10.14233/ajchem.2015.18834];
(d) Singh, V.P.; Poon, J-F.; Butcher, R.J.; Engman, L. Pyridoxine-derived organoselenium compounds with glutathione peroxidase-like and chain-breaking antioxidant activity. Chemistry, 2014, 20(39), 12563-12571.
[http://dx.doi.org/10.1002/chem.201403229] [PMID: 25123932];
(e) Nascimento, V.; Alberto, E.E.; Tondo, D.W.; Dambrowski, D.; Detty, M.R.; Nome, F.; Braga, A.L. GPx-Like activity of selenides and selenoxides: Experimental evidence for the involvement of hydroxy perhydroxy selenane as the active species. J. Am. Chem. Soc., 2012, 134(1), 138-141.
[http://dx.doi.org/10.1021/ja209570y] [PMID: 22136421]
[6]
(a) Flohe, L.; Gunzler, E. A.; Schock, H. H. Glutathione peroxidase: A selenoenzyme. FEBS Lett., 1973, 32, 132-134.
[http://dx.doi.org/10.1016/0014-5793(73)80755-0];
(b) Rotruck, J.T.; Pope, A.L.; Ganther, H.E.; Swanson, A.B.; Hafeman, D.G.; Hoekstra, W.G. Selenium: Biochemical role as a component of glutathione peroxidase. Science, 1973, 179, 588-590.
[http://dx.doi.org/10.1126/science.179.4073.588]
[7]
(a) Behne, D.; Kyriakopoulos, A.; Meinhold, H.; Köhrle, J. Identification of type I iodothyronine 5′-deiodinase as a selenoenzyme. Biochem. Biophys. Res. Commun., 1990, 173(3), 1143-1149.
[http://dx.doi.org/10.1016/S0006-291X(05)80905-2] [PMID: 2268318];
(b) Köhrle, J. Iodothyronine deiodinases. Methods Enzymol., 2002, 347, 125-167.
[http://dx.doi.org/10.1016/S0076-6879(02)47014-0] [PMID: 11898402]
[8]
Tamura, T.; Stadtman, T.C. A new selenoprotein from human lung adenocarcinoma cells: Purification, properties, and thioredoxin reductase activity. Proc. Natl. Acad. Sci. USA, 1996, 93(3), 1006-1011.
[http://dx.doi.org/10.1073/pnas.93.3.1006] [PMID: 8577704]
[9]
(a) Wirth, T. Organoselenium Chemistry: Synthesis and Reactions; Wiley-VCH: Germany, 2011.
[http://dx.doi.org/10.1002/9783527641949];
(b) Patai, S.; Rappoport, Z. The Chemistry of Organic Selenium and Tellurium Compounds; John Wiley, 2012, p. 3.;
(c) Back, T.G. Organoselenium Chemistry; Oxford University Press: Oxford, 1999. ;
(d) Wirth, T. Organoselenium chemistry: Modern developments in organic synthesis. Top. Curr. Chem., 2000, 208, 259.
[http://dx.doi.org/10.1007/3-540-48171-0_1];
(e) Liotta, D. Organoselenium Chemistry; John Wiley & Sons: New York, 1987. ;
(f) Paulmier, C. Selenium Reagents and Intermediates in Organic Synthesis; Pergamon Press: Oxford, 1986. ;
(g) Patai, S.; Rappoport, Z. The Chemistry of Organic Selenium and Tellurium Compounds; Wiley, 1986, p. 1.
[http://dx.doi.org/10.1002/9780470771761];
(h) Patai, S.; Rappoport, Z. The Chemistry of Organic Selenium and Tellurium Compounds; Wiley, 1987, p. 2.;
(i) Nicolaou, K.C.; Petasis, N.A. Selenium in Natural Products Synthesis; CIS: Philadelphia, 1984. ;
(j) Krief, A.; Hevesi, L. Organoselenium Chemistry I; Springer: Berlin, 1988.
[http://dx.doi.org/10.1007/978-3-642-73241-6];
(k) Klayman, D.L.; Günther, W.H.H Organic Selenium Compounds: Their Chemistry and Biology; Wiley: New York, 1973.
[10]
(a) Bhuyan, B.J.; Lamani, D.S.; Mugesh, G.; Wirth, T. Handbook of Chalcogen Chemistry: New Perspectives in Sulfur, Selenium and Tellurium; Devillanova, F.A.; du Mont, W.W., Eds.; RSC, 2013, 2, pp. 25-46.;
(b) Bhowmick, D.; Mugesh, G. Patai Series: Organic Selenium and Tellurium Compounds; Rappoport, Z., Ed.; John Wiley & Sons, 2013, 4, p. 1175.;
(c) Braga, A.L.; Rafique, J. Patai Series: Organic Selenium and Tellurium Compounds; Rappoport, Z., Ed.; John Wiley & Sons, 2014, Vol. 4, p. 1175.;
(d) Singh, F.V.; Wirth, T. Patai Series: Organic Selenium and Tellurium Compounds; Rappoport, Z., Ed.; John Wiley & Sons, 2012, Vol. 3, p. 303.;
(e) Nogueira, C.W.; Rocha, J.B.T. Patai Series: Organic Selenium and Tellurium Compounds; Rappoport, Z., Ed.; John Wiley & Sons, 2012, Vol. 3, p. 1277.;
(f) Freudendahl, D.M.; Wirth, T. Selenium and Tellurium Chemistry; Woolins, J.D.; Laitinen, R.S., Eds.; Springer, 2011, p. 41.
[http://dx.doi.org/10.1007/978-3-642-20699-3_2];
(g) Bhujan, B.J.; Mugesh, G. Organoselenium Chemistry; Wirth, T., Ed.; Wiley-VCH, 2011, p. 361.;
(h) Beaulieu, P.L.; Déziel, R. Organoselenium Chemistry: A Practical Approach; Back, T.G., Ed.; Oxford University Press: Oxford, 1999, p. 35.;
(i) Nishibayashi, Y.; Uemura, S. Topics in Current Chemistry; Wirth, T., Ed.; , 2000, 208, p. 201.
[11]
(a) Reich, H.J.; Hondal, R.J. Why nature chose selenium. ACS Chem. Biol., 2016, 11(4), 821-841.
[http://dx.doi.org/10.1021/acschembio.6b00031] [PMID: 26949981];
(b) Braga, A.L.; Barbosa, F.A.R.; Saba, S.; Canto, R.F.S.; Rafique, J. Recent advances in the synthesis of biologically relevant selenium-containing 5-membered heterocycles. Curr. Org. Chem., 2016, 20, 166-188.;
(c) Ninomiya, M.; Garud, D.R.; Koketsu, M. Biologically significant selenium-containing heterocycles. Coord. Chem. Rev., 2011, 255(23-24), 2968-2990.
[http://dx.doi.org/10.1016/j.ccr.2011.07.009];
(d) Mukherjee, A.J.; Zade, S.S.; Singh, H.B.; Sunoj, R.B. Organoselenium chemistry: role of intramolecular interactions. Chem. Rev., 2010, 110(7), 4357-4416.
[http://dx.doi.org/10.1021/cr900352j] [PMID: 20384363];
(e) Alberto, E.E.; do Nascimentob, V.; Braga, A.L. Catalytic application of selenium and tellurium compounds as glutathione peroxidase enzyme mimetics. J. Braz. Chem. Soc., 2010, 21(11), 2032-2041.
[http://dx.doi.org/10.1590/S0103-50532010001100004];
(f) Bhabak, K.P.; Mugesh, G. Functional mimics of glutathione peroxidase: Bioinspired synthetic antioxidants. Acc. Chem. Res., 2010, 43(11), 1408-1419.
[http://dx.doi.org/10.1021/ar100059g] [PMID: 20690615];
(g) Sarma, B.K.; Mugesh, G. Thiol cofactors for selenoenzymes and their synthetic mimics. Org. Biomol. Chem., 2008, 6(6), 965-974.
[http://dx.doi.org/10.1039/b716239a] [PMID: 18327317];
(h) Mlochowski, J.; Kloc, K.; Lisiak, R.; Potaczek, P.; Wojtowicz, H. Developments in the chemistry of selenaheterocyclic compounds of practical importance in synthesis and medicinal biology. ChemInform, 2007, 6(11), 14-46.
[http://dx.doi.org/10.1002/chin.200711265];
(i) Narajji, C.; Karvekar, M.D.; Das, A.K. Biological importance of organoselenium compounds. Indian J. Pharm. Sci., 2007, 69(3), 344-351.
[http://dx.doi.org/10.4103/0250-474X.34541];
(j) Guillena, G.; Ramon, D.J. Enantioselective α-heterofunctionalisation of carbonyl compounds: Organocatalysis is the simplest approach. Tetrahedron Asymmetry, 2006, 17(10), 1465-1492.
[http://dx.doi.org/10.1016/j.tetasy.2006.05.020];
(k) Tiecco, M.; Testaferri, L.; Marini, F.; Bagnoli, L.; Santi, C.; Temperini, A.; Sternativo, S.; Tomassini, C. Asymmetric syntheses promoted by organoselenium reagents. Phosphorus Sulfur Silicon Relat. Elem., 2005, 180(3-4), 729-740.
[http://dx.doi.org/10.1080/10426500590907462];
(l) Mugesh, G.; du Mont, W-W.; Sies, H. Chemistry of biologically important synthetic organoselenium compounds. Chem. Rev., 2001, 101(7), 2125-2179.
[http://dx.doi.org/10.1021/cr000426w] [PMID: 11710243];
(m) Petragnani, N.; Stefani, H.A.; Valduga, C.J. Recent advances in selenocyclofunctionalization reactions. Tetrahedron, 2001, 57(8), 1411-1448.
[http://dx.doi.org/10.1016/S0040-4020(00)01033-4];
(n) Ren, X.; Yang, L.; Liu, J.; Su, D.; You, D.; Liu, C.; Zhang, K.; Luo, G.; Mu, Y.; Yan, G.; Shen, J. A novel glutathione peroxidase mimic with antioxidant activity. Arch. Biochem. Biophys., 2001, 387(2), 250-256.
[http://dx.doi.org/10.1006/abbi.2000.2238] [PMID: 11370848];
(o) Tiecco, M. Electrophilic selenium, selenocyclizations. Top. Curr. Chem., 2000, 208, 7-54.
[http://dx.doi.org/10.1007/3-540-48171-0_2];
(p) Mugesh, G.; Singh, H.B. Synthetic organoselenium compounds as antioxidants: Glutathione peroxidase activity. Chem. Soc. Rev., 2000, 29(5), 347-357.
[http://dx.doi.org/10.1039/a908114c];
(q) Wirth, T. Chiral selenium compounds in organic synthesis. Tetrahedron, 1999, 55(1), 1-28.
[http://dx.doi.org/10.1016/S0040-4020(98)00946-6];
(r) Takada, H.; Nishibayashi, Y.; Srivastava, S.K.; Ohe, K.; Uemura, S. Highly selective asymmetric intramolecular selenocyclisation. Phosphorus Sulfur Silicon Relat. Elem., 1998, 219(1), 136-138.
[http://dx.doi.org/10.1080/10426509808546012];
(s) Wessjohann, L.A.; Sinks, U. Benzeneselenenyl reagents in organic synthesis. J. Prakt. Chem., 1998, 340(3), 189-203.
[http://dx.doi.org/10.1002/prac.19983400302];
(t) Nishibayashi, Y.; Uemura, S. Heteroatom stabilized carbenium ions. Rev. Heteroatom Chem., 1996, 14, 83.;
(u) Tiecco, M.; Testaferri, L.; Tingoli, M.; Bagnoli, L.; Marini, F.; Santi, C.; Temperini, A. Production and reactivity of new organoselenium intermediates. Formation of carbon-oxygen and carbon-nitrogen bonds. Gazz. Chim. Ital., 1996, 126, 635-644.;
(v) Reich, H.J.; Wollowitz, S. Preparation of α, β-unsaturated carbonyl compounds and nitriles by selenoxide elimination. Org. React., 1993, 44, 1.
[http://dx.doi.org/10.1002/0471264180.or044.01];
(w) Reich, H.J. Functional group manipulation using organoselenium reagents. Acc. Chem. Res., 1979, 12(1), 22-30.
[http://dx.doi.org/10.1021/ar50133a004]
[12]
(a) Müller, A.; Cadenas, E.; Graf, P.; Sies, H. A novel biologically active seleno-organic compound--I. Glutathione peroxidase-like activity in vitro and antioxidant capacity of PZ 51 (Ebselen). Biochem. Pharmacol., 1984, 33(20), 3235-3239.
[http://dx.doi.org/10.1016/0006-2952(84)90083-2] [PMID: 6487370];
(b) Wendel, A.; Fausel, M.; Safayhi, H.; Tiegs, G.; Otter, R. A novel biologically active seleno-organic compound--II. Activity of PZ 51 in relation to glutathione peroxidase. Biochem. Pharmacol., 1984, 33(20), 3241-3245.
[http://dx.doi.org/10.1016/0006-2952(84)90084-4] [PMID: 6487371]
[13]
(a) Sarma, B.K.; Mugesh, G. Antioxidant activity of the anti-inflammatory compound ebselen: A reversible cyclization pathway via selenenic and seleninic acid intermediates. Chemistry, 2008, 14(34), 10603-10614.
[http://dx.doi.org/10.1002/chem.200801258] [PMID: 18932179];
(b) Bhabak, K.P.; Mugesh, G. Synthesis, characterization, and antioxidant activity of some ebselen analogues. Chemistry, 2007, 13(16), 4594-4601.
[http://dx.doi.org/10.1002/chem.200601584] [PMID: 17299817];
(c) Sarma, B.K.; Mugesh, G. Glutathione peroxidase (GPx)-like antioxidant activity of the organoselenium drug ebselen: Unexpected complications with thiol exchange reactions. J. Am. Chem. Soc., 2005, 127(32), 11477-11485.
[http://dx.doi.org/10.1021/ja052794t] [PMID: 16089478];
(d) Back, T.G.; Dyck, D.P. A novel camphor-derived selenenamide that acts as a glutathione peroxidase mimetic. J. Am. Chem. Soc., 1997, 119(9), 2079-2083.
[http://dx.doi.org/10.1021/ja963602k];
(e) Jacquemin, P.V.; Christiaens, L.E.; Renson, M.J.; Evers, M.J.; Dereu, N. Synthesis of 2H,3-4-Dihydro-1,2-benzoselenazin-3-one and derivatives: A new heterocyclic ring system. Tetrahedron Lett., 1992, 33(27), 3863-3866.
[http://dx.doi.org/10.1016/S0040-4039(00)74805-2];
(f) Wilson, S.R.; Zucker, P.A.; Huang, R.R.C.; Spector, P.A. Development of synthetic compounds with glutathione peroxidase activity. J. Am. Chem. Soc., 1989, 111(15), 5936-5939.
[http://dx.doi.org/10.1021/ja00197a065];
(g) Reich, H.J.; Jasperse, C.P. Organoselenium chemistry. Redox chemistry of selenocysteine model systems. J. Am. Chem. Soc., 1987, 109(18), 5549-5551.
[http://dx.doi.org/10.1021/ja00252a055]
[14]
(a) Tripathi, S.K.; Sharma, S.; Singh, H.B.; Butcher, R.J. 2-Phenoxyethanol derived diselenide and related compounds; synthesis of a seven-membered seleninate ester. Org. Biomol. Chem., 2011, 9(2), 581-587.
[http://dx.doi.org/10.1039/C0OB00038H] [PMID: 21049128];
(b) Hassan, W.; Pinton, S.; Rocha, J.T.; Deobald, A.M.; Braga, A.L.; Nogueira, C.W.; Latini, A.S.; Rocha, J.B.T. Hydroxyl containing seleno-imine compound exhibits improved anti-oxidant potential and does not inhibit thiol-containing enzymes. Chem. Biol. Interact., 2011, 190(1), 35-44.
[http://dx.doi.org/10.1016/j.cbi.2011.01.012] [PMID: 21256831];
(c) Bhabak, K.P.; Mugesh, G. Synthesis and structure-activity correlation studies of secondary- and tertiaryamine-based glutathione peroxidase mimics. Chemistry, 2009, 15(38), 9846-9854.
[http://dx.doi.org/10.1002/chem.200900818] [PMID: 19551790];
(d) Bhabak, K.P.; Mugesh, G. A simple and efficient strategy to enhance the antioxidant activities of amino-substituted glutathione peroxidase mimics. Chemistry, 2008, 14(28), 8640-8651.
[http://dx.doi.org/10.1002/chem.200800963] [PMID: 18668498];
(e) Mugesh, G.; Panda, A.; Singh, H.B.; Punekar, N.S.; Butcher, R.J. Glutathione peroxidase-like antioxidant activity of diaryl diselenides: A mechanistic study. J. Am. Chem. Soc., 2001, 123(5), 839-850.
[http://dx.doi.org/10.1021/ja994467p] [PMID: 11456617];
(f) Mugesh, G.; Panda, A.; Singh, H.B.; Butcher, R.J. Intramolecular Se···N nonbonding interactions in low-valent organoselenium derivatives: A detailed study by 1H and 77Se NMR spectroscopy and X-ray crystallography. Chemistry, 1999, 5(5), 1411-1421.
[http://dx.doi.org/10.1002/(SICI)1521-3765(19990503)5:5<1411::AID-CHEM1411>3.0.CO;2-M];
(g) Wirth, T. Glutathione peroxidase-like activities of oxygen-containing diselenides. Molecules, 1998, 3(8), 164-166.
[http://dx.doi.org/10.3390/30700164]
[15]
Collins, C.A.; Fry, F.H.; Holme, A.L.; Yiakouvaki, A.; Al-Qenaei, A.; Pourzand, C.; Jacob, C. Towards multifunctional antioxidants: Synthesis, electrochemistry, in vitro and cell culture evaluation of compounds with ligand/catalytic properties. Org. Biomol. Chem., 2005, 3(8), 1541-1546.
[http://dx.doi.org/10.1039/b503282m] [PMID: 15827654]
[16]
(a) Jain, V.K.; Priyadarsini, K.I. National Library of Medicine. Proc. Natl. Acad. Sci. USA, 2010, 80A, 269.;
(b) Fumakura, F.; Mishra, B.; Priyadarsini, K.I.; Iwaoka, M. A water-soluble cyclic selenide with enhanced glutathione peroxidase-like catalytic activities. Eur. J. Org. Chem., 2010, 3(3), 440-445.
[http://dx.doi.org/10.1002/ejoc.200901114];
(c) Johansson, H.; Svartström, O.; Phadnis, P.; Engman, L.; Ott, M.K. Exploring a synthetic organoselenium compound for antioxidant pharmacotherapy--toxicity and effects on ROS-production. Bioorg. Med. Chem., 2010, 18(5), 1783-1788.
[http://dx.doi.org/10.1016/j.bmc.2010.01.057] [PMID: 20156690];
(d) Plano, D.; Baquedano, Y.; Ibáñez, E.; Jiménez, I.; Palop, J.A.; Spallholz, J.E.; Sanmartín, C. Antioxidant-prooxidant properties of a new organoselenium compound library. Molecules, 2010, 15(10), 7292-7312.
[http://dx.doi.org/10.3390/molecules15107292] [PMID: 20966875];
(e) Belenky, P.; Bogan, K.L.; Brenner, C. NAD+ metabolism in health and disease. Trends Biochem. Sci., 2007, 32(1), 12-19.
[http://dx.doi.org/10.1016/j.tibs.2006.11.006] [PMID: 17161604];
(f) Back, T.G.; Moussa, Z.; Parvez, M. The exceptional glutathione peroxidase-like activity of di(3-hydroxypropyl) selenide and the unexpected role of a novel spirodioxaselenanonane intermediate in the catalytic cycle. Angew. Chem. Int. Ed., 2004, 43(10), 1268-1270.
[http://dx.doi.org/10.1002/anie.200353128] [PMID: 14991795];
(g) Rojanasakul, Y.; Ye, J.; Chen, F.; Wang, L.; Cheng, N.; Castranova, V.; Vallyathan, V.; Shi, X. Dependence of NF-kappaB activation and free radical generation on silica-induced TNF-α production in macrophages. Mol. Cell. Biochem., 1999, 200(1-2), 119-125.
[http://dx.doi.org/10.1023/A:1007051402840] [PMID: 10569191]
[17]
(a) Yu, S-C.; Borchert, A.; Kuhn, H.; Ivanov, I. Synthesis of a new seleninic acid anhydride and mechanistic studies into its glutathione peroxidase activity. Chemistry, 2008, 14(23), 7066-7071.
[http://dx.doi.org/10.1002/chem.200800694] [PMID: 18604859];
(b) Back, T.G.; Kuzma, D.; Parvez, M. Aromatic derivatives and tellurium analogues of cyclic seleninate esters and spirodioxyselenuranes that act as glutathione peroxidase mimetics. J. Org. Chem., 2005, 70(23), 9230-9236.
[http://dx.doi.org/10.1021/jo0512711] [PMID: 16268595];
(c) Zade, S.S.; Singh, H.B.; Butcher, R.J. The isolation and crystal structure of a cyclic selenenate ester derived from Bis(2,6-diformyl-4-tert-butylphenyl)diselenide and its glutathione peroxidase-like activity. Angew. Chem. Int. Ed., 2004, 43(34), 4513-4515.
[http://dx.doi.org/10.1002/anie.200460380] [PMID: 15340957];
(d) Back, T.G.; Moussa, Z. Diselenides and allyl selenides as glutathione peroxidase mimetics. Remarkable activity of cyclic seleninates produced in situ by the oxidation of allyl ω-hydroxyalkyl selenides. J. Am. Chem. Soc., 2003, 125(44), 13455-13460.
[http://dx.doi.org/10.1021/ja0357588] [PMID: 14583041];
(e) Back, T.G.; Moussa, Z. Remarkable activity of a novel cyclic seleninate ester as a glutathione peroxidase mimetic and its facile in situ generation from allyl 3-hydroxypropyl selenide. J. Am. Chem. Soc., 2002, 124(41), 12104-12105.
[http://dx.doi.org/10.1021/ja028030k] [PMID: 12371844]
[18]
Galant, L.S.; Rafique, J.; Braga, A.L.; Braga, F.C.; Saba, S.; Radi, R.; da Rocha, J.B.T.; Santi, C.; Monsalve, M.; Farina, M.; de Bem, A.F. The thiol-modifier effects of organoselenium compounds and their cytoprotective actions in neuronal cells. Neurochem. Res., 2021, 46(1), 120-130.
[http://dx.doi.org/10.1007/s11064-020-03026-x] [PMID: 32285377]
[19]
Victoria, F.N.; Anversa, R.; Penteado, F.; Castro, M.; Lenardão, E.J.; Savegnago, L. Antioxidant and antidepressant-like activities of semi-synthetic α-phenylseleno citronellal. Eur. J. Pharmacol., 2014, 742, 131-138.
[http://dx.doi.org/10.1016/j.ejphar.2014.09.005] [PMID: 25218989]
[20]
Victoria, F.N.; Radatz, C.S.; Sachini, M.; Jacob, R.G.; Perin, G.; da Silva, W.P.; Lenardao, E.J. KF/Al2O3 and PEG-400 as a recyclable medium for the selective α-selenation of aldehydes and ketones. Preparation of potential antimicrobial agents. Tetrahedron Lett., 2009, 50(49), 6761-6763.
[http://dx.doi.org/10.1016/j.tetlet.2009.09.093]
[21]
Botteselle, G.V.; Elias, W.C.; Bettanin, L.; Canto, R.F.S.; Salin, D.N.O.; Barbosa, F.A.R.; Saba, S.; Gallardo, H.; Ciancaleoni, G.; Domingos, J.B.; Rafique, J.; Braga, A.L. Catalytic antioxidant activity of bis-aniline-derived diselenides as GPx mimics. Molecules, 2021, 26(15), 4446.
[http://dx.doi.org/10.3390/molecules26154446] [PMID: 34361597]
[22]
Iwaoka, M.; Tomoda, S. A model study on the effect of an amino group on the antioxidant activity of glutathione peroxidase. J. Am. Chem. Soc., 1994, 116(6), 2557-2561.
[http://dx.doi.org/10.1021/ja00085a040]
[23]
Alberto, E.E.; Soares, L.C.; Sudati, J.H.; Borges, A.C.A.; Rocha, J.B.T.; Braga, A.L. Efficient synthesis of modular amino acid derivatives containing selenium with pronounced GPx-like activity. Eur. J. Org. Chem., 2009, 25(25), 4211-4214.
[http://dx.doi.org/10.1002/ejoc.200900485]
[24]
Sudati, J.H.; Nogara, P.A.; Saraiva, R.A.; Wagner, C.; Alberto, E.E.; Braga, A.L.; Fachinetto, R.; Piquini, P.C.; Rocha, J.B.T. Diselenoamino acid derivatives as GPx mimics and as substrates of TrxR: In vitro and in silico studies. Org. Biomol. Chem., 2018, 16(20), 3777-3787.
[http://dx.doi.org/10.1039/C8OB00451J] [PMID: 29737350]
[25]
Arai, K.; Sato, Y.; Nakajima, I.; Saito, M.; Sasaki, M.; Kanamori, A.; Iwaoka, M. Glutathione peroxidase-like functions of 1,2-diselenane-4,5-diol and its amphiphilic derivatives: Switchable catalytic cycles depending on peroxide substrates. Bioorg. Med. Chem., 2021, 29, 115866.
[http://dx.doi.org/10.1016/j.bmc.2020.115866] [PMID: 33203607]
[26]
Shaaban, S.; Vervandier-Fasseur, D.; Andreoletti, P.; Zarrouk, A.; Richard, P.; Negm, A.; Manolikakes, G.; Jacob, C.; Cherkaoui-Malki, M. Cytoprotective and antioxidant properties of organic selenides for the myelin-forming cells, oligodendrocytes. Bioorg. Chem., 2018, 80, 43-56.
[http://dx.doi.org/10.1016/j.bioorg.2018.05.019] [PMID: 29864687]
[27]
Shaaban, S.; Ashmawy, A.M.; Negm, A.; Wessjohann, L.A. Synthesis and biochemical studies of novel organic selenides with increased selectivity for hepatocellular carcinoma and breast adenocarcinoma. Eur. J. Med. Chem., 2019, 179, 515-526.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.075] [PMID: 31276896]
[28]
Bhuyan, B.J.; Mugesh, G. Synthesis, characterization and antioxidant activity of angiotensin converting enzyme inhibitors. Org. Biomol. Chem., 2011, 9(5), 1356-1365.
[http://dx.doi.org/10.1039/C0OB00823K] [PMID: 21186397]
[29]
(a) Yang, H.Y.T.; Erdös, E.G.; Levin, Y. Characterization of a dipeptide hydrolase (kininase II: Angiotensin I converting enzyme). J. Pharmacol. Exp. Ther., 1971, 177(1), 291-300.
[PMID: 4327809];
(b) Erdos, E.G.; Yang, H.Y.T. An enzyme in microsomal fraction of kidney that inactivates bradykinin. Life Sci., 1967, 6(6), 569-574.
[http://dx.doi.org/10.1016/0024-3205(67)90090-2] [PMID: 4962200];
(c) Yang, H.Y.T.; Erdös, E.G. Second kininase in human blood plasma. Nature, 1967, 215(5108), 1402-1403.
[http://dx.doi.org/10.1038/2151402a0] [PMID: 6055465]
[30]
(a) Sturrock, E.D.; Natesh, R.; van Rooyen, J.M.; Acharya, K.R. Structure of angiotensin I-converting enzyme. Cell. Mol. Life Sci., 2004, 61(21), 2677-2686.
[http://dx.doi.org/10.1007/s00018-004-4239-0] [PMID: 15549168];
(b) Natesh, R.; Schwager, S.L.U.; Sturrock, E.D.; Acharya, K.R. Crystal structure of the human angiotensin-converting enzyme-lisinopril complex. Nature, 2003, 421(6922), 551-554.
[http://dx.doi.org/10.1038/nature01370] [PMID: 12540854];
(c) Ehlers, M.R.W.; Riordan, J.F. Angiotensin-converting enzyme: Zinc- and inhibitor-binding stoichiometries of the somatic and testis isozymes. Biochemistry, 1991, 30(29), 7118-7126.
[http://dx.doi.org/10.1021/bi00243a012] [PMID: 1649623];
(d) Ehlers, M.R.W.; Fox, E.A.; Strydom, D.J.; Riordan, J.F. Molecular cloning of human testicular angiotensin-converting enzyme: The testis isozyme is identical to the C-terminal half of endothelial angiotensin-converting enzyme. Proc. Natl. Acad. Sci. USA, 1989, 86(20), 7741-7745.
[http://dx.doi.org/10.1073/pnas.86.20.7741] [PMID: 2554286]
[31]
Nascimento, V.; Ferreira, N.L.; Canto, R.F.S.; Schott, K.L.; Waczuk, E.P.; Sancineto, L.; Santi, C.; Rocha, J.B.T.; Braga, A.L. Synthesis and biological evaluation of new nitrogen-containing diselenides. Eur. J. Med. Chem., 2014, 87, 131-139.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.022] [PMID: 25244678]
[32]
Yang, X.; Wang, Q.; Tao, Y.; Xu, H. A modified method to prepare diselenides by the reaction of selenium with sodium borohydride. J. Chem. Res., 2002, 4(4), 160-161.
[http://dx.doi.org/10.3184/030823402103171726]
[33]
Ibrahim, M.; Hassan, W.; Anwar, J.; Deobald, A.M.; Kamdem, J.P.; Souza, D.O.; Rocha, J.B.T. 1-(2-(2-(2-(1-Aminoethyl)phenyl)diselanyl)phenyl)ethanamine: An amino organoselenium compound with interesting antioxidant profile. Toxicol., 2014, 28(4), 524-530.
[http://dx.doi.org/10.1016/j.tiv.2013.12.010] [PMID: 24394197]
[34]
(a) Braga, A.L.; Paixao, M.W.; Marin, G. Seleno-Imine: A new class of versatile, modular N, Se ligands for asymmetric palladium-catalyzed allylic alkylation. Synlett, 2005, 11(11), 1675-1678.
[http://dx.doi.org/10.1055/s-2005-871546];
(b) Liu, D.; Dai, Q.; Zhang, X. A new class of readily available and conformationally rigid phosphino-oxazoline ligands for asymmetric catalysis. Tetrahedron, 2005, 61(26), 6460-6471.
[http://dx.doi.org/10.1016/j.tet.2005.03.111]
[35]
Ibrahim, M.; Muhammad, N.; Naeem, M.; Deobald, A.M.; Kamdem, J.P.; Rocha, J.B.T. In vitro evaluation of glutathione peroxidase (GPx)-like activity and antioxidant properties of an organoselenium compound. Toxicol., 2015, 29(5), 947-952.
[http://dx.doi.org/10.1016/j.tiv.2015.03.017] [PMID: 25862122]
[36]
Hodage, A.S.; Prabhu, C.P.; Phadnis, P.P.; Wadawale, A.; Priyadarsini, K.I.; Jain, V.K. Synthesis, characterization, structures and GPx mimicking activity of pyridyl and pyrimidyl based organoselenium compounds. J. Organomet. Chem., 2012, 720, 19-25.
[http://dx.doi.org/10.1016/j.jorganchem.2012.08.035]
[37]
Bhowmick, D.; Srivastava, S.; D’Silva, P.; Mugesh, G. Highly efficient glutathione peroxidase and peroxiredoxin mimetics protect mammalian cells against oxidative damage. Angew. Chem. Int. Ed. Engl., 2015, 54(29), 8449-8453.
[http://dx.doi.org/10.1002/anie.201502430] [PMID: 26032473]
[38]
(a) Comins, D.L.; Brown, J.D. Ortho metalation directed by alpha-amino alkoxides. J. Org. Chem., 1984, 49(6), 1078-1083.
[http://dx.doi.org/10.1021/jo00180a024];
(b) Press, D.J.; McNeil, N.M.R.; Hambrook, M.; Back, T.G. Effects of methoxy substituents on the glutathione peroxidase-like activity of cyclic seleninate esters. J. Org. Chem., 2014, 79(19), 9394-9401.
[http://dx.doi.org/10.1021/jo501689h] [PMID: 25198287]
[39]
Break, L.M.; Mohamed, M.; Abdel-Hafez, S.H. Synthesis of new organoselenium compounds containing nucleosides as antioxidant. Orient. J. Chem., 2014, 30(4), 1639-1645.
[http://dx.doi.org/10.13005/ojc/300423]
[40]
Upadhyay, A.; Singh Bhakuni, B.; Meena, R.; Kumar, S. Radical chain breaking Bis(ortho-organoselenium) substituted phenolic antioxidants. Chem. Asian J., 2021, 16(8), 966-973.
[http://dx.doi.org/10.1002/asia.202100139] [PMID: 33660419]
[41]
Singh, B.G.; Kumar, P.; Phadnis, P.; Iwaoka, M.; Priyadarsini, K.I. Free radical induced selenoxide formation in isomeric organoselenium compounds: The effect of chemical structures on antioxidant activity. New J. Chem., 2019, 43(34), 13357-13362.
[http://dx.doi.org/10.1039/C9NJ02227A]
[42]
Iwaoka, M.; Takahashi, T.; Tomoda, S. Syntheses and structural characterization of water-soluble selenium reagents for the redox control of protein disulfide bonds. Heteroatom Chem., 2001, 12(4), 293-299.
[http://dx.doi.org/10.1002/hc.1047]
[43]
Bocchini, B.; Goldani, B.; Sousa, F.S.S.; Birmann, P.T.; Brüning, C.A.; Lenardão, E.J.; Santi, C.; Savegnago, L.; Alves, D. Synthesis and antioxidant activity of new selenium-containing quinolines. Med. Chem., 2021, 17(6), 667-676.
[http://dx.doi.org/10.2174/1573406416666200403081831] [PMID: 32242787]
[44]
Savegnago, L.; Vieira, A.I.; Seus, N.; Goldani, B.S.; Castro, M.R.; Lenardão, E.J.; Alves, D. Synthesis and antioxidant properties of novel quinoline–chalcogenium compounds. Tetrahedron Lett., 2013, 54(1), 40-44.
[http://dx.doi.org/10.1016/j.tetlet.2012.10.067]
[45]
Fonseca, S.F.; Lima, D.B.; Alves, D.; Jacob, R.G.; Perin, G.; Lenardao, E.J.; Savegnago, L. Synthesis, characterization and antioxidant activity of organoselenium and organotellurium compound derivatives of chrysin. New J. Chem., 2015, 39(4), 3043-3050.
[http://dx.doi.org/10.1039/C4NJ02329C]
[46]
Shaaban, S.; Zarrouk, A.; Vervandier-Fasseur, D.; Al-Faiyz, Y.S.; El-Sawy, H.; Althagafi, I.; Andreoletti, P.; Cherkaoui-Malki, M. Cytoprotective organoselenium compounds for oligodendrocytes. Arab. J. Chem., 2021, 14, 103051.
[http://dx.doi.org/10.1016/j.arabjc.2021.103051]
[47]
Sauer, A.C.; Leal, J.G.; Stefanello, S.T.; Leite, M.T.B.; Souza, M.B.; Soares, F.A.A.; Rodrigues, O.E.D.; Dornelles, L. Synthesis and antioxidant properties of organosulfur and organoselenium compounds derived from 5-substituted-1,3,4-oxadiazole/thiadiazole-2-thiols. Tetrahedron Lett., 2017, 58(1), 87-91.
[http://dx.doi.org/10.1016/j.tetlet.2016.11.106]
[48]
Bhuyan, B.J.; Mugesh, G. Antioxidant activity of peptide-based angiotensin converting enzyme inhibitors. Org. Biomol. Chem., 2012, 10(11), 2237-2247.
[http://dx.doi.org/10.1039/c2ob06533a] [PMID: 22307539]
[49]
He, X.; Nie, Y.; Zhong, M.; Li, S.; Li, X.; Guo, Y.; Liu, Z.; Gao, Y.; Ding, F.; Wen, D.; Zhang, Y. New organoselenides (NSAIDs-Se derivatives) as potential anticancer agents: Synthesis, biological evaluation and in silico calculations. Eur. J. Med. Chem., 2021, 218, 113384.
[http://dx.doi.org/10.1016/j.ejmech.2021.113384] [PMID: 33799070]
[50]
Kumar, M.; Chhillar, B.; Yadav, M.; Sagar, P.; Singhal, N.K.; Gates, P.J.; Butcher, R.J.; Singh, V.P. Catalytic and highly regenerable aminic organoselenium antioxidants with cytoprotective effects. Org. Biomol. Chem., 2021, 19(9), 2015-2022.
[http://dx.doi.org/10.1039/D0OB02368J] [PMID: 33591294]
[51]
Obieziurska-Fabisiak, M.; Pacuła, A.J.; Capoccia, L.; Drogosz-Stachowicz, J.; Janecka, A.; Santi, C.; Ścianowski, J. Phenylselanyl group incorporation for “glutathione peroxidase-like” activity modulation. Molecules, 2020, 25(15), 3354.
[http://dx.doi.org/10.3390/molecules25153354] [PMID: 32722043]
[52]
Obieziurska, M.; Pacuła, A.J.; Długosz-Pokorska, A.; Krzemiński, M.; Janecka, A.; Ścianowski, J. Bioselectivity induced by chirality of new terpenyl organoselenium compounds. Materials (Basel), 2019, 12(21), 3579.
[http://dx.doi.org/10.3390/ma12213579] [PMID: 31683558]
[53]
Obieziurska, M.; Pacuła, A.J.; Juhas, U.; Antosiewicz, J.; Ścianowski, J. The influence of O/S exchange on the biocatalytical activity of benzisoselenazol-3(2H)-ones. Catalysts, 2018, 8(11), 493.
[http://dx.doi.org/10.3390/catal8110493]
[54]
Elsherbini, M.; Hamama, W.S.; Zooroba, H.H. An easy synthetic approach to construct some ebselen analogues and Benzo[b]selenophene derivatives: Their antioxidant and cytotoxic assessment. J. Heterocycl. Chem., 2018, 55(7), 1645-1650.
[http://dx.doi.org/10.1002/jhet.3199]
[55]
Elsherbini, M.; Hamama, W.S.; Zoorob, H.H.; Bhowmick, V.; Mugesh, G.; Wirth, T. Synthesis and antioxidant activities of novel chiral ebselen analogues. Heteroatom Chem., 2014, 25(5), 320-325.
[http://dx.doi.org/10.1002/hc.21164]
[56]
Lamani, D.S.; Bhowmick, D.; Mugesh, G. Substituent effects on the stability and antioxidant activity of spirodiazaselenuranes. Molecules, 2015, 20(7), 12959-12978.
[http://dx.doi.org/10.3390/molecules200712959] [PMID: 26193249]
[57]
Sarma, B.K.; Manna, D.; Minoura, M.; Mugesh, G. Synthesis, structure, spirocyclization mechanism, and glutathione peroxidase-like antioxidant activity of stable spirodiazaselenurane and spirodiazatellurane. J. Am. Chem. Soc., 2010, 132(15), 5364-5374.
[http://dx.doi.org/10.1021/ja908080u] [PMID: 20345146]
[58]
Lamani, D.S.; Bhowmick, D.; Mugesh, G. Spirodiazaselenuranes: Synthesis, structure and antioxidant activity. Org. Biomol. Chem., 2012, 10(39), 7933-7943.
[http://dx.doi.org/10.1039/c2ob26156a] [PMID: 22932965]
[59]
McNeil, N.M.R.; Press, D.J.; Mayder, D.M.; Garnica, P.; Doyle, L.M.; Back, T.G. Enhanced glutathione peroxidase activity of water-soluble and polyethylene glycol-supported selenides, related spirodioxyselenuranes, and pincer selenuranes. J. Org. Chem., 2016, 81(17), 7884-7897.
[http://dx.doi.org/10.1021/acs.joc.6b01593] [PMID: 27525346]
[60]
Prasad, P.R.; Singh, H.B.; Butcher, R.J. Synthesis, structure and reactivity of β-chalcocyclohexenals: Dichalcogenides and chalcogenides. J. Organomet. Chem., 2016, 814, 42-56.
[http://dx.doi.org/10.1016/j.jorganchem.2016.04.019]
[61]
Gagan, J.M.F.; Lane, A.G.; Lloyd, D. The stereochemistry of β-chlorovinyl-aldehydes. J. Chem. Soc. C, 1970, 18(18), 2484-2488.
[http://dx.doi.org/10.1039/J39700002484]
[62]
Prasad, P.R.; Singh, H.B.; Butcher, R.J. Synthesis, structure and antioxidant activity of cyclohexene-fused selenuranes and related derivatives. Molecules, 2015, 20(7), 12670-12685.
[http://dx.doi.org/10.3390/molecules200712670] [PMID: 26184146]
[63]
Wang, J.; Zhao, B.; Wang, X.; Yao, J.; Zhang, J. Synthesis of selenium-containing polysaccharides and evaluation of antioxidant activity in vitro. Int. J. Biol. Macromol., 2012, 51(5), 987-991.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.08.011] [PMID: 22935693]
[64]
Merino-Montiel, P.; Lopez, O.; Fernandez-Bolanos, J.G. l-Isofucoselenofagomine and derivatives: Dual activities as antioxidants and as glycosidase inhibitors. Tetrahedron, 2012, 68(18), 3591-3595.
[http://dx.doi.org/10.1016/j.tet.2012.03.003]
[65]
Ulgar, V.; Fernandez-Bolanos, J. G.; Bols, M. Synthesis and evaluation of sulfonium analogues of isofucofagomine as glycosidase inhibitors. Chem. Soc., Perkin Trans., 2002, 10, 1242-1246.
[http://dx.doi.org/10.1039/b202021c]
[66]
Merino-Montiel, P.; Maza, S.; Martos, S.; López, Ó.; Maya, I.; Fernández-Bolaños, J.G. Synthesis and antioxidant activity of O-alkyl selenocarbamates, selenoureas and selenohydantoins. Eur. J. Pharm. Sci., 2013, 48(3), 582-592.
[http://dx.doi.org/10.1016/j.ejps.2012.12.016] [PMID: 23287366]
[67]
Lopez, O.; Maza, S.; Ulgar, V.; Maya, I.; Fernandez-Bolanos, J.G. Synthesis of sugar-derived isoselenocyanates, selenoureas, and selenazoles. Tetrahedron, 2009, 65(12), 2556-2566.
[http://dx.doi.org/10.1016/j.tet.2009.01.038]
[68]
Prabhu, C.P.; Phadnis, P.P.; Wadawale, A.P.; Priyadarsini, K.I.; Jain, V.K. Synthesis, characterization, structures and antioxidant activity of nicotinoyl based organoselenium compounds. J. Organomet. Chem., 2012, 713, 42-50.
[http://dx.doi.org/10.1016/j.jorganchem.2012.04.014]
[69]
Rafique, J.; Saba, S.; Canto, R.F.S.; Frizon, T.E.A.; Hassan, W.; Waczuk, E.P.; Jan, M.; Back, D.F.; Da Rocha, J.B.T.; Braga, A.L. Synthesis and biological evaluation of 2-picolylamide-based diselenides with non-bonded interactions. Molecules, 2015, 20(6), 10095-10109.
[http://dx.doi.org/10.3390/molecules200610095] [PMID: 26039333]
[70]
Frizon, T.E.A.; Cararo, J.H.; Saba, S.; Dal-Pont, G.C.; Michels, M.; Braga, H.C.; Pimentel, T.; Dal-Pizzol, F.; Valvassori, S.S.; Rafique, J. Synthesis of novel selenocyanates and evaluation of their effect in cultured mouse neurons submitted to oxidative stress. Oxidative Med. Cell. Longev., 2020, 2020, 5417024.
[http://dx.doi.org/10.1155/2020/5417024]
[71]
Barick, K.C.; Dutta, B.; Gawali, S.L.; Phadnis, P.P.; Priyadarsini, K.I.; Jain, V.K.; Hassan, P.A. Phenylseleno N-acetyl α-amino acids conjugated magnetic nanoparticles: Synthesis, characterization and radical scavenging ability. Chem. Lett., 2020, 49(11), 1426-1430.
[http://dx.doi.org/10.1246/cl.200490]
[72]
Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; Yan, X. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol., 2007, 2(9), 577-583.
[http://dx.doi.org/10.1038/nnano.2007.260] [PMID: 18654371]
[73]
Tanini, D.; Lupori, B.; Malevolti, G.; Ambrosi, M.; Nostro, P.L.; Capperucci, A. Direct biocatalysed synthesis of first sulfur-, selenium- and tellurium- containing l-ascorbyl hybrid derivatives with radical trapping and GPx-like properties. Chem. Commun. (Camb.), 2019, 55(40), 5705-5708.
[http://dx.doi.org/10.1039/C9CC02427A] [PMID: 31033970]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy