Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Broad-Spectrum Anti-Flavivirus Activity and Chemistry of Compounds Containing Sulfur and Oxygen Chalcogens

Author(s): Maria Sole Burali, Violetta Cecchetti and Giuseppe Manfroni*

Volume 30, Issue 21, 2023

Published on: 18 August, 2022

Page: [2396 - 2420] Pages: 25

DOI: 10.2174/0929867329666220610211441

Price: $65

conference banner
Abstract

Sulfur and oxygen containing-compounds are a relevant class of derivatives that is constantly growing due to their wide range of pharmacological activity, including the antiviral one. As proof of this, there are several FDA approved antiviral compounds having sulfur and oxygen in their structures. Among RNA viruses, the flavivirus genus (e.g. Dengue, West Nile, Yellow Fever and Zika viruses) holds a relevant place within zoonotic pathogens and thus flavivirus infections are considered a growing risk for the public health. As a consequence, the drug discovery process aimed at identify new anti- flavivirus agents is of great relevance and will help to find effective therapies not available yet. One of the most alarming features of flaviviruses is their ability to co-infect the host, thus aggravating the symptoms of the disease. Therefore, finding compounds endowed with a broad-spectrum anti-flavivirus activity is now becoming a pressing need. In this review, we describe the most promising compounds having both sulfur and oxygen in their structures characterized by a broad-spectrum activity against different flaviviruses. Furthermore, the synthetic procedures applied for the preparation of the described derivatives are also reported. Readers can be inspired by the contents of this review to design and synthesize more effective anti-flavivirus agents as well as to select viral or host targets to achieve an antiviral activity as broadly as possible.

Keywords: Chalcogens, sulfur and oxygen-containing compounds, organosulfur compounds, heterocycles, antiviral agents, flavivirus inhibitors.

[1]
Wang, S.; Tian, H.; Ren, C.; Yu, J.; Sun, M. Electronic and optical properties of heterostructures based on transition metal dichalcogenides and graphene-like zinc oxide. Sci. Rep., 2018, 8(1), 12009.
[http://dx.doi.org/10.1038/s41598-018-30614-3] [PMID: 30104708]
[2]
Pathania, S.; Narang, R.K.; Rawal, R.K. Role of sulphur-heterocycles in medicinal chemistry: An update. Eur. J. Med. Chem., 2019, 180, 486-508.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.043] [PMID: 31330449]
[3]
Singh, P.K.; Silakari, O. The current status of O-heterocycles: A synthetic and medicinal overview. ChemMedChem, 2018, 13(11), 1071-1087.
[http://dx.doi.org/10.1002/cmdc.201800119] [PMID: 29603634]
[4]
Feng, M.; Tang, B.; Liang, S.H.; Jiang, X. Sulfur containing scaffolds in drugs: Synthesis and application in medicinal chemistry. Curr. Top. Med. Chem., 2016, 16(11), 1200-1216.
[http://dx.doi.org/10.2174/1568026615666150915111741] [PMID: 26369815]
[5]
Scott, K.A.; Njardarson, J.T. Analysis of US FDA-approved drugs containing sulfur atoms. Top. Curr. Chem. (Cham), 2018, 376(1), 5.
[http://dx.doi.org/10.1007/s41061-018-0184-5] [PMID: 29356979]
[6]
Jampilek, J. Heterocycles in medicinal chemistry. Molecules, 2019, 24(21), 10-13.
[http://dx.doi.org/10.3390/molecules24213839] [PMID: 31731387]
[7]
Koh, Y.; Nakata, H.; Maeda, K.; Ogata, H.; Bilcer, G.; Devasamudram, T.; Kincaid, J.F.; Boross, P.; Wang, Y-F.; Tie, Y.; Volarath, P.; Gaddis, L.; Harrison, R.W.; Weber, I.T.; Ghosh, A.K.; Mitsuya, H. Novel bis-tetrahydrofuranylurethane-containing nonpeptidic protease inhibitor (PI) UIC-94017 (TMC114) with potent activity against multi-PI-resistant human immunodeficiency virus in vitro. Antimicrob. Agents Chemother., 2003, 47(10), 3123-3129.
[http://dx.doi.org/10.1128/AAC.47.10.3123-3129.2003] [PMID: 14506019]
[8]
Timm, J.; Kosovrasti, K.; Henes, M.; Leidner, F.; Hou, S.; Ali, A.; Kurt Yilmaz, N.; Schiffer, C.A. Molecular and structural mechanism of pan-genotypic HCV NS3/4A protease inhibition by glecaprevir. ACS Chem. Biol., 2020, 15(2), 342-352.
[http://dx.doi.org/10.1021/acschembio.9b00675] [PMID: 31868341]
[9]
Taylor, J.G.; Zipfel, S.; Ramey, K.; Vivian, R.; Schrier, A.; Karki, K.K.; Katana, A.; Kato, D.; Kobayashi, T.; Martinez, R.; Sangi, M.; Siegel, D.; Tran, C.V.; Yang, Z-Y.; Zablocki, J.; Yang, C.Y.; Wang, Y.; Wang, K.; Chan, K.; Barauskas, O.; Cheng, G.; Jin, D.; Schultz, B.E.; Appleby, T.; Villaseñor, A.G.; Link, J.O. Discovery of the pan-genotypic hepatitis C virus NS3/4A protease inhibitor voxilaprevir (GS-9857): A component of Vosevi®. Bioorg. Med. Chem. Lett., 2019, 29(16), 2428-2436.
[http://dx.doi.org/10.1016/j.bmcl.2019.03.037] [PMID: 31133531]
[10]
Izquierdo, L.; Helle, F.; François, C.; Castelain, S.; Duverlie, G.; Brochot, E. Simeprevir for the treatment of hepatitis C virus infection. Pharm. Genom. Pers. Med., 2014, 7, 241-249.
[PMID: 25206310]
[11]
Santi, C.; Scimmi, C.; Sancineto, L. Ebselen and analogues: Pharmacological properties and synthetic strategies for their preparation. Molecules, 2021, 26(14), 1-25.
[http://dx.doi.org/10.3390/molecules26144230] [PMID: 34299505]
[12]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[13]
Thenin-Houssier, S.; de Vera, I.M.S.; Pedro-Rosa, L.; Brady, A.; Richard, A.; Konnick, B.; Opp, S.; Buffone, C.; Fuhrmann, J.; Kota, S.; Billack, B.; Pietka-Ottlik, M.; Tellinghuisen, T.; Choe, H.; Spicer, T.; Scampavia, L.; Diaz-Griffero, F.; Kojetin, D.J.; Valente, S.T. Ebselen, a small-molecule capsid inhibitor of HIV-1 replication. Antimicrob. Agents Chemother., 2016, 60(4), 2195-2208.
[http://dx.doi.org/10.1128/AAC.02574-15] [PMID: 26810656]
[14]
Wilder-Smith, A.; Gubler, D.J.; Weaver, S.C.; Monath, T.P.; Heymann, D.L.; Scott, T.W. Epidemic arboviral diseases: Priorities for research and public health. Lancet Infect. Dis., 2017, 17(3), e101-e106.
[http://dx.doi.org/10.1016/S1473-3099(16)30518-7] [PMID: 28011234]
[15]
Azevedo, R.S.S.; Araujo, M.T.; Martins Filho, A.J.; Oliveira, C.S.; Nunes, B.T.D.; Cruz, A.C.R.; Nascimento, A.G.P.A.C.; Medeiros, R.C.; Caldas, C.A.M.; Araujo, F.C.; Quaresma, J.A.S.; Vasconcelos, B.C.B.; Queiroz, M.G.L.; da Rosa, E.S.T.; Henriques, D.F.; Silva, E.V.P.; Chiang, J.O.; Martins, L.C.; Medeiros, D.B.A.; Lima, J.A.; Nunes, M.R.T.; Cardoso, J.F.; Silva, S.P.; Shi, P.Y.; Tesh, R.B.; Rodrigues, S.G.; Vasconcelos, P.F.C. Zika virus epidemic in Brazil. I. Fatal disease in adults: Clinical and laboratorial aspects. J. Clin. Virol., 2016, 85, 56-64.
[http://dx.doi.org/10.1016/j.jcv.2016.10.024] [PMID: 27835759]
[16]
Saiz, J.C.; Vázquez-Calvo, Á.; Blázquez, A.B.; Merino-Ramos, T.; Escribano-Romero, E.; Martín-Acebes, M.A. Zika virus: The latest newcomer. Front. Microbiol., 2016, 7, 1-19.
[17]
Monath, T.P.; Vasconcelos, P.F.C. Yellow fever. J. Clin. Virol., 2015, 64, 160-173.
[http://dx.doi.org/10.1016/j.jcv.2014.08.030] [PMID: 25453327]
[18]
Daep, C.A.; Muñoz-Jordán, J.L.; Eugenin, E.A. Flaviviruses, an expanding threat in public health: Focus on dengue, West Nile, and Japanese encephalitis virus. J. Neurovirol., 2014, 20(6), 539-560.
[http://dx.doi.org/10.1007/s13365-014-0285-z] [PMID: 25287260]
[19]
WHO. Ten threats to global health. 2019. Available from: https://www.who.int/emergencies/ten-threats-to-global- health-in-2019
[20]
Robertson, S.J.; Mitzel, D.N.; Taylor, R.T.; Best, S.M.; Bloom, M.E. Tick-borne flaviviruses: Dissecting host immune responses and virus countermeasures. Immunol. Res., 2009, 43(1-3), 172-186.
[http://dx.doi.org/10.1007/s12026-008-8065-6] [PMID: 18841330]
[21]
Boldescu, V.; Behnam, M.A.M.; Vasilakis, N.; Klein, C.D. Broad-spectrum agents for flaviviral infections: Dengue, Zika and beyond. Nat. Rev. Drug Discov., 2017, 16(8), 565-586.
[http://dx.doi.org/10.1038/nrd.2017.33] [PMID: 28473729]
[22]
Bernatchez, J.A.; Tran, L.T.; Li, J.; Luan, Y.; Siqueira-Neto, J.L.; Li, R. Drugs for the treatment of zika virus infection. J. Med. Chem., 2020, 63(2), 470-489.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00775] [PMID: 31549836]
[23]
Lim, S.P. Dengue drug discovery: Progress, challenges and outlook. Antiviral Res., 2019, 163, 156-178.
[http://dx.doi.org/10.1016/j.antiviral.2018.12.016] [PMID: 30597183]
[24]
Felicetti, T.; Manfroni, G.; Cecchetti, V.; Cannalire, R. Broad-spectrum flavivirus inhibitors: A medicinal chemistry point of view. ChemMedChem, 2020, 15(24), 2391-2419.
[http://dx.doi.org/10.1002/cmdc.202000464] [PMID: 32961008]
[25]
Verma, R.; Khanna, P.; Chawla, S. Yellow fever vaccine: An effective vaccine for travelers. Hum. Vaccin. Immunother., 2014, 10(1), 126-128.
[http://dx.doi.org/10.4161/hv.26549] [PMID: 24056028]
[26]
Heinz, F.X.; Stiasny, K.; Holzmann, H.; Grgic-Vitek, M.; Kriz, B.; Essl, A.; Kundi, M. Vaccination and tick-borne encephalitis, central Europe. Emerg. Infect. Dis., 2013, 19(1), 69-76.
[http://dx.doi.org/10.3201/eid1901.120458] [PMID: 23259984]
[27]
Halstead, S.B.; Russell, P.K. Protective and immunological behavior of chimeric yellow fever dengue vaccine. Vaccine, 2016, 34(14), 1643-1647.
[http://dx.doi.org/10.1016/j.vaccine.2016.02.004] [PMID: 26873054]
[28]
Robinson, M.L.; Durbin, A.P. Dengue vaccines: Implications for dengue control. Curr. Opin. Infect. Dis., 2017, 30(5), 449-454.
[http://dx.doi.org/10.1097/QCO.0000000000000394] [PMID: 28719400]
[29]
WHO. The Weekly Epidemiological Record (WER), 2018. Available from: https://www.who.int/publications/journals/weekly-epidemiological-record
[30]
Zhao, R.; Wang, M.; Cao, J.; Shen, J.; Zhou, X.; Wang, D.; Cao, J. Flavivirus: From structure to therapeutics development. Life (Basel), 2021, 11(7), 1-25.
[http://dx.doi.org/10.3390/life11070615] [PMID: 34202239]
[31]
Vogels, C.B.F.; Rückert, C.; Cavany, S.M.; Perkins, T.A.; Ebel, G.D.; Grubaugh, N.D. Arbovirus coinfection and co-transmission: A neglected public health concern? PLoS Biol., 2019, 17(1), e3000130.
[http://dx.doi.org/10.1371/journal.pbio.3000130] [PMID: 30668574]
[32]
Carrillo-Hernández, M.Y.; Ruiz-Saenz, J.; Villamizar, L.J.; Gómez-Rangel, S.Y.; Martínez-Gutierrez, M. Co-circulation and simultaneous co-infection of dengue, chikungunya, and zika viruses in patients with febrile syndrome at the Colombian-Venezuelan border. BMC Infect. Dis., 2018, 18(1), 61.
[http://dx.doi.org/10.1186/s12879-018-2976-1] [PMID: 29382300]
[33]
Laredo-Tiscareño, S.V.; Garza-Hernandez, J.A.; Salazar, M.I.; De Luna-Santillana, E.J.; Tangudu, C.S.; Cetina-Trejo, R.C.; Doria-Cobos, G.L.; Carmona-Aguirre, S.D.; Garcia-Rejon, J.E.; Machain-Williams, C.; Blitvich, B.J.; Pérez, M.A.R. Surveillance for Flaviviruses Near the Mexico-U.S. Border: Co-circulation of Dengue Virus Serotypes 1, 2, and 3 and West Nile Virus in Tamaulipas, Northern Mexico, 2014-2016. Am. J. Trop. Med. Hyg., 2018, 99(5), 1308-1317.
[http://dx.doi.org/10.4269/ajtmh.18-0426] [PMID: 30226141]
[34]
Barrows, N.J.; Campos, R.K.; Liao, K-C.; Prasanth, K.R.; Soto-Acosta, R.; Yeh, S-C.; Schott-Lerner, G.; Pompon, J.; Sessions, O.M.; Bradrick, S.S.; Garcia-Blanco, M.A. Biochemistry and molecular biology of flaviviruses. Chem. Rev., 2018, 118(8), 4448-4482.
[http://dx.doi.org/10.1021/acs.chemrev.7b00719] [PMID: 29652486]
[35]
Lou, Z.; Sun, Y.; Rao, Z. Current progress in antiviral strategies. Trends Pharmacol. Sci., 2014, 35(2), 86-102.
[http://dx.doi.org/10.1016/j.tips.2013.11.006] [PMID: 24439476]
[36]
Ji, X.; Li, Z. Medicinal chemistry strategies toward host targeting antiviral agents. Med. Res. Rev., 2020, 40(5), 1519-1557.
[http://dx.doi.org/10.1002/med.21664] [PMID: 32060956]
[37]
Shyr, Z.A.; Cheng, Y.S.; Lo, D.C.; Zheng, W. Drug combination therapy for emerging viral diseases. Drug Discov. Today, 2021, 26(10), 2367-2376.
[http://dx.doi.org/10.1016/j.drudis.2021.05.008] [PMID: 34023496]
[38]
Pastorino, B.; Nougairède, A.; Wurtz, N.; Gould, E.; de Lamballerie, X. Role of host cell factors in flavivirus infection: Implications for pathogenesis and development of antiviral drugs. Antiviral Res., 2010, 87(3), 281-294.
[http://dx.doi.org/10.1016/j.antiviral.2010.04.014] [PMID: 20452379]
[39]
Naggie, S.; Muir, A.J. Oral combination therapies for hepatitis C virus infection: Successes, challenges, and unmet needs. Annu. Rev. Med., 2017, 68, 345-358.
[http://dx.doi.org/10.1146/annurev-med-052915-015720] [PMID: 27686017]
[40]
Ghosn, J.; Taiwo, B.; Seedat, S.; Autran, B.; Katlama, C. HIV. Lancet, 2018, 392(10148), 685-697.
[http://dx.doi.org/10.1016/S0140-6736(18)31311-4] [PMID: 30049419]
[41]
Zhang, X.; Jia, R.; Shen, H.; Wang, M.; Yin, Z.; Cheng, A. Structures and functions of the envelope glycoprotein in flavivirus infections. Viruses, 2017, 9(11), 1-14.
[http://dx.doi.org/10.3390/v9110338] [PMID: 29137162]
[42]
Kok, W.M. New developments in flavivirus drug discovery. Expert Opin. Drug Discov., 2016, 11(5), 433-445.
[http://dx.doi.org/10.1517/17460441.2016.1160887] [PMID: 26966889]
[43]
Modis, Y.; Ogata, S.; Clements, D.; Harrison, S.C. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc. Natl. Acad. Sci. USA, 2003, 100(12), 6986-6991.
[http://dx.doi.org/10.1073/pnas.0832193100] [PMID: 12759475]
[44]
Kampmann, T.; Yennamalli, R.; Campbell, P.; Stoermer, M.J.; Fairlie, D.P.; Kobe, B.; Young, P.R. In silico screening of small molecule libraries using the dengue virus envelope E protein has identified compounds with antiviral activity against multiple flaviviruses. Antiviral Res., 2009, 84(3), 234-241.
[http://dx.doi.org/10.1016/j.antiviral.2009.09.007] [PMID: 19781577]
[45]
Villordo, S.M.; Alvarez, D.E.; Gamarnik, A.V. A balance between circular and linear forms of the dengue virus genome is crucial for viral replication. RNA, 2010, 16(12), 2325-2335.
[http://dx.doi.org/10.1261/rna.2120410] [PMID: 20980673]
[46]
Byk, L.A.; Gamarnik, A.V. Properties and functions of the dengue virus capsid protein. Annu. Rev. Virol., 2016, 3(1), 263-281.
[http://dx.doi.org/10.1146/annurev-virology-110615-042334] [PMID: 27501261]
[47]
Byrd, C.M.; Dai, D.; Grosenbach, D.W.; Berhanu, A.; Jones, K.F.; Cardwell, K.B.; Schneider, C.; Wineinger, K.A.; Page, J.M.; Harver, C.; Stavale, E.; Tyavanagimatt, S.; Stone, M.A.; Bartenschlager, R.; Scaturro, P.; Hruby, D.E.; Jordan, R. A novel inhibitor of dengue virus replication that targets the capsid protein. Antimicrob. Agents Chemother., 2013, 57(1), 15-25.
[http://dx.doi.org/10.1128/AAC.01429-12] [PMID: 23070172]
[48]
Luo, D.; Vasudevan, S.G.; Lescar, J. The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development. Antiviral Res., 2015, 118, 148-158.
[http://dx.doi.org/10.1016/j.antiviral.2015.03.014] [PMID: 25842996]
[49]
Behnam, M.A.M.; Graf, D.; Bartenschlager, R.; Zlotos, D.P.; Klein, C.D. Discovery of nanomolar dengue and west nile virus protease inhibitors containing a 4-benzyloxyphenylglycine residue. J. Med. Chem., 2015, 58(23), 9354-9370.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01441] [PMID: 26562070]
[50]
Li, Z.; Brecher, M.; Deng, Y.Q.; Zhang, J.; Sakamuru, S.; Liu, B.; Huang, R.; Koetzner, C.A.; Allen, C.A.; Jones, S.A.; Chen, H.; Zhang, N.N.; Tian, M.; Gao, F.; Lin, Q.; Banavali, N.; Zhou, J.; Boles, N.; Xia, M.; Kramer, L.D.; Qin, C-F.; Li, H. Existing drugs as broad-spectrum and potent inhibitors for Zika virus by targeting NS2B-NS3 interaction. Cell Res., 2017, 27(8), 1046-1064.
[http://dx.doi.org/10.1038/cr.2017.88] [PMID: 28685770]
[51]
Du Pont, K.E.; McCullagh, M.; Geiss, B.J. Conserved motifs in the flavivirus NS3 RNA helicase enzyme. Wiley Interdiscip. Rev. RNA, 2021, [Epub ahead of print].
[PMID: 34472205]
[52]
Byrd, C.M.; Grosenbach, D.W.; Berhanu, A.; Dai, D.; Jones, K.F.; Cardwell, K.B.; Schneider, C.; Yang, G.; Tyavanagimatt, S.; Harver, C.; Wineinger, K.A.; Page, J.; Stavale, E.; Stone, M.A.; Fuller, K.P.; Lovejoy, C.; Leeds, J.M.; Hruby, D.E.; Jordan, R. Novel benzoxazole inhibitor of dengue virus replication that targets the NS3 helicase. Antimicrob. Agents Chemother., 2013, 57(4), 1902-1912.
[http://dx.doi.org/10.1128/AAC.02251-12] [PMID: 23403421]
[53]
Zmurko, J.; Neyts, J.; Dallmeier, K. Flaviviral NS4b, chameleon and jack-in-the-box roles in viral replication and pathogenesis, and a molecular target for antiviral intervention. Rev. Med. Virol., 2015, 25(4), 205-223.
[http://dx.doi.org/10.1002/rmv.1835] [PMID: 25828437]
[54]
Fikatas, A.; Vervaeke, P.; Meyen, E.; Llor, N.; Ordeix, S.; Boonen, I.; Bletsa, M.; Kafetzopoulou, L.E.; Lemey, P.; Amat, M.; Pannecouque, C.; Schols, D. A novel series of indole alkaloid derivatives inhibit dengue and zika virus infection by interference with the viral replication complex. Antimicrob. Agents Chemother., 2021, 65(8), e0234920.
[http://dx.doi.org/10.1128/AAC.02349-20] [PMID: 34001508]
[55]
Bruenn, J.A. A structural and primary sequence comparison of the viral RNA-dependent RNA polymerases. Nucleic Acids Res., 2003, 31(7), 1821-1829.
[http://dx.doi.org/10.1093/nar/gkg277] [PMID: 12654997]
[56]
Tarantino, D.; Cannalire, R.; Mastrangelo, E.; Croci, R.; Querat, G.; Barreca, M.L.; Bolognesi, M.; Manfroni, G.; Cecchetti, V.; Milani, M. Targeting flavivirus RNA dependent RNA polymerase through a pyridobenzothiazole inhibitor. Antiviral Res., 2016, 134, 226-235.
[http://dx.doi.org/10.1016/j.antiviral.2016.09.007] [PMID: 27649989]
[57]
Simanjuntak, Y.; Liang, J.J.; Lee, Y.L.; Lin, Y.L. Japanese encephalitis virus exploits dopamine D2 receptor-phospholipase C to target dopaminergic human neuronal cells. Front. Microbiol., 2017, 8, 651.
[http://dx.doi.org/10.3389/fmicb.2017.00651] [PMID: 28443089]
[58]
Chen, W.C.; Simanjuntak, Y.; Chu, L.W.; Ping, Y.H.; Lee, Y.L.; Lin, Y.L.; Li, W.S. Benzenesulfonamide derivatives as calcium/calmodulin-dependent protein kinase inhibitors and antiviral agents against dengue and zika virus infections. J. Med. Chem., 2020, 63(3), 1313-1327.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01779] [PMID: 31972088]
[59]
Mulhern, O.; Bowie, A.G. Unexpected roles for DEAD-box protein 3 in viral RNA sensing pathways. Eur. J. Immunol., 2010, 40(4), 933-935.
[http://dx.doi.org/10.1002/eji.201040447] [PMID: 20309906]
[60]
Brai, A.; Martelli, F.; Riva, V.; Garbelli, A.; Fazi, R.; Zamperini, C.; Pollutri, A.; Falsitta, L.; Ronzini, S.; Maccari, L.; Maga, G.; Giannecchini, S.; Botta, M. DDX3X helicase inhibitors as a new strategy to fight the west nile virus infection. J. Med. Chem., 2019, 62(5), 2333-2347.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01403] [PMID: 30721061]
[61]
Evans, C.G.; Chang, L.; Gestwicki, J.E. Heat shock protein 70 (hsp70) as an emerging drug target. J. Med. Chem., 2010, 53(12), 4585-4602.
[http://dx.doi.org/10.1021/jm100054f] [PMID: 20334364]
[62]
Gerold, G.; Bruening, J.; Weigel, B.; Pietschmann, T. Protein interactions during the flavivirus and hepacivirus life cycle. Mol. Cell. Proteomics, 2017, 16(4)(Suppl. 1), S75-S91.
[http://dx.doi.org/10.1074/mcp.R116.065649] [PMID: 28077444]
[63]
Pujhari, S.; Brustolin, M.; Macias, V.M.; Nissly, R.H.; Nomura, M.; Kuchipudi, S.V.; Rasgon, J.L. Heat shock protein 70 (Hsp70) mediates Zika virus entry, replication, and egress from host cells. Emerg. Microbes Infect., 2019, 8(1), 8-16.
[http://dx.doi.org/10.1080/22221751.2018.1557988] [PMID: 30866755]
[64]
Taguwa, S.; Maringer, K.; Li, X.; Bernal-Rubio, D.; Rauch, J.N.; Gestwicki, J.E.; Andino, R.; Fernandez-Sesma, A.; Frydman, J. Defining Hsp70 subnetworks in dengue virus replication reveals key vulnerability in flavivirus infection. Cell, 2015, 163(5), 1108-1123.
[http://dx.doi.org/10.1016/j.cell.2015.10.046] [PMID: 26582131]
[65]
Puschnik, A.S.; Marceau, C.D.; Ooi, Y.S.; Majzoub, K.; Rinis, N.; Contessa, J.N.; Carette, J.E. A small-molecule oligosaccharyltransferase inhibitor with pan-flaviviral activity. Cell Rep., 2017, 21(11), 3032-3039.
[http://dx.doi.org/10.1016/j.celrep.2017.11.054] [PMID: 29241533]
[66]
Hoffmann, H.H.; Kunz, A.; Simon, V.A.; Palese, P.; Shaw, M.L. Broad-spectrum antiviral that interferes with de novo pyrimidine biosynthesis. Proc. Natl. Acad. Sci. USA, 2011, 108(14), 5777-5782.
[http://dx.doi.org/10.1073/pnas.1101143108] [PMID: 21436031]
[67]
Liu, B.; Tang, L.; Zhang, X.; Ma, J.; Sehgal, M.; Cheng, J.; Zhang, X.; Zhou, Y.; Du, Y.; Kulp, J.; Guo, J.T.; Chang, J. A cell-based high throughput screening assay for the discovery of cGAS-STING pathway agonists. Antiviral Res., 2017, 147, 37-46.
[http://dx.doi.org/10.1016/j.antiviral.2017.10.001] [PMID: 28982551]
[68]
Pattabhi, S.; Wilkins, C.R.; Dong, R.; Knoll, M.L.; Posakony, J.; Kaiser, S.; Mire, C.E.; Wang, M.L.; Ireton, R.C.; Geisbert, T.W.; Bedard, K.M.; Iadonato, S.P.; Loo, Y-M.; Gale, M., Jr Targeting innate immunity for antiviral therapy through small molecule agonists of the RLR pathway. J. Virol., 2015, 90(5), 2372-2387.
[http://dx.doi.org/10.1128/JVI.02202-15] [PMID: 26676770]
[69]
Pryke, K.M.; Abraham, J.; Sali, T.M.; Gall, B.J.; Archer, I.; Liu, A.; Bambina, S.; Baird, J.; Gough, M.; Chakhtoura, M.; Haddad, E.K.; Kirby, I.T.; Nilsen, A.; Streblow, D.N.; Hirsch, A.J.; Smith, J.L.; DeFilippis, V.R. A novel agonist of the TRIF pathway induces a cellular state refractory to replication of zika, chikungunya, and dengue viruses. MBio, 2017, 8(3), 1-22.
[http://dx.doi.org/10.1128/mBio.00452-17] [PMID: 28465426]
[70]
Sali, T.M.; Pryke, K.M.; Abraham, J.; Liu, A.; Archer, I.; Broeckel, R.; Staverosky, J.A.; Smith, J.L.; Al-Shammari, A.; Amsler, L.; Sheridan, K.; Nilsen, A.; Streblow, D.N.; DeFilippis, V.R. Characterization of a novel human-specific STING agonist that elicits antiviral activity against emerging alphaviruses. PLoS Pathog., 2015, 11(12), e1005324.
[http://dx.doi.org/10.1371/journal.ppat.1005324] [PMID: 26646986]
[71]
de Wispelaere, M.; Lian, W.; Potisopon, S.; Li, P.C.; Jang, J.; Ficarro, S.B.; Clark, M.J.; Zhu, X.; Kaplan, J.B.; Pitts, J.D.; Wales, T.E.; Wang, J.; Engen, J.R.; Marto, J.A.; Gray, N.S.; Yang, P.L. Inhibition of flaviviruses by targeting a conserved pocket on the viral envelope protein. Cell Chem. Biol., 2018, 25(8), 1006-1016.e8.
[http://dx.doi.org/10.1016/j.chembiol.2018.05.011] [PMID: 29937406]
[72]
Nitsche, C.; Klein, C.D. Fluorimetric and HPLC-based dengue virus protease assays using a FRET substrate. Methods Mol. Biol., 2013, 1030, 221-236.
[http://dx.doi.org/10.1007/978-1-62703-484-5_18] [PMID: 23821272]
[73]
New derivative of 2-benzamido-5-nitrothiazoles. Patent no. US3950351A, 1976.
[74]
Chan-Bacab, M.J.; Hernández-Núñez, E.; Navarrete-Vázquez, G. Nitazoxanide, tizoxanide and a new analogue [4-nitro-N-(5-nitro-1,3-thiazol-2-yl)benzamide; NTB] inhibit the growth of kinetoplastid parasites (Trypanosoma cruzi and Leishmania mexicana) in vitro. J. Antimicrob. Chemother., 2009, 63(6), 1292-1293.
[http://dx.doi.org/10.1093/jac/dkp117] [PMID: 19346519]
[75]
Ballard, T.E.; Wang, X.; Olekhnovich, I.; Koerner, T.; Seymour, C.; Salamoun, J.; Warthan, M.; Hoffman, P.S.; Macdonald, T.L. Synthesis and antimicrobial evaluation of nitazoxanide-based analogues: Identification of selective and broad spectrum activity. ChemMedChem, 2011, 6(2), 362-377.
[http://dx.doi.org/10.1002/cmdc.201000475] [PMID: 21275058]
[76]
Stachulski, A.V.; Pidathala, C.; Row, E.C.; Sharma, R.; Berry, N.G.; Iqbal, M.; Bentley, J.; Allman, S.A.; Edwards, G.; Helm, A.; Hellier, J.; Korba, B.E.; Semple, J.E.; Rossignol, J-F. Thiazolides as novel antiviral agents. 1. Inhibition of hepatitis B virus replication. J. Med. Chem., 2011, 54(12), 4119-4132.
[http://dx.doi.org/10.1021/jm200153p] [PMID: 21553812]
[77]
Wang, Y.; Wang, J.; Dong, Z.; Yu, G.; Cheng, X.; Jiao, X. Process for preparation of parasiticide nitazoxanide. Patent CN103159697, 2013.
[78]
Cannalire, R.; Tarantino, D.; Piorkowski, G.; Carletti, T.; Massari, S.; Felicetti, T.; Barreca, M.L.; Sabatini, S.; Tabarrini, O.; Marcello, A.; Milani, M.; Cecchetti, V.; Mastrangelo, E.; Manfroni, G.; Querat, G. Broad spectrum anti-flavivirus pyridobenzothiazolones leading to less infective virions. Antiviral Res., 2019, 167, 6-12.
[http://dx.doi.org/10.1016/j.antiviral.2019.03.004] [PMID: 30849420]
[79]
Cannalire, R.; Ki Chan, K.W.; Burali, M.S.; Gwee, C.P.; Wang, S.; Astolfi, A.; Massari, S.; Sabatini, S.; Tabarrini, O.; Mastrangelo, E.; Barreca, M.L.; Cecchetti, V.; Vasudevan, S.G.; Manfroni, G. Pyridobenzothiazolones exert potent anti-dengue activity by hampering multiple functions of NS5 polymerase. ACS Med. Chem. Lett., 2020, 11(5), 773-782.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00619] [PMID: 32435384]
[80]
Felicetti, T.; Burali, M.S.; Gwee, C.P.; Ki Chan, K.W.; Alonso, S.; Massari, S.; Sabatini, S.; Tabarrini, O.; Barreca, M.L.; Cecchetti, V.; Vasudevan, S.G.; Manfroni, G. Sustainable, three-component, one-pot procedure to obtain active anti-flavivirus agents. Eur. J. Med. Chem., 2021, 210, 112992.
[http://dx.doi.org/10.1016/j.ejmech.2020.112992] [PMID: 33208235]
[81]
Caracciolo, I.; Mora-Cardenas, E.; Aloise, C.; Carletti, T.; Segat, L.; Burali, M.S.; Chiarvesio, A.; Totis, V.; Avšič-Županc, T.; Mastrangelo, E.; Manfroni, G.; D’Agaro, P.; Marcello, A. Comprehensive response to Usutu virus following first isolation in blood donors in the Friuli Venezia Giulia region of Italy: Development of recombinant NS1-based serology and sensitivity to antiviral drugs. PLoS Negl. Trop. Dis., 2020, 14(3), e0008156.
[http://dx.doi.org/10.1371/journal.pntd.0008156] [PMID: 32226028]
[82]
Laxmikeshav, K.; Kumari, P.; Shankaraiah, N. Expedition of sulfur containing heterocyclic derivatives as cytotoxic agents in medicinal chemistry: A decade update. Med. Res. Rev., 2021, [Epub ahead of print].
[PMID: 34453452]
[83]
Tay, M.Y.F.; Saw, W.G.; Zhao, Y.; Chan, K.W.K.; Singh, D.; Chong, Y.; Forwood, J.K.; Ooi, E.E.; Grüber, G.; Lescar, J.; Luo, D.; Vasudevan, S.G. The C-terminal 50 amino acid residues of dengue NS3 protein are important for NS3-NS5 interaction and viral replication. J. Biol. Chem., 2015, 290(4), 2379-2394.
[http://dx.doi.org/10.1074/jbc.M114.607341] [PMID: 25488659]
[84]
Zou, G.; Chen, Y.L.; Dong, H.; Lim, C.C.; Yap, L.J.; Yau, Y.H.; Shochat, S.G.; Lescar, J.; Shi, P.Y. Functional analysis of two cavities in flavivirus NS5 polymerase. J. Biol. Chem., 2011, 286(16), 14362-14372.
[http://dx.doi.org/10.1074/jbc.M110.214189] [PMID: 21349834]
[85]
Malet, H.; Egloff, M.P.; Selisko, B.; Butcher, R.E.; Wright, P.J.; Roberts, M.; Gruez, A.; Sulzenbacher, G.; Vonrhein, C.; Bricogne, G.; Mackenzie, J.M.; Khromykh, A.A.; Davidson, A.D.; Canard, B. Crystal structure of the RNA polymerase domain of the west nile virus non-structural protein 5. J. Biol. Chem., 2007, 282(14), 10678-10689.
[http://dx.doi.org/10.1074/jbc.M607273200] [PMID: 17287213]
[86]
Gebhard, L.G.; Filomatori, C.V.; Gamarnik, A.V. Functional RNA elements in the dengue virus genome. Viruses, 2011, 3(9), 1739-1756.
[http://dx.doi.org/10.3390/v3091739] [PMID: 21994804]
[87]
Li, X.; Srinivasan, S.R.; Connarn, J.; Ahmad, A.; Young, Z.T.; Kabza, A.M.; Zuiderweg, E.R.P.; Sun, D.; Gestwicki, J.E. Analogues of the allosteric Heat Shock Protein 70 (Hsp70) inhibitor, MKT-077, as anti-cancer agents. ACS Med. Chem. Lett., 2013, 4, 1042-1047.
[http://dx.doi.org/10.1021/ml400204n]
[88]
Xia, H.; Xie, X.; Zou, J.; Noble, C.G.; Russell, W.K.; Holthauzen, L.M.F.; Choi, K.H.; White, M.A.; Shi, P.Y. A cocrystal structure of dengue capsid protein in complex of inhibitor. Proc. Natl. Acad. Sci. USA, 2020, 117(30), 17992-18001.
[http://dx.doi.org/10.1073/pnas.2003056117] [PMID: 32669438]
[89]
Dai, D.; Burgeson, J.R. Thienopyridine derivatives for the treatment and prevention of dengue virus infections. Patent no. WO2014089378, 2014.
[90]
Saudi, M.; Zmurko, J.; Kaptein, S.; Rozenski, J.; Gadakh, B.; Chaltin, P.; Marchand, A.; Neyts, J.; Van Aerschot, A. Synthetic strategy and antiviral evaluation of diamide containing heterocycles targeting dengue and yellow fever virus. Eur. J. Med. Chem., 2016, 121, 158-168.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.043] [PMID: 27240271]
[91]
Zhang, X.; Liu, B.; Tang, L.; Su, Q.; Hwang, N.; Sehgal, M.; Cheng, J.; Ma, J.; Zhang, X.; Tan, Y.; Zhou, Y.; Duan, Z.; DeFilippis, V.R.; Viswanathan, U.; Kulp, J.; Du, Y.; Guo, J.T.; Chang, J. Discovery and mechanistic study of a novel human-stimulator-of-interferon-genes agonist. ACS Infect. Dis., 2019, 5(7), 1139-1149.
[http://dx.doi.org/10.1021/acsinfecdis.9b00010] [PMID: 31060350]
[92]
Banerjee, M.; Middya, S.; Basu, S.; Ghosh, R.; Pryde, D.; Yadav, D.; Shrivastava, R.; Surya, A. Preparation of fused (hetero)arylthiazine carboxamides as STING modulators. Patent no. WO2018234805, 2018.
[93]
Smith, J.L.; Stein, D.A.; Shum, D.; Fischer, M.A.; Radu, C.; Bhinder, B.; Djaballah, H.; Nelson, J.A.; Früh, K.; Hirsch, A.J. Inhibition of dengue virus replication by a class of small-molecule compounds that antagonize dopamine receptor d4 and downstream mitogen-activated protein kinase signaling. J. Virol., 2014, 88(10), 5533-5542.
[http://dx.doi.org/10.1128/JVI.00365-14] [PMID: 24599995]
[94]
Rowley, M.; Broughton, H.B.; Collins, I.; Baker, R.; Emms, F.; Marwood, R.; Patel, S.; Patel, S.; Ragan, C.I.; Freedman, S.B.; Leeson, P.D. 5-(4-Chlorophenyl)-4-methyl-3-(1-(2-phenylethyl)piperidin-4-yl)isoxazole: A potent, selective antagonist at human cloned dopamine D4 receptors. J. Med. Chem., 1996, 39(10), 1943-1945.
[http://dx.doi.org/10.1021/jm960072u] [PMID: 8642551]
[95]
Zhao, C.; Rakesh, K.P.; Ravidar, L.; Fang, W.Y.; Qin, H.L. Pharmaceutical and medicinal significance of sulfur (SVI)-Containing motifs for drug discovery: A critical review. Eur. J. Med. Chem., 2019, 162, 679-734.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.017] [PMID: 30496988]
[96]
Pitts, J.; Hsia, C.Y.; Lian, W.; Wang, J.; Pfeil, M.P.; Kwiatkowski, N.; Li, Z.; Jang, J.; Gray, N.S.; Yang, P.L. Identification of small molecule inhibitors targeting the Zika virus envelope protein. Antiviral Res., 2019, 164, 147-153.
[http://dx.doi.org/10.1016/j.antiviral.2019.02.008] [PMID: 30771406]
[97]
Feng, Y.; Yu, Z-X. Formal synthesis of (±)-galanthamine and (±)-lycoramine using Rh(I)-catalyzed [(3 + 2) + 1] cycloaddition of 1-ene-vinylcyclopropane and CO. J. Org. Chem., 2015, 80(3), 1952-1956.
[http://dx.doi.org/10.1021/jo502604p] [PMID: 25558884]
[98]
Brai, A.; Boccuto, A.; Monti, M.; Marchi, S.; Vicenti, I.; Saladini, F.; Trivisani, C.I.; Pollutri, A.; Trombetta, C.M.; Montomoli, E.; Riva, V.; Garbelli, A.; Nola, E.M.; Zazzi, M.; Maga, G.; Dreassi, E.; Botta, M. Exploring the implication of DDX3X in DENV infection: Discovery of the first-in-class DDX3X fluorescent inhibitor. ACS Med. Chem. Lett., 2020, 11(5), 956-962.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00681] [PMID: 32435411]
[99]
Vincetti, P.; Kaptein, S.J.F.; Costantino, G.; Neyts, J.; Radi, M. Scaffold morphing approach to expand the toolbox of broad-spectrum antivirals blocking dengue/zika replication. ACS Med. Chem. Lett., 2019, 10(4), 558-563.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00583] [PMID: 30996796]
[100]
Amat, M.; Checa, B.; Llor, N.; Molins, E.; Bosch, J. Enantioselective total synthesis of the indole alkaloid 16-episilicine. Chem. Commun. (Camb.), 2009, (20), 2935-2937.
[http://dx.doi.org/10.1039/b904521j] [PMID: 19436915]
[101]
Contessa, J.N.; Golden, J.E.; Flaherty, D.P. Preparation of benzenesulfonylamide derivatives as inhibitors of N-linked glycosylation. Patent no. WO 2017/019540 A2, 2016.
[102]
Kaptein, S.J.F.; Goethals, O.; Kiemel, D.; Marchand, A.; Kesteleyn, B.; Bonfanti, J.; Bardiot, D.; Stoops, B.; Jonckers, T.H.M.; Dallmeier, K.; Geluykens, P.; Thys, K.; Crabbe, M.; Chatel-Chaix, L.; Münster, M.; Querat, G.; Touret, F.; de Lamballerie, X.; Raboisson, P.; Simmen, K.; Chaltin, P.; Bartenschlager, R.; Van Loock, M.; Neyts, J. A pan-serotype dengue virus inhibitor targeting the NS3–NS4B interaction. Nature, 2021, 598, 504-509.
[http://dx.doi.org/10.1038/s41586-021-03990-6]
[103]
Moquin, S.A.; Simon, O.; Karuna, R.; Lakshminarayana, S.B.; Yokokawa, F.; Wang, F.; Saravanan, C.; Zhang, J.; Day, C.W.; Chan, K.; Wang, Q.Y.; Lu, S.; Dong, H.; Wan, K.F.; Lim, S.P.; Liu, W.; Seh, C.C.; Chen, Y.L.; Xu, H.; Barkan, D.T.; Kounde, C.S.; Sim, W.L.S.; Wang, G.; Yeo, H.Q.; Zou, B.; Chan, W.L.; Ding, M.; Song, J.G.; Li, M.; Osborne, C.; Blasco, F.; Sarko, C.; Beer, D.; Bonamy, G.M.C.; Sasseville, V.G.; Shi, P.Y.; Diagana, T.T.; Yeung, B.K.S.; Gu, F. NITD-688, a pan-serotype inhibitor of the dengue virus NS4B protein, shows favorable pharmacokinetics and efficacy in preclinical animal models. Sci. Transl. Med., 2021, 13(579), 1-14.
[http://dx.doi.org/10.1126/scitranslmed.abb2181] [PMID: 33536278]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy