Review Article

精神障碍和退行性疾病中有机硒化合物的神经药理学

卷 30, 期 21, 2023

发表于: 05 September, 2022

页: [2357 - 2395] 页: 39

弟呕挨: 10.2174/0929867329666220615124412

价格: $65

conference banner
摘要

神经退行性和精神障碍是一种公共健康负担,药物治疗效果有限。有机硒化合物在药物化学中受到极大关注,主要是因为它们具有抗氧化和免疫调节活性,具有多靶点特性,有利于治疗多因素疾病。因此,本综述的目的是讨论最近关于有机硒化合物作为治疗精神疾病(例如,抑郁症、焦虑症、双相情感障碍和精神分裂症)和神经退行性疾病(例如,阿尔茨海默病、帕金森病、肌萎缩症、侧索硬化和多发性硬化症)的治疗药物的临床前研究。我们总结了从 2016 年至今的约 70 篇同行评审文章,这些文章使用计算机、体外和/或体内方法评估含硒化合物的神经药理学。在过去五年研究的有机硒分子的多样性中,二芳基二硒化物、依布硒衍生物和含硒杂环化合物最具代表性。最终,这篇综述有望提供有关有机硒化合物神经药理学的面向疾病的信息,这些信息可用于设计、合成和药理学表征可能成为临床可行候选物的新型生物活性分子。

关键词: 硒,情绪,神经变性,药理学,神经保护,治疗剂。

[1]
Fredga, A. Organic selenium chemistry. Ann. N. Y. Acad. Sci., 1972, 192, 1-9.
[http://dx.doi.org/10.1111/j.1749-6632.1972.tb52571.x] [PMID: 4503563]
[2]
Schwarz, K.; Foltz, C.M. Selenium as an integral part of Factor 3 against dietary necrotic liver degeneration. J. Am. Chem. Soc., 1957, 79, 3292-3293.
[http://dx.doi.org/10.1021/ja01569a087] [PMID: 10408880]
[3]
Stadtman, T.C. Selenium biochemistry. Science, 1974, 183(4128), 915-922.
[http://dx.doi.org/10.1126/science.183.4128.915] [PMID: 4605100]
[4]
Flohe, L.; Günzler, W.A.; Schock, H.H. Glutathione peroxidase: A selenoenzyme. FEBS Lett., 1973, 32(1), 132-134.
[http://dx.doi.org/10.1016/0014-5793(73)80755-0] [PMID: 4736708]
[5]
Yang, G.Q.; Ge, K.Y.; Chen, J.S.; Chen, X.S. Selenium-related endemic diseases and the daily selenium requirement of humans. World Rev. Nutr. Diet., 1988, 55, 98-152.
[http://dx.doi.org/10.1159/000415560] [PMID: 3287776]
[6]
Vanderpas, J.B.; Contempré, B.; Duale, N.L.; Goossens, W.; Bebe, N.; Thorpe, R.; Ntambue, K.; Dumont, J.; Thilly, C.H.; Diplock, A.T. Iodine and selenium deficiency associated with cretinism in northern Zaire. Am. J. Clin. Nutr., 1990, 52(6), 1087-1093.
[http://dx.doi.org/10.1093/ajcn/52.6.1087] [PMID: 2239787]
[7]
Kryukov, G.V.; Castellano, S.; Novoselov, S.V.; Lobanov, A.V.; Zehtab, O.; Guigó, R.; Gladyshev, V.N. Characterization of mammalian selenoproteomes. Science, 2003, 300(5624), 1439-1443.
[http://dx.doi.org/10.1126/science.1083516] [PMID: 12775843]
[8]
Holben, D.H.; Smith, A.M. The diverse role of selenium within selenoproteins: A review. J. Am. Diet. Assoc., 1999, 99(7), 836-843.
[http://dx.doi.org/10.1016/S0002-8223(99)00198-4] [PMID: 10405682]
[9]
Rayman, M.P. The importance of selenium to human health. Lancet, 2000, 356(9225), 233-241.
[http://dx.doi.org/10.1016/S0140-6736(00)02490-9] [PMID: 10963212]
[10]
Burk, R.F.; Brown, D.G.; Seely, R.J.; Scaief, C.C., III Influence of dietary and injected selenium on whole-blody retention, route of excretion, and tissue retention of 75SeO3 2- in the rat. J. Nutr., 1972, 102(8), 1049-1055.
[http://dx.doi.org/10.1093/jn/102.8.1049] [PMID: 5072897]
[11]
Zhang, Y.; Zhou, Y.; Schweizer, U.; Savaskan, N.E.; Hua, D.; Kipnis, J.; Hatfield, D.L.; Gladyshev, V.N. Comparative analysis of selenocysteine machinery and selenoproteome gene expression in mouse brain identifies neurons as key functional sites of selenium in mammals. J. Biol. Chem., 2008, 283(4), 2427-2438.
[http://dx.doi.org/10.1074/jbc.M707951200] [PMID: 18032379]
[12]
Hill, K.E.; Wu, S.; Motley, A.K.; Stevenson, T.D.; Winfrey, V.P.; Capecchi, M.R.; Atkins, J.F.; Burk, R.F. Production of selenoprotein P (Sepp1) by hepatocytes is central to selenium homeostasis. J. Biol. Chem., 2012, 287(48), 40414-40424.
[http://dx.doi.org/10.1074/jbc.M112.421404] [PMID: 23038251]
[13]
Burk, R.F.; Hill, K.E. Regulation of selenium metabolism and transport. Annu. Rev. Nutr., 2015, 35, 109-134.
[http://dx.doi.org/10.1146/annurev-nutr-071714-034250] [PMID: 25974694]
[14]
Olson, G.E.; Winfrey, V.P.; Nagdas, S.K.; Hill, K.E.; Burk, R.F. Apolipoprotein E receptor-2 (ApoER2) mediates selenium uptake from selenoprotein P by the mouse testis. J. Biol. Chem., 2007, 282(16), 12290-12297.
[http://dx.doi.org/10.1074/jbc.M611403200] [PMID: 17314095]
[15]
Chiu-Ugalde, J.; Theilig, F.; Behrends, T.; Drebes, J.; Sieland, C.; Subbarayal, P.; Köhrle, J.; Hammes, A.; Schomburg, L.; Schweizer, U. Mutation of megalin leads to urinary loss of selenoprotein P and selenium deficiency in serum, liver, kidneys and brain. Biochem. J., 2010, 431(1), 103-111.
[http://dx.doi.org/10.1042/BJ20100779] [PMID: 20653565]
[16]
de Almeida, T.L.F.; Petarli, G.B.; Cattafesta, M.; Zandonade, E.; Bezerra, O.M.P.A.; Tristão, K.G.; Ferreira de Almeida, T.L.; Petarli, G.B.; Cattafesta, M.; Zandonade, E.; Bezerra, O.M.P.A.; Tristão, K.G.; Salaroli, L.B. Association of selenium intake and development of depression in Brazilian farmers. Front. Nutr., 2021, 8, 671377.
[http://dx.doi.org/10.3389/fnut.2021.671377] [PMID: 34095192]
[17]
Müller, A.; Cadenas, E.; Graf, P.; Sies, H. A novel biologically active seleno-organic compound--I. Glutathione peroxidase-like activity in vitro and antioxidant capacity of PZ 51 (Ebselen). Biochem. Pharmacol., 1984, 33(20), 3235-3239.
[PMID: 6487370]
[18]
Jain, V.K. Organoselenium Compounds in Biology and Medicine: Synthesis, Biological and Therapeutic Treatments; RSC Publishing: London, 2017.
[19]
Santi, C., Ed.; Organoselenium Chemistry: Between Synthesis and Biochemistry; Bentham Science Publishers: Sharjah, 2014.
[20]
Lenardão, E.J.; Santi, C.; Sancineto, L. New Frontiers in Organoselenium Compounds; Springer: Cham, Switzerland, 2018.
[http://dx.doi.org/10.1007/978-3-319-92405-2]
[21]
Nogueira, C.W.; Rocha, J.B.T. Toxicology and pharmacology of selenium: Emphasis on synthetic organoselenium compounds. Arch. Toxicol., 2011, 85(11), 1313-1359.
[http://dx.doi.org/10.1007/s00204-011-0720-3] [PMID: 21720966]
[22]
Chuai, H.; Zhang, S.Q.; Bai, H.; Li, J.; Wang, Y.; Sun, J.; Wen, E.; Zhang, J.; Xin, M. Small molecule selenium-containing compounds: Recent development and therapeutic applications. Eur. J. Med. Chem., 2021, 223, 113621.
[http://dx.doi.org/10.1016/j.ejmech.2021.113621] [PMID: 34217061]
[23]
Nogueira, C.W.; Barbosa, N.V.; Rocha, J.B.T. Toxicology and pharmacology of synthetic organoselenium compounds: An update. Arch. Toxicol., 2021, 95(4), 1179-1226.
[http://dx.doi.org/10.1007/s00204-021-03003-5] [PMID: 33792762]
[24]
Santi, C.; Scimmi, C.; Sancineto, L. Ebselen and analogues: Pharmacological properties and synthetic strategies for their preparation. Molecules, 2021, 26(14), 4230.
[http://dx.doi.org/10.3390/molecules26144230] [PMID: 34299505]
[25]
Andrade, L.; Caraveo-Anduaga, J.J.; Berglund, P.; Bijl, R.V.; De Graaf, R.; Vollebergh, W.; Dragomirecka, E.; Kohn, R.; Keller, M.; Kessler, R.C.; Kawakami, N.; Kiliç, C.; Offord, D.; Ustun, T.B.; Wittchen, H.U. The epidemiology of major depressive episodes: Results from the international consortium of psychiatric epidemiology (ICPE) Surveys. Int. J. Methods Psychiatr. Res., 2003, 12(1), 3-21.
[http://dx.doi.org/10.1002/mpr.138] [PMID: 12830306]
[26]
Troubat, R.; Barone, P.; Leman, S.; Desmidt, T.; Cressant, A.; Atanasova, B.; Brizard, B.; El Hage, W.; Surget, A.; Belzung, C.; Camus, V. Neuroinflammation and depression: A review. Eur. J. Neurosci., 2021, 53(1), 151-171.
[http://dx.doi.org/10.1111/ejn.14720] [PMID: 32150310]
[27]
Hasler, G. Pathophysiology of depression: Do we have any solid evidence of interest to clinicians? World Psychiatry, 2010, 9(3), 155-161.
[http://dx.doi.org/10.1002/j.2051-5545.2010.tb00298.x] [PMID: 20975857]
[28]
Bahji, A.; Mesbah-Oskui, L. Comparative efficacy and safety of stimulant-type medications for depression: A systematic review and network meta-analysis. J. Affect. Disord., 2021, 292, 416-423.
[http://dx.doi.org/10.1016/j.jad.2021.05.119] [PMID: 34144366]
[29]
Pereira, V.S.; Hiroaki-Sato, V.A. A brief history of antidepressant drug development: From tricyclics to beyond ketamine. Acta Neuropsychiatr., 2018, 30(6), 307-322.
[http://dx.doi.org/10.1017/neu.2017.39] [PMID: 29388517]
[30]
Jans, L.A.; Riedel, W.J.; Markus, C.R.; Blokland, A. Serotonergic vulnerability and depression: Assumptions, experimental evidence and implications. Mol. Psychiatry, 2007, 12(6), 522-543.
[http://dx.doi.org/10.1038/sj.mp.4001920] [PMID: 17160067]
[31]
Moreno, F.A.; Parkinson, D.; Palmer, C.; Castro, W.L.; Misiaszek, J.; El Khoury, A.; Mathé, A.A.; Wright, R.; Delgado, P.L. CSF neurochemicals during tryptophan depletion in individuals with remitted depression and healthy controls. Eur. Neuropsychopharmacol., 2010, 20(1), 18-24.
[http://dx.doi.org/10.1016/j.euroneuro.2009.10.003] [PMID: 19896342]
[32]
Dalvi-Garcia, F.; Fonseca, L.L.; Vasconcelos, A.T.R.; Hedin-Pereira, C.; Voit, E.O. A model of dopamine and serotonin-kynurenine metabolism in cortisolemia: Implications for depression. PLOS Comput. Biol., 2021, 17(5), e1008956.
[http://dx.doi.org/10.1371/journal.pcbi.1008956] [PMID: 33970902]
[33]
Verduijn, J.; Milaneschi, Y.; Schoevers, R.A.; van Hemert, A.M.; Beekman, A.T.; Penninx, B.W. Pathophysiology of major depressive disorder: Mechanisms involved in etiology are not associated with clinical progression. Transl. Psychiatry, 2015, 5, e649.
[http://dx.doi.org/10.1038/tp.2015.137] [PMID: 26418277]
[34]
O’Connor, J.C.; André, C.; Wang, Y.; Lawson, M.A.; Szegedi, S.S.; Lestage, J.; Castanon, N.; Kelley, K.W.; Dantzer, R. Interferon-γ and tumor necrosis factor-α mediate the upregulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to bacillus Calmette-Guerin. J. Neurosci., 2009, 29(13), 4200-4209.
[http://dx.doi.org/10.1523/JNEUROSCI.5032-08.2009] [PMID: 19339614]
[35]
Moylan, S.; Maes, M.; Wray, N.R.; Berk, M. The neuroprogressive nature of major depressive disorder: Pathways to disease evolution and resistance, and therapeutic implications. Mol. Psychiatry, 2013, 18(5), 595-606.
[http://dx.doi.org/10.1038/mp.2012.33] [PMID: 22525486]
[36]
Leonard, B.E. Inflammation and depression: A causal or coincidental link to the pathophysiology? Acta Neuropsychiatr., 2018, 30(1), 1-16.
[http://dx.doi.org/10.1017/neu.2016.69] [PMID: 28112061]
[37]
Bajpai, A.; Verma, A.K.; Srivastava, M.; Srivastava, R. Oxidative stress and major depression. J. Clin. Diagn. Res., 2014, 8(12), CC04-CC07.
[PMID: 25653939]
[38]
Anderson, G.; Berk, M.; Dean, O.; Moylan, S.; Maes, M. Role of immune-inflammatory and oxidative and nitrosative stress pathways in the etiology of depression: therapeutic implications. CNS Drugs, 2014, 28(1), 1-10.
[http://dx.doi.org/10.1007/s40263-013-0119-1] [PMID: 24150993]
[39]
Okusaga, O.O. Accelerated aging in schizophrenia patients: The potential role of oxidative stress. Aging Dis., 2013, 5(4), 256-262.
[PMID: 25110609]
[40]
Kannan, K.; Jain, S.K. Oxidative stress and apoptosis. Pathophysiology, 2000, 7(3), 153-163.
[http://dx.doi.org/10.1016/S0928-4680(00)00053-5] [PMID: 10996508]
[41]
Sekiguchi, M.; Sekiguchi, Y.; Konno, S.; Kobayashi, H.; Homma, Y.; Kikuchi, S. Comparison of neuropathic pain and neuronal apoptosis following nerve root or spinal nerve compression. Eur. Spine J., 2009, 18(12), 1978-1985.
[http://dx.doi.org/10.1007/s00586-009-1064-z] [PMID: 19543754]
[42]
Wann, B.P.; Bah, T.M.; Kaloustian, S.; Boucher, M.; Dufort, A.M.; Le Marec, N.; Godbout, R.; Rousseau, G. Behavioural signs of depression and apoptosis in the limbic system following myocardial infarction: effects of sertraline. J. Psychopharmacol., 2009, 23(4), 451-459.
[http://dx.doi.org/10.1177/0269881108089820] [PMID: 18562428]
[43]
Serafini, G.; Pompili, M.; Elena Seretti, M.; Stefani, H.; Palermo, M.; Coryell, W.; Girardi, P. The role of inflammatory cytokines in suicidal behavior: A systematic review. Eur. Neuropsychopharmacol., 2013, 23(12), 1672-1686.
[http://dx.doi.org/10.1016/j.euroneuro.2013.06.002] [PMID: 23896009]
[44]
Sorrells, S.F.; Paredes, M.F.; Cebrian-Silla, A.; Sandoval, K.; Qi, D.; Kelley, K.W.; James, D.; Mayer, S.; Chang, J.; Auguste, K.I.; Chang, E.F.; Gutierrez, A.J.; Kriegstein, A.R.; Mathern, G.W.; Oldham, M.C.; Huang, E.J.; Garcia-Verdugo, J.M.; Yang, Z.; Alvarez-Buylla, A. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature, 2018, 555(7696), 377-381.
[http://dx.doi.org/10.1038/nature25975] [PMID: 29513649]
[45]
Groves, J.O. Is it time to reassess the BDNF hypothesis of depression? Mol. Psychiatry, 2007, 12(12), 1079-1088.
[http://dx.doi.org/10.1038/sj.mp.4002075] [PMID: 17700574]
[46]
Hanson, N.D.; Owens, M.J.; Nemeroff, C.B. Depression, antidepressants, and neurogenesis: A critical reappraisal. Neuropsychopharmacology, 2011, 36(13), 2589-2602.
[http://dx.doi.org/10.1038/npp.2011.220] [PMID: 21937982]
[47]
Hillhouse, T.M.; Porter, J.H. A brief history of the development of antidepressant drugs: From monoamines to glutamate. Exp. Clin. Psychopharmacol., 2015, 23(1), 1-21.
[http://dx.doi.org/10.1037/a0038550] [PMID: 25643025]
[48]
Halaris, A.; Sohl, E.; Whitham, E.A. Treatment-resistant depression revisited: A glimmer of hope. J. Pers. Med., 2021, 11(2), 155.
[http://dx.doi.org/10.3390/jpm11020155] [PMID: 33672126]
[49]
Samuels, B.A.; Mendez-David, I.; Faye, C.; David, S.A.; Pierz, K.A.; Gardier, A.M.; Hen, R.; David, D.J. Serotonin 1A and serotonin 4 receptors: Essential mediators of the neurogenic and behavioral actions of antidepressants. Neuroscientist, 2016, 22(1), 26-45.
[http://dx.doi.org/10.1177/1073858414561303] [PMID: 25488850]
[50]
Besckow, E.M.; Nonemacher, N.T.; Garcia, C.S.; da Silva Espíndola, C.N.; Balbom, E.B.; Gritzenco, F.; Savegnago, L.; Godoi, B.; Bortolatto, C.F.; Brüning, C.A. Antidepressant-like effect of a selenopropargylic benzamide in mice: Involvement of the serotonergic system. Psychopharmacology (Berl.), 2020, 237(10), 3149-3159.
[http://dx.doi.org/10.1007/s00213-020-05600-1] [PMID: 32617647]
[51]
Balbom, E.B.; Gritzenco, F.; Sperança, A.; Godoi, M.; Alves, D.; Barcellos, T.; Godoi, B. Copper-catalyzed Cspchalcogen bond formation: Versatile approach to N-(3-(organochalcogenyl)prop-2-yn-1-yl)amides. Tetrahedron, 2019, 75, 4017-4023.
[http://dx.doi.org/10.1016/j.tet.2019.06.031]
[52]
Gay, R.M.; Manarin, F.; Schneider, C.C.; Barancelli, D.A.; Costa, M.D.; Zeni, G. FeCl3-Diorganyl dichalcogenides promoted cyclization of 2-alkynylanisoles to 3-chalcogen benzo[b]furans. J. Org. Chem., 2010, 75(16), 5701-5706.
[http://dx.doi.org/10.1021/jo101126q] [PMID: 20704440]
[53]
Gall, J.I.; Gonçalves Alves, A.; Carraro Júnior, L.R.; da Silva Teixeira Rech, T.; Dos Santos Neto, J.S.; Alves, D.; Pereira Soares, M.S.; Spohr, L.; Spanevello, R.M.; Brüning, C.A.; Folharini Bortolatto, C. Insights into serotonergic and antioxidant mechanisms involved in antidepressant-like action of 2-phenyl-3-(phenylselanyl)benzofuran in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2020, 102, 109956.
[http://dx.doi.org/10.1016/j.pnpbp.2020.109956] [PMID: 32371105]
[54]
da Silva, T.R.T.; Gonçalves Alves, A.; Nornberg Strelow, D.; Devantier Krüger, L.; Carraro Júnior, L.R.; Dos Santos Neto, J.S.; Braga, A.L.; Brüning, C.A.; Folharini Bortolatto, C. 2-Phenyl-3-(phenylselanyl)benzofuran elicits acute antidepressant-like action in male Swiss mice mediated by modulation of the dopaminergic system and reveals therapeutic efficacy in both sexes. Psychopharmacology (Berl.), 2021, 238(10), 3013-3024.
[http://dx.doi.org/10.1007/s00213-021-05921-9] [PMID: 34312682]
[55]
Stein, A.L.; Bilheri, F.N.; da Rocha, J.T.; Back, D.F.; Zeni, G. Application of copper(I) iodide/diorganoyl dichalcogenides to the synthesis of 4-organochalcogen isoquinolines by regioselective C-N and C-chalcogen bond formation. Chemistry, 2012, 18(34), 10602-10608.
[http://dx.doi.org/10.1002/chem.201201618] [PMID: 22807116]
[56]
Sampaio, T.B.; Bilheri, F.N.; Zeni, G.R.; Nogueira, C.W. Dopaminergic system contribution to the antidepressant-like effect of 3-phenyl-4-(phenylseleno) isoquinoline in mice. Behav. Brain Res., 2020, 386, 112602.
[http://dx.doi.org/10.1016/j.bbr.2020.112602] [PMID: 32184159]
[57]
Tipton, K.F.; Boyce, S.; O’Sullivan, J.; Davey, G.P.; Healy, J. Monoamine oxidases: Certainties and uncertainties. Curr. Med. Chem., 2004, 11(15), 1965-1982.
[http://dx.doi.org/10.2174/0929867043364810] [PMID: 15279561]
[58]
Cristancho, M.A.; Thase, M.E. Critical appraisal of selegiline transdermal system for major depressive disorder. Expert Opin. Drug Deliv., 2016, 13(5), 659-665.
[http://dx.doi.org/10.1517/17425247.2016.1140145] [PMID: 26837935]
[59]
Velasquez, D.; Quines, C.; Pistóia, R.; Zeni, G.; Nogueira, C.W. Selective inhibition of MAO-A activity results in an antidepressant-like action of 2-benzoyl 4-iodoselenophene in mice. Physiol. Behav., 2017, 170, 100-105.
[http://dx.doi.org/10.1016/j.physbeh.2016.12.024] [PMID: 28012831]
[60]
Roehrs, J.A.; Pistoia, R.P.; Back, D.F.; Zeni, G. Diorganyl dichalcogenides-promoted nucleophilic closure of 1,4-diyn-3-ols: synthesis of 2-benzoyl chalcogenophenes. J. Org. Chem., 2015, 80(24), 12470-12481.
[http://dx.doi.org/10.1021/acs.joc.5b02334] [PMID: 26561717]
[61]
Meyer, J.H.; Ginovart, N.; Boovariwala, A.; Sagrati, S.; Hussey, D.; Garcia, A.; Young, T.; Praschak-Rieder, N.; Wilson, A.A.; Houle, S. Elevated monoamine oxidase a levels in the brain: an explanation for the monoamine imbalance of major depression. Arch. Gen. Psychiatry, 2006, 63(11), 1209-1216.
[http://dx.doi.org/10.1001/archpsyc.63.11.1209] [PMID: 17088501]
[62]
Vargas, J.P.; Pinto, L.M.; Savegnago, L.; Lüdtke, D.S. Synthesis of alkylseleno-carbohydrates and evaluation of their antioxidant properties. J. Braz. Chem. Soc., 2015, 26, 810-815.
[http://dx.doi.org/10.5935/0103-5053.20150021]
[63]
Pinto Brod, L.M.; Fronza, M.G.; Vargas, J.P.; Lüdtke, D.S.; Luchese, C.; Wilhelm, E.A.; Savegnago, L. Involvement of monoaminergic system in the antidepressant-like effect of (octylseleno)-xylofuranoside in the mouse tail suspension test. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 65, 201-207.
[http://dx.doi.org/10.1016/j.pnpbp.2015.10.008] [PMID: 26596986]
[64]
Pinto Brod, L.M.; Fronza, M.G.; Vargas, J.P.; Lüdtke, D.S.; Brüning, C.A.; Savegnago, L. Modulation of PKA, PKC, CAMKII, ERK 1/2 pathways is involved in the acute antidepressant-like effect of (octylseleno)-xylofuranoside (OSX) in mice. Psychopharmacology (Berl.), 2017, 234(4), 717-725.
[http://dx.doi.org/10.1007/s00213-016-4505-5] [PMID: 27995278]
[65]
Quines, C.B.; Rosa, S.G.; Velasquez, D.; Da Rocha, J.T.; Neto, J.S.; Nogueira, C.W. Diphenyl diselenide elicits antidepressant-like activity in rats exposed to monosodium glutamate: A contribution of serotonin uptake and Na(+), K(+)-ATPase activity. Behav. Brain Res., 2016, 301, 161-167.
[http://dx.doi.org/10.1016/j.bbr.2015.12.038] [PMID: 26738966]
[66]
Oliveira, C.E.; Sari, M.H.; Zborowski, V.A.; Araujo, P.C.; Nogueira, C.W.; Zeni, G. p,p′-Methoxyl-diphenyl diselenide elicits an anti-depressant-like effect in mice without discontinuation anxiety phenotype. Pharmacol. Biochem. Behav., 2017, 154, 31-38.
[http://dx.doi.org/10.1016/j.pbb.2017.02.002] [PMID: 28174136]
[67]
Oliveira, C.E.S.; Marcondes Sari, M.H.M.; Zborowski, V.A.; Prado, V.C.; Nogueira, C.W.; Zeni, G. Pain-depression dyad induced by reserpine is relieved by p,p′-methoxyl-diphenyl diselenide in rats. Eur. J. P., 2016, 791, 794-802.
[http://dx.doi.org/10.1016/j.ejphar.2016.10.021] [PMID: 27769701]
[68]
Heck, S.O.; Zborowski, V.A.; Quines, C.B.; Nogueira, C.W. 4,4′-Dichlorodiphenyl diselenide reverses a depressive-like phenotype, modulates prefrontal cortical oxidative stress and dysregulated glutamatergic neurotransmission induced by subchronic dexamethasone exposure to mice. J. P. Res., 2019, 116, 61-68.
[http://dx.doi.org/10.1016/j.jpsychires.2019.05.027] [PMID: 31200328]
[69]
Zborowski, V.A.; Heck, S.O.; Vencato, M.; Pinton, S.; Marques, L.S.; Nogueira, C.W. Keap1/Nrf2/HO-1 signaling pathway contributes to p-chlorodiphenyl diselenide antidepressant-like action in diabetic mice. Psychopharmacology (Berl.), 2020, 237(2), 363-374.
[http://dx.doi.org/10.1007/s00213-019-05372-3] [PMID: 31828396]
[70]
Satoh, T.; Okamoto, S.I.; Cui, J.; Watanabe, Y.; Furuta, K.; Suzuki, M.; Tohyama, K.; Lipton, S.A. Activation of the Keap1/Nrf2 path-way for neuroprotection by electrophilic [correction of electrophillic] phase II inducers. Proc. Natl. Acad. Sci. USA, 2006, 103(3), 768-773.
[http://dx.doi.org/10.1073/pnas.0505723102] [PMID: 16407140]
[71]
Schossler Garcia, C.; Garcia, P.R.; da Silva Espíndola, C.N.; Nunes, G.D.; Jardim, N.S.; Müller, S.G.; Bortolatto, C.F.; Brüning, C.A. Effect of m-Trifluoromethyl-diphenyl diselenide on the pain-depression dyad induced by reserpine: Insights on oxidative stress, apoptotic, and glucocorticoid receptor modulation. Mol. Neurobiol., 2021, 58(10), 5078-5089.
[http://dx.doi.org/10.1007/s12035-021-02483-x] [PMID: 34245440]
[72]
Rosa, S.G.; Pesarico, A.P.; Tagliapietra, C.F.; da Luz, S.C.; Nogueira, C.W. Opioid system contribution to the antidepressant-like action of m-trifluoromethyl-diphenyl diselenide in mice: A compound devoid of tolerance and withdrawal syndrome. J. Psychopharmacol., 2017, 31(9), 1250-1262.
[http://dx.doi.org/10.1177/0269881117724353] [PMID: 28857657]
[73]
Martins, C.C.; Rosa, S.G.; Recchi, A.M.S.; Nogueira, C.W.; Zeni, G. m-Trifluoromethyl-diphenyl diselenide (m-CF3-PhSe)2 modulates the hippocampal neurotoxic adaptations and abolishes a depressive-like phenotype in a short-term morphine withdrawal in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2020, 98, 109803.
[http://dx.doi.org/10.1016/j.pnpbp.2019.109803] [PMID: 31689445]
[74]
Rosa, S.G.; Pesarico, A.P.; Nogueira, C.W. m-Trifluoromethyl-diphenyl diselenide promotes resilience to social avoidance induced by social defeat stress in mice: Contribution of opioid receptors and MAPKs. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 82, 123-135.
[http://dx.doi.org/10.1016/j.pnpbp.2017.11.021] [PMID: 29174974]
[75]
Rosa, S.G.; Pesarico, A.P.; Martini, F.; Nogueira, C.W. m-Trifluoromethyl-diphenyl diselenide regulates prefrontal cortical MOR and KOR protein levels and abolishes the phenotype induced by repeated forced swim stress in mice. Mol. Neurobiol., 2018, 55(12), 8991-9000.
[http://dx.doi.org/10.1007/s12035-018-1024-x] [PMID: 29623611]
[76]
Müller, S.G.; Jardim, N.S.; Trindade, M.A.; Nogueira, C.W. Opioid system contributes to the trifluoromethyl-substituted diselenide effectiveness in a lifestyle-induced depression mouse model. Mol. Neurobiol., 2021, 58(5), 2231-2241.
[http://dx.doi.org/10.1007/s12035-020-02255-z] [PMID: 33417225]
[77]
Vieira, B.M.; Thurow, S.; da Costa, M.; Casaril, A.M.; Domingues, M.; Schumacher, R.F.; Perin, G.; Alves, D.; Savegnago, L.; Lenardão, E.J. Ultrasound-assisted synthesis and antioxidant activity of 3-selanyl-1H-indole and 3-selanylimidazo[1,2-a]pyridine derivatives. Asian J. Org. Chem., 2017, 6, 1635-1646.
[http://dx.doi.org/10.1002/ajoc.201700339]
[78]
Bampi, S.R.; Casaril, A.M.; Sabedra Sousa, F.S.; Pesarico, A.P.; Vieira, B.; Lenardão, E.J.; Savegnago, L. Repeated administration of a selenium-containing indolyl compound attenuates behavioural alterations by streptozotocin through modulation of oxidative stress in mice. Pharmacol. Biochem. Behav., 2019, 183, 46-55.
[http://dx.doi.org/10.1016/j.pbb.2019.06.006] [PMID: 31207269]
[79]
Bampi, S.R.; Casaril, A.M.; Domingues, M.; de Andrade Lourenço, D.; Pesarico, A.P.; Vieira, B.; Begnini, K.R.; Seixas, F.K.; Collares, T.V.; Lenardão, E.J.; Savegnago, L. Depression-like behavior, hyperglycemia, oxidative stress, and neuroinflammation presented in diabetic mice are reversed by the administration of 1-methyl-3-(phenylselanyl)-1H-indole. J. Psychiatr. Res., 2020, 120, 91-102.
[http://dx.doi.org/10.1016/j.jpsychires.2019.10.003] [PMID: 31654972]
[80]
Bampi, S.R.; Casaril, A.M.; Fronza, M.G.; Domingues, M.; Vieira, B.; Begnini, K.R.; Seixas, F.K.; Collares, T.V.; Lenardão, E.J.; Savegnago, L. The selenocompound 1-methyl-3-(phenylselanyl)-1H-indole attenuates depression-like behavior, oxidative stress, and neuroinflammation in streptozotocin-treated mice. Brain Res. Bull., 2020, 161, 158-165.
[http://dx.doi.org/10.1016/j.brainresbull.2020.05.008] [PMID: 32470357]
[81]
Casaril, A.M.; Domingues, M.; Fronza, M.; Vieira, B.; Begnini, K.; Lenardão, E.J.; Seixas, F.K.; Collares, T.; Nogueira, C.W.; Save-gnago, L. Antidepressant-like effect of a new selenium-containing compound is accompanied by a reduction of neuroinflammation and oxidative stress in lipopolysaccharide-challenged mice. J. Psychopharmacol., 2017, 31(9), 1263-1273.
[http://dx.doi.org/10.1177/0269881117711713] [PMID: 28661258]
[82]
Birmann, P.T.; Sousa, F.S.S.; Domingues, M.; Brüning, C.A.; Vieira, B.M.; Lenardão, E.J.; Savegnago, L. 3-(4-Chlorophenylselanyl)-1-methyl-1H-indole promotes recovery of neuropathic pain and depressive-like behavior induced by partial constriction of the sciatic nerve in mice. J. Trace Elem. Med. Biol., 2019, 54, 126-133.
[http://dx.doi.org/10.1016/j.jtemb.2019.04.014] [PMID: 31109602]
[83]
Casaril, A.M.; Domingues, M.; Bampi, S.R.; de Andrade Lourenço, D.; Padilha, N.B.; Lenardão, E.J.; Sonego, M.; Seixas, F.K.; Collares, T.; Nogueira, C.W.; Dantzer, R.; Savegnago, L. The selenium-containing compound 3-((4-chlorophenyl)selanyl)-1-methyl-1H-indole reverses depressive-like behavior induced by acute restraint stress in mice: modulation of oxido-nitrosative stress and inflammatory pathway. Psychopharmacology (Berl.), 2019, 236(10), 2867-2880.
[http://dx.doi.org/10.1007/s00213-018-5151-x] [PMID: 30610349]
[84]
Casaril, A.M.; Domingues, M.; de Andrade Lourenço, D.; Birmann, P.T.; Padilha, N.; Vieira, B.; Begnini, K.; Seixas, F.K.; Collares, T.; Lenardão, E.J.; Savegnago, L. Depression- and anxiogenic-like behaviors induced by lipopolysaccharide in mice are reversed by a selenium-containing indolyl compound: Behavioral, neurochemical and computational insights involving the serotonergic system. J. Psychiatr. Res., 2019, 115, 1-12.
[http://dx.doi.org/10.1016/j.jpsychires.2019.05.006] [PMID: 31082651]
[85]
Casaril, A.M.; Domingues, M.; Lourenço, D.A.; Vieira, B.; Begnini, K.; Corcini, C.D.; França, R.T.; Varela Junior, A.S.; Seixas, F.K.; Collares, T.; Lenardão, E.J.; Savegnago, L. 3-[(4-chlorophenyl)selanyl]-1-methyl-1H-indole ameliorates long-lasting depression- and anxiogenic-like behaviors and cognitive impairment in post-septic mice: Involvement of neuroimmune and oxidative hallmarks. Chem. Biol. Interact., 2020, 331, 109278.
[http://dx.doi.org/10.1016/j.cbi.2020.109278] [PMID: 33038329]
[86]
Casaril, A.M.; Domingues, M.; Bampi, S.R.; Lourenço, D.A.; Smaniotto, T.A.; Segatto, N.; Vieira, B.; Seixas, F.K.; Collares, T.; Lenardão, E.J.; Savegnago, L. The antioxidant and immunomodulatory compound 3-[(4-chlorophenyl) selanyl]-1-methyl-1H-indole attenuates depression-like behavior and cognitive impairment developed in a mouse model of breast tumor. Brain Behav. Immun., 2020, 84, 229-241.
[http://dx.doi.org/10.1016/j.bbi.2019.12.005] [PMID: 31837417]
[87]
Pesarico, A.P.; Birmann, P.T.; Pinto, R.; Padilha, N.B.; Lenardão, E.J.; Savegnago, L. Short- and long-term repeated forced swim stress induce depressive-like phenotype in mice: Effectiveness of 3-[(4-Chlorophenyl)Selanyl]-1-Methyl-1H-Indole. Front. Behav. Neurosci., 2020, 14, 140.
[http://dx.doi.org/10.3389/fnbeh.2020.00140] [PMID: 33192355]
[88]
Casaril, A.M.; Lourenço, D.A.; Domingues, M.; Smaniotto, T.A.; Birmann, P.T.; Vieira, B.; Sonego, M.S.; Seixas, F.K.; Collares, T.; Lenardão, E.J.; Savegnago, L. Anhedonic- and anxiogenic-like behaviors and neurochemical alterations are abolished by a single administration of a selenium-containing compound in chronically stressed mice. Comprehensive Psychoneuroendocrinology, 2021, 6, 100054.
[http://dx.doi.org/10.1016/j.cpnec.2021.100054]
[89]
Vieira, B.M.; Thurow, S.; Brito, J.S.; Perin, G.; Alves, D.; Jacob, R.G.; Santi, C.; Lenardão, E.J. Sonochemistry: An efficient alternative to the synthesis of 3-selanylindoles using CuI as catalyst. Ultrason. Sonochem., 2015, 27, 192-199.
[http://dx.doi.org/10.1016/j.ultsonch.2015.05.012] [PMID: 26186837]
[90]
Domingues, M.; Casaril, A.M.; Birmann, P.T.; Bampi, S.R.; Lourenço, D.A.; Vieira, B.M.; Dapper, L.H.; Lenardão, E.J.; Sonego, M.; Collares, T.; Seixas, F.K.; Brüning, C.A.; Savegnago, L. Effects of a selanylimidazopyridine on the acute restraint stress-induced depressive- and anxiety-like behaviors and biological changes in mice. Behav. Brain Res., 2019, 366, 96-107.
[http://dx.doi.org/10.1016/j.bbr.2019.03.021] [PMID: 30877027]
[91]
Domingues, M.; Casaril, A.M.; Birmann, P.T.; Lourenço, D.A.; Vieira, B.; Begnini, K.; Lenardão, E.J.; Collares, T.; Seixas, F.K.; Savegnago, L. Selanylimidazopyridine prevents lipopolysaccharide-induced depressive-like behavior in mice by targeting neurotrophins and inflammatory/oxidative mediators. Front. Neurosci., 2018, 12, 486.
[http://dx.doi.org/10.3389/fnins.2018.00486] [PMID: 30072867]
[92]
Victoria, F.N.; Radatz, C.S.; Sachini, M.; Jacob, R.G.; Perin, G.; da Silva, W.P.; Lenardão, E.J. KF/Al2O3 and PEG-400 as a recyclable medium for the selective α-selenation of aldehydes and ketones. Preparation of potential antimicrobial agentes. Tetrahedron Lett., 2009, 50, 6761-6763.
[http://dx.doi.org/10.1016/j.tetlet.2009.09.093]
[93]
Sousa, F.S.S.; Birmann, P.T.; Balaguez, R.; Alves, D.; Brüning, C.A.; Savegnago, L. α-(phenylselanyl) acetophenone abolishes acute restraint stress induced-comorbid pain, depression and anxiety-related behaviors in mice. Neurochem. Int., 2018, 120, 112-120.
[http://dx.doi.org/10.1016/j.neuint.2018.08.006] [PMID: 30114472]
[94]
Sabedra Sousa, F.S.; Birmann, P.T.; Bampi, S.R.; Fronza, M.G.; Balaguez, R.; Alves, D.; Leite, M.R.; Nogueira, C.W.; Brüning, C.A.; Savegnago, L. Lipopolysaccharide-induced depressive-like, anxiogenic-like and hyperalgesic behavior is attenuated by acute administration of α-(phenylselanyl) acetophenone in mice. Neuropharmacology, 2019, 146, 128-137.
[http://dx.doi.org/10.1016/j.neuropharm.2018.11.028] [PMID: 30468797]
[95]
Sousa, F.S.S.; Birmann, P.T.; Baldinotti, R.; Fronza, M.G.; Balaguez, R.; Alves, D.; Brüning, C.A.; Savegnago, L. α- (phenylselanyl) acetophenone mitigates reserpine-induced pain-depression dyad: Behavioral, biochemical and molecular docking evidences. Brain Res. Bull., 2018, 142, 129-137.
[http://dx.doi.org/10.1016/j.brainresbull.2018.07.007] [PMID: 30016730]
[96]
Birmann, P.T.; Casaril, A.M.; Hartwig, D.; Jacob, R.G.; Seixas, F.K.; Collares, T.; Savegnago, L. A novel pyrazole-containing selenium compound modulates the oxidative and nitrergic pathways to reverse the depression-pain syndrome in mice. Brain Res., 2020, 1741, 146880.
[http://dx.doi.org/10.1016/j.brainres.2020.146880] [PMID: 32417177]
[97]
Oliveira, D.H.; Aquino, T.B.; Nascimento, J.E.R.; Perin, G.; Jacob, R.G.; Alves, D. Direct synthesis of 4-organylselanylpyrazoles by copper-catalyzed one-pot cyclocondensation and C-H bond selenylation reactions. Adv. Synth. Catal., 2015, 357, 4041-4049.
[http://dx.doi.org/10.1002/adsc.201500625]
[98]
da Fonseca, C.A.R.; Dos Reis, A.S.; Pinz, M.P.; Peglow, T.J.; Schumacher, R.F.; Perin, G.; Martins, A.W.D.S.; Domingues, W.B.; Campos, V.F.; Soares, M.P.; Roehrs, J.A.; Luchese, C.; Wilhelm, E.A. Bis-(3-amino-2-pyridine) diselenide improves psychiatric disorders -atopic dermatitis comorbidity by regulating inflammatory and oxidative status in mice. Chem. Biol. Interact., 2021, 345, 109564.
[http://dx.doi.org/10.1016/j.cbi.2021.109564] [PMID: 34161785]
[99]
Peglow, T.J.; Schumacher, R.F.; Cargnelutti, R.; Reis, A.S.; Luchese, C.; Wilhelm, E.A.; Perin, G. Preparation of bis(2-pyridyl) diselenide derivatives: Synthesis of selenazolo[5,4-b]pyridines and unsymmetrical diorganyl selenides, and evaluation of antioxidant and anticholinesterasic activities. Tetrahedron Lett., 2017, 58, 3734-3738.
[http://dx.doi.org/10.1016/j.tetlet.2017.08.030]
[100]
Craske, M.G.; Rauch, S.L.; Ursano, R.; Prenoveau, J.; Pine, D.S.; Zinbarg, R.E. What is an anxiety disorder? Summer, 2011, 9, 369-388.
[http://dx.doi.org/10.1176/foc.9.3.foc369]
[101]
Morris, L.W.; Davis, M.A.; Hutchings, C.H. Cognitive and emotional components of anxiety: Literature review and a revised worry-emotionality scale. J. Educ. Psychol., 1981, 73(4), 541-555.
[http://dx.doi.org/10.1037/0022-0663.73.4.541] [PMID: 7024371]
[102]
Schiele, M.A.; Domschke, K. Epigenetics at the crossroads between genes, environment and resilience in anxiety disorders. Genes Brain Behav., 2018, 17(3), e12423.
[http://dx.doi.org/10.1111/gbb.12423] [PMID: 28873274]
[103]
Meyer, D.L.; Davies, D.R.; Barr, J.L.; Manzerra, P.; Forster, G.L. Mild traumatic brain injury in the rat alters neuronal number in the limbic system and increases conditioned fear and anxiety-like behaviors. Exp. Neurol., 2012, 235(2), 574-587.
[http://dx.doi.org/10.1016/j.expneurol.2012.03.012] [PMID: 22498103]
[104]
Murrough, J.W.; Yaqubi, S.; Sayed, S.; Charney, D.S. Emerging drugs for the treatment of anxiety. Expert Opin. Emerg. Drugs, 2015, 20(3), 393-406.
[http://dx.doi.org/10.1517/14728214.2015.1049996] [PMID: 26012843]
[105]
Gordon, J.A.; Hen, R. The serotonergic system and anxiety. Neuromolecular Med., 2004, 5(1), 27-40.
[http://dx.doi.org/10.1385/NMM:5:1:027] [PMID: 15001810]
[106]
Wankhar, W.; Syiem, D.; Pakyntein, C.L.; Thabah, D.; Sunn, S.E. Effect of 5-HT2C receptor agonist and antagonist on chronic unpredictable stress (CUS) - Mediated anxiety and depression in adolescent Wistar albino rat: Implicating serotonin and mitochondrial ETC-I function in serotonergic neurotransmission. Behav. Brain Res., 2020, 393, 112780.
[http://dx.doi.org/10.1016/j.bbr.2020.112780] [PMID: 32579979]
[107]
Juruena, M.F.; Eror, F.; Cleare, A.J.; Young, A.H. The role of early life stress in HPA axis and anxiety. Adv. Exp. Med. Biol., 2020, 1191, 141-153.
[http://dx.doi.org/10.1007/978-981-32-9705-0_9] [PMID: 32002927]
[108]
Silverman, M.N.; Sternberg, E.M. Glucocorticoid regulation of inflammation and its functional correlates: From HPA axis to glucocorticoid receptor dysfunction. Ann. N. Y. Acad. Sci., 2012, 1261, 55-63.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06633.x] [PMID: 22823394]
[109]
Vogelzangs, N.; Beekman, A.T.; de Jonge, P.; Penninx, B.W. Anxiety disorders and inflammation in a large adult cohort. Transl. Psychiatry, 2013, 3, e249.
[http://dx.doi.org/10.1038/tp.2013.27] [PMID: 23612048]
[110]
Calabrese, F.; Rossetti, A.C.; Racagni, G.; Gass, P.; Riva, M.A.; Molteni, R. Brain-derived neurotrophic factor: A bridge between inflammation and neuroplasticity. Front. Cell. Neurosci., 2014, 8, 430.
[http://dx.doi.org/10.3389/fncel.2014.00430] [PMID: 25565964]
[111]
Suliman, S.; Hemmings, S.M.; Seedat, S. Brain-Derived Neurotrophic Factor (BDNF) protein levels in anxiety disorders: Systematic review and meta-regression analysis. Front. Integr. Nuerosci., 2013, 7, 55.
[http://dx.doi.org/10.3389/fnint.2013.00055] [PMID: 23908608]
[112]
Rosa, S.G.; Quines, C.B.; Stangherlin, E.C.; Nogueira, C.W. Diphenyl diselenide ameliorates monosodium glutamate induced anxiety-like behavior in rats by modulating hippocampal BDNF-Akt pathway and uptake of GABA and serotonin neurotransmitters. Physiol. Behav., 2016, 155, 1-8.
[http://dx.doi.org/10.1016/j.physbeh.2015.11.038] [PMID: 26657020]
[113]
Dos Santos, M.M.; de Macedo, G.T.; Prestes, A.S.; Loro, V.L.; Heidrich, G.M.; Picoloto, R.S.; Rosemberg, D.B.; Barbosa, N.V. Hyperglycemia elicits anxiety-like behaviors in zebrafish: Protective role of dietary diphenyl diselenide. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 85, 128-135.
[http://dx.doi.org/10.1016/j.pnpbp.2018.04.017] [PMID: 29723547]
[114]
Yamakawa, G.R.; Eyolfson, E.; Weerawardhena, H.; Mychasiuk, R. Administration of diphenyl diselenide (PhSe)2 following repetitive mild traumatic brain injury exacerbates anxiety-like symptomology in a rat model. Behav. Brain Res., 2020, 382, 112472.
[http://dx.doi.org/10.1016/j.bbr.2020.112472] [PMID: 31926213]
[115]
Reis, A.S.; Pinz, M.; Duarte, L.F.B.; Roehrs, J.A.; Alves, D.; Luchese, C.; Wilhelm, E.A. 4-phenylselenyl-7-chloroquinoline, a novel multitarget compound with anxiolytic activity: Contribution of the glutamatergic system. J. Psychiatr. Res., 2017, 84, 191-199.
[http://dx.doi.org/10.1016/j.jpsychires.2016.10.007] [PMID: 27756019]
[116]
Pinz, M.P.; Dos Reis, A.S.; Vogt, A.G.; Krüger, R.; Alves, D.; Jesse, C.R.; Roman, S.S.; Soares, M.P.; Wilhelm, E.A.; Luchese, C. Current advances of pharmacological properties of 7-chloro-4-(phenylselanyl) quinoline: Prevention of cognitive deficit and anxiety in Alzheimer’s disease model. Biomed. Pharmacother., 2018, 105, 1006-1014.
[http://dx.doi.org/10.1016/j.biopha.2018.06.049] [PMID: 30021335]
[117]
Paltian, J.J.; Dos Reis, A.S.; de Oliveira, R.L.; da Fonseca, C.A.R.; Domingues, W.B.; Dellagostin, E.N.; Campos, V.F.; Kruger, R.; Alves, D.; Luchese, C.; Wilhelm, E.A. The anxiolytic effect of a promising quinoline containing selenium with the contribution of the serotonergic and GABAergic pathways: Modulation of parameters associated with anxiety in mice. Behav. Brain Res., 2020, 393, 112797.
[http://dx.doi.org/10.1016/j.bbr.2020.112797] [PMID: 32649976]
[118]
Rodrigues, K.C.; Bortolatto, C.F.; da Motta, K.P.; de Oliveira, R.L.; Paltian, J.J.; Krüger, R.; Roman, S.S.; Boeira, S.P.; Alves, D.; Wilhelm, E.A.; Luchese, C. The neurotherapeutic role of a selenium-functionalized quinoline in hypothalamic obese rats. Psychopharmacology (Berl.), 2021, 238(7), 1937-1951.
[http://dx.doi.org/10.1007/s00213-021-05821-y] [PMID: 33740091]
[119]
Duarte, L.F.B.; Barbosa, E.S.; Oliveira, R.L.; Pinz, M.P.; Godoi, B.; Schumacher, R.F.; Luchese, C.; Wilhelm, E.A.; Alves, D. A simple method for the synthesis of 4-arylselanyl-7-chloroquinolines used as in vitro acetylcholinesterase inhibitors and in vivo memory improvement. Tetrahedron Lett., 2017, 58, 3319-3322.
[http://dx.doi.org/10.1016/j.tetlet.2017.07.039]
[120]
Birmann, P.T.; Domingues, M.; Casaril, A.M.; Smaniotto, T.A.; Hartwig, D.; Jacob, R.G.; Savegnago, L. A pyrazole-containing selenium compound modulates neuroendocrine, oxidative stress, and behavioral responses to acute restraint stress in mice. Behav. Brain Res., 2021, 396, 112874.
[http://dx.doi.org/10.1016/j.bbr.2020.112874] [PMID: 32835778]
[121]
Duarte, L.F.B.; Oliveira, R.L.; Rodrigues, K.C.; Voss, G.T.; Godoi, B.; Schumacher, R.F.; Perin, G.; Wilhelm, E.A.; Luchese, C.; Alves, D. Organoselenium compounds from purines: Synthesis of 6-arylselanylpurines with antioxidant and anticholinesterase activities and memory improvement effect. Bioorg. Med. Chem., 2017, 25(24), 6718-6723.
[http://dx.doi.org/10.1016/j.bmc.2017.11.019] [PMID: 29157728]
[122]
Ströhle, A.; Gensichen, J.; Domschke, K. The diagnosis and treatment of anxiety disorders. Dtsch. Arztebl. Int., 2018, 155(37), 611-620.
[http://dx.doi.org/10.3238/arztebl.2018.0611] [PMID: 30282583]
[123]
Brady, R.O.; Keshavan, M. Emergent treatments based on the pathophysiology of bipolar disorder: A selective review. Asian J. Psychiatr., 2015, 18, 15-21.
[http://dx.doi.org/10.1016/j.ajp.2015.07.017] [PMID: 26525885]
[124]
Scaini, G.; Andrews, T.; Lima, C.N.C.; Benevenuto, D.; Streck, E.L.; Quevedo, J. Mitochondrial dysfunction as a critical event in the pathophysiology of bipolar disorder. Mitochondrion, 2021, 57, 23-36.
[http://dx.doi.org/10.1016/j.mito.2020.12.002] [PMID: 33340709]
[125]
Kato, T. Molecular neurobiology of bipolar disorder: A disease of ‘mood-stabilizing neurons’? Trends Neurosci., 2008, 31(10), 495-503.
[http://dx.doi.org/10.1016/j.tins.2008.07.007] [PMID: 18774185]
[126]
León-Caballero, J.; Pacchiarotti, I.; Murru, A.; Valentí, M.; Colom, F.; Benach, B.; Pérez, V.; Dalmau, J.; Vieta, E. Bipolar disorder and antibodies against the N-methyl-d-aspartate receptor: A gate to the involvement of autoimmunity in the pathophysiology of bipolar illness. Neurosci. Biobehav. Rev., 2015, 55, 403-412.
[http://dx.doi.org/10.1016/j.neubiorev.2015.05.012] [PMID: 26014349]
[127]
Salvadore, G.; Quiroz, J.A.; Machado-Vieira, R.; Henter, I.D.; Manji, H.K.; Zarate, C.A., Jr The neurobiology of the switch process in bipolar disorder: A review. J. Clin. Psychiatry, 2010, 71(11), 1488-1501.
[http://dx.doi.org/10.4088/JCP.09r05259gre] [PMID: 20492846]
[128]
Maletic, V.; Raison, C. Integrated neurobiology of bipolar disorder. Front. Psychiatry, 2014, 5, 98-155.
[http://dx.doi.org/10.3389/fpsyt.2014.00098] [PMID: 25202283]
[129]
Alda, M. Bipolar disorder: From families to genes. Can. J. Psychiatry, 1997, 42(4), 378-387.
[http://dx.doi.org/10.1177/070674379704200404] [PMID: 9161762]
[130]
Craddock, N.; Sklar, P. Genetics of bipolar disorder. Lancet, 2013, 381(9878), 1654-1662.
[http://dx.doi.org/10.1016/S0140-6736(13)60855-7] [PMID: 23663951]
[131]
Rao, S.; Han, X.; Shi, M.; Siu, C.O.; Waye, M.M.Y.; Liu, G.; Wing, Y.K. Associations of the serotonin transporter promoter polymorphism (5-HTTLPR) with bipolar disorder and treatment response: A systematic review and meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 89, 214-226.
[http://dx.doi.org/10.1016/j.pnpbp.2018.08.035] [PMID: 30217771]
[132]
Tomioka, Y.; Jiménez, E.; Salagre, E.; Arias, B.; Mitjans, M.; Ruiz, V.; Sáiz, P.; García-Portilla, M.P.; de la Fuente, L.; Gomes-da-Costa, S.P.; Bobes, J.; Vieta, E.; Benabarre, A.; Grande, I. Association between genetic variation in the myo-inositol monophosphatase 2 (IMPA2) gene and age at onset of bipolar disorder. J. Affect. Disord., 2018, 232, 229-236.
[http://dx.doi.org/10.1016/j.jad.2018.02.002] [PMID: 29499505]
[133]
Jadhav, S.; Russo, S.; Cowart, L.A.; Greenberg, M.L. Inositol depletion induced by acute treatment of the bipolar disorder drug valproate increases levels of phytosphingosine. J. Biol. Chem., 2017, 292(12), 4953-4959.
[http://dx.doi.org/10.1074/jbc.M117.775460] [PMID: 28100786]
[134]
Angelescu, I.; Brugger, S.P.; Borgan, F.; Kaar, S.J.; Howes, O.D. The magnitude and variability of brain structural alterations in bipolar disorder: A double meta-analysis of 5534 patients and 6651 healthy controls. J. Affect. Disord., 2021, 291, 171-176.
[http://dx.doi.org/10.1016/j.jad.2021.04.090] [PMID: 34038834]
[135]
Overs, B.J.; Lenroot, R.K.; Roberts, G.; Green, M.J.; Toma, C.; Hadzi-Pavlovic, D.; Pierce, K.D.; Schofield, P.R.; Mitchell, P.B.; Fullerton, J.M. Cortical mediation of relationships between dopamine receptor D2 and cognition is absent in youth at risk of bipolar disorder. Psychiatry Res. Neuroimaging, 2021, 309, 111258.
[http://dx.doi.org/10.1016/j.pscychresns.2021.111258] [PMID: 33529975]
[136]
Miklowitz, D.J.; Johnson, S.L. The psychopathology and treatment of bipolar disorder. Annu. Rev. Clin. Psychol., 2006, 2, 199-235.
[http://dx.doi.org/10.1146/annurev.clinpsy.2.022305.095332] [PMID: 17716069]
[137]
Bastos, J.R.; Perico, K.M.; Marciano Vieira, E.L.; Teixeira, A.L.; Machado, F.S.; de Miranda, A.S.; Moreira, F.A. Inhibition of the dopamine transporter as an animal model of bipolar disorder mania: Locomotor response, neuroimmunological profile and pharmacological modulation. J. Psychiatr. Res., 2018, 102, 142-149.
[http://dx.doi.org/10.1016/j.jpsychires.2018.04.004] [PMID: 29656188]
[138]
Barkus, C.; Ferland, J.N.; Adams, W.K.; Churchill, G.C.; Cowen, P.J.; Bannerman, D.M.; Rogers, R.D.; Winstanley, C.A.; Sharp, T. The putative lithium-mimetic ebselen reduces impulsivity in rodent models. J. Psychopharmacol., 2018, 32(9), 1018-1026.
[http://dx.doi.org/10.1177/0269881118784876] [PMID: 29986609]
[139]
Singh, N.; Sharpley, A.L.; Emir, U.E.; Masaki, C.; Herzallah, M.M.; Gluck, M.A.; Sharp, T.; Harmer, C.J.; Vasudevan, S.R.; Cowen, P.J.; Churchill, G.C. Effect of the putative lithium mimetic ebselen on brain myo-inositol, sleep, and emotional processing in humans. Neuropsychopharmacology, 2016, 41(7), 1768-1778.
[http://dx.doi.org/10.1038/npp.2015.343] [PMID: 26593266]
[140]
Masaki, C.; Sharpley, A.L.; Godlewska, B.R.; Berrington, A.; Hashimoto, T.; Singh, N.; Vasudevan, S.R.; Emir, U.E.; Churchill, G.C.; Cowen, P.J. Effects of the potential lithium-mimetic, ebselen, on brain neurochemistry: A magnetic resonance spectroscopy study at 7 tesla. Psychopharmacology (Berl.), 2016, 233(6), 1097-1104.
[http://dx.doi.org/10.1007/s00213-015-4189-2] [PMID: 26758281]
[141]
Sharpley, A.L.; Williams, C.; Holder, A.A.; Godlewska, B.R.; Singh, N.; Shanyinde, M.; MacDonald, O.; Cowen, P.J. A phase 2a randomised, double-blind, placebo-controlled, parallel-group, add-on clinical trial of ebselen (SPI-1005) as a novel treatment for mania or hypomania. Psychopharmacology (Berl.), 2020, 237(12), 3773-3782.
[http://dx.doi.org/10.1007/s00213-020-05654-1] [PMID: 32909076]
[142]
Sousa, F.S.S.; Seus, N.; Alves, D.; Salles, H.D.; Schneider, P.H.; Savegnago, L.; Castro, M. Evaluation of Se-phenyl-thiazolidine-4-carboselenoate protective activity against oxidative and behavioral stress in the maniac model induced by ouabain in male rats. Neurosci. Lett., 2017, 651, 182-187.
[http://dx.doi.org/10.1016/j.neulet.2017.04.030] [PMID: 28432028]
[143]
Rampon, D.S.; Rodembusch, F.S.; Gonçalves, P.F.B.; Lourega, R.V.; Merlo, A.A.; Schneider, P.H. An evaluation of the chalcogen atom effect on the mesomorphic and electronic properties in a new homologous series of chalcogeno esters. J. Braz. Chem. Soc., 2010, 21, 2100-2107.
[http://dx.doi.org/10.1590/S0103-50532010001100011]
[144]
Mäki-Marttunen, V.; Andreassen, O.A.; Espeseth, T. The role of norepinephrine in the pathophysiology of schizophrenia. Neurosci. Biobehav. Rev., 2020, 118, 298-314.
[http://dx.doi.org/10.1016/j.neubiorev.2020.07.038] [PMID: 32768486]
[145]
Prestwood, T.R.; Asgariroozbehani, R.; Wu, S.; Agarwal, S.M.; Logan, R.W.; Ballon, J.S.; Hahn, M.K.; Freyberg, Z. Roles of inflammation in intrinsic pathophysiology and antipsychotic drug-induced metabolic disturbances of schizophrenia. Behav. Brain Res., 2021, 402, 113101.
[http://dx.doi.org/10.1016/j.bbr.2020.113101] [PMID: 33453341]
[146]
Owen, M.J.; Sawa, A.; Mortensen, P.B. Schizophrenia. Lancet, 2016, 388(10039), 86-97.
[http://dx.doi.org/10.1016/S0140-6736(15)01121-6] [PMID: 26777917]
[147]
Bojesen, K.B.; Broberg, B.V.; Fagerlund, B.; Jessen, K.; Thomas, M.B.; Sigvard, A.; Tangmose, K.; Nielsen, M.O.; Andersen, G.S.; Larsson, H.B.W.; Edden, R.A.E.; Rostrup, E.; Glenthøj, B.Y. Associations between cognitive function and levels of glutamatergic metabolites and gammaaminobutyric acid in antipsychotic-Naïve patients with schizophrenia or psychosis. Biol. Psychiatry, 2021, 89(3), 278-287.
[http://dx.doi.org/10.1016/j.biopsych.2020.06.027] [PMID: 32928500]
[148]
Frajman, A.; Maggio, N.; Muler, I.; Haroutunian, V.; Katsel, P.; Yitzhaky, A.; Weiser, M.; Hertzberg, L. Gene expression meta-analysis reveals the down-regulation of three GABA receptor subunits in the superior temporal gyrus of patients with schizophrenia. Schizophr. Res., 2020, 220, 29-37.
[http://dx.doi.org/10.1016/j.schres.2020.04.027] [PMID: 32376074]
[149]
Intson, K.; Geissah, S.; McCullumsmith, R.E.; Ramsey, A.J. A role for endothelial NMDA receptors in the pathophysiology of schizophrenia. Schizophr. Res., in press
[http://dx.doi.org/10.1016/j.schres.2020.10.004] [PMID: 33189520]
[150]
Goff, D.C.; Coyle, J.T. The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am. J. Psychiatry, 2001, 158(9), 1367-1377.
[http://dx.doi.org/10.1176/appi.ajp.158.9.1367] [PMID: 11532718]
[151]
Bustillo, J.R.; Chen, H.; Jones, T.; Lemke, N.; Abbott, C.; Qualls, C.; Canive, J.; Gasparovic, C. Increased glutamine in patients undergoing long-term treatment for schizophrenia: A proton magnetic resonance spectroscopy study at 3 T. JAMA Psychiatry, 2014, 71(3), 265-272.
[http://dx.doi.org/10.1001/jamapsychiatry.2013.3939] [PMID: 24402128]
[152]
Takahashi, T.; Suzuki, M. Brain morphologic changes in early stages of psychosis: Implications for clinical application and early intervention. Psychiatry Clin. Neurosci., 2018, 72(8), 556-571.
[http://dx.doi.org/10.1111/pcn.12670] [PMID: 29717522]
[153]
Javitt, D.C. Glutamate and schizophrenia: Phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int. Rev. Neurobiol., 2007, 78, 69-108.
[http://dx.doi.org/10.1016/S0074-7742(06)78003-5] [PMID: 17349858]
[154]
Venkataramaiah, C.; Payani, S.; Priya, B.L.; Pradeepkiran, J.A. Therapeutic potentiality of a new flavonoid against ketamine induced glutamatergic dysregulation in schizophrenia: In vivo and in silico approach. Biomed. Pharmacother., 2021, 138, 111453.
[http://dx.doi.org/10.1016/j.biopha.2021.111453] [PMID: 34187143]
[155]
Kosten, L.; Chowdhury, G.M.I.; Mingote, S.; Staelens, S.; Rothman, D.L.; Behar, K.L.; Rayport, S. Glutaminase activity in GLS1 Het mouse brain compared to putative pharmacological inhibition by ebselen using ex vivo MRS. Neurochem. Int., 2019, 129, 104508.
[http://dx.doi.org/10.1016/j.neuint.2019.104508] [PMID: 31326460]
[156]
Thomas, A.G.; Rojas, C.; Tanega, C.; Shen, M.; Simeonov, A.; Boxer, M.B.; Auld, D.S.; Ferraris, D.V.; Tsukamoto, T.; Slusher, B.S. Kinetic characterization of ebselen, chelerythrine and apomorphine as glutaminase inhibitors. Biochem. Biophys. Res. Commun., 2013, 438(2), 243-248.
[http://dx.doi.org/10.1016/j.bbrc.2013.06.110] [PMID: 23850693]
[157]
Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol., 2019, 18(1), 88-106.
[http://dx.doi.org/10.1016/S1474-4422(18)30403-4] [PMID: 30497964]
[158]
Bateman, R.J.; Aisen, P.S.; De Strooper, B.; Fox, N.C.; Lemere, C.A.; Ringman, J.M.; Salloway, S.; Sperling, R.A.; Windisch, M.; Xiong, C. Autosomal-dominant Alzheimer’s disease: A review and proposal for the prevention of Alzheimer’s disease. Alzheimers Res. Ther., 2011, 3(1), 1.
[http://dx.doi.org/10.1186/alzrt59] [PMID: 21211070]
[159]
Verghese, P.B.; Castellano, J.M.; Holtzman, D.M. Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol., 2011, 10(3), 241-252.
[http://dx.doi.org/10.1016/S1474-4422(10)70325-2] [PMID: 21349439]
[160]
Xu, W.; Tan, L.; Wang, H-F.; Jiang, T.; Tan, M-S.; Tan, L.; Zhao, Q-F.; Li, J-Q.; Wang, J.; Yu, J-T. Meta-analysis of modifiable risk factors for Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry, 2015, 86(12), 1299-1306.
[http://dx.doi.org/10.1136/jnnp-2015-310548] [PMID: 26294005]
[161]
Serrano-Pozo, A.; Frosch, M.P.; Masliah, E.; Hyman, B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med., 2011, 1(1), a006189.
[http://dx.doi.org/10.1101/cshperspect.a006189] [PMID: 22229116]
[162]
Liu, P.P.; Xie, Y.; Meng, X.Y.; Kang, J-S. History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct. Target. Ther., 2019, 4, 29.
[http://dx.doi.org/10.1038/s41392-019-0063-8] [PMID: 31637009]
[163]
Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimer’s disease: Targeting the cholinergic system. Curr. Neuropharmacol., 2016, 14(1), 101-115.
[http://dx.doi.org/10.2174/1570159X13666150716165726] [PMID: 26813123]
[164]
Hampel, H.; Mesulam, M-M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; Khachaturian, Z.S. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain, 2018, 141(7), 1917-1933.
[http://dx.doi.org/10.1093/brain/awy132] [PMID: 29850777]
[165]
Swerdlow, R.H.; Khan, S.M.A. A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med. Hypotheses, 2004, 63(1), 8-20.
[http://dx.doi.org/10.1016/j.mehy.2003.12.045] [PMID: 15193340]
[166]
Qian, X.; Hamad, B.; Dias-Lalcaca, G. The Alzheimer disease market. Nat. Rev. Drug Discov., 2015, 14(10), 675-676.
[http://dx.doi.org/10.1038/nrd4749] [PMID: 26388231]
[167]
Singh, N.; Halliday, A.C.; Thomas, J.M.; Kuznetsova, O.V.; Baldwin, R.; Woon, E.C.Y.; Aley, P.K.; Antoniadou, I.; Sharp, T.; Vasudevan, S.R.; Churchill, G.C. A safe lithium mimetic for bipolar disorder. Nat. Commun., 2013, 4, 1332.
[http://dx.doi.org/10.1038/ncomms2320] [PMID: 23299882]
[168]
Wang, X.; Yun, J-W.; Lei, X.G. Glutathione peroxidase mimic ebselen improves glucose-stimulated insulin secretion in murine islets. Antioxid. Redox Signal., 2006, 20, 191-203.
[169]
Gabryel, B.; Malecki, A. Ebselen attenuates oxidative stress in ischemic astrocytes depleted of glutathione. Comparison with glutathione precursors. Pharmacol. Rep., 2006, 58, 381-392.
[170]
Xie, Y.; Tan, Y.; Zheng, Y.; Du, X.; Liu, Q. Ebselen ameliorates β-amyloid pathology, tau pathology, and cognitive impairment in triple-transgenic Alzheimer’s disease mice. Eur. J. Biochem., 2017, 22(6), 851-865.
[http://dx.doi.org/10.1007/s00775-017-1463-2] [PMID: 28502066]
[171]
Martini, F.; Pesarico, A.P.; Brüning, C.A.; Zeni, G.; Nogueira, C.W. Ebselen inhibits the activity of acetylcholinesterase globular isoform G4 in vitro and attenuates scopolamine-induced amnesia in mice. J. Cell. Biochem., 2018, 119(7), 5598-5608.
[http://dx.doi.org/10.1002/jcb.26731] [PMID: 29405440]
[172]
Siek, G.C.; Katz, L.S.; Fishman, E.B.; Korosi, T.S.; Marquis, J.K. Molecular forms of acetylcholinesterase in subcortical areas of normal and Alzheimer disease brain. Biol. Psychiatry, 1990, 27(6), 573-580.
[http://dx.doi.org/10.1016/0006-3223(90)90524-6] [PMID: 2322617]
[173]
Grieb, P. Intracerebroventricular streptozotocin injections as a model of Alzheimer’s Disease: In search of a relevant mechanism. Mol. Neurobiol., 2016, 53(3), 1741-1752.
[http://dx.doi.org/10.1007/s12035-015-9132-3] [PMID: 25744568]
[174]
Martini, F.; Rosa, S.G.; Klann, I.P.; Fulco, B.C.W.; Carvalho, F.B.; Rahmeier, F.L.; Fernandes, M.C.; Nogueira, C.W. A multifunctional compound ebselen reverses memory impairment, apoptosis and oxidative stress in a mouse model of sporadic Alzheimer’s disease. J. Psychiatr. Res., 2019, 109, 107-117.
[http://dx.doi.org/10.1016/j.jpsychires.2018.11.021] [PMID: 30521994]
[175]
Klann, I.P.; Martini, F.; Rosa, S.G.; Nogueira, C.W. Ebselen reversed peripheral oxidative stress induced by a mouse model of sporadic Alzheimer’s disease. Mol. Biol. Rep., 2020, 47(3), 2205-2215.
[http://dx.doi.org/10.1007/s11033-020-05326-5] [PMID: 32095983]
[176]
Zhang, S.; Wang, J.; Song, N.; Xie, J.; Jiang, H. Up-regulation of divalent metal transporter 1 is involved in 1-methyl-4-phenylpyridinium (MPP(+))-induced apoptosis in MES23.5 cells. Neurobiol. Aging, 2009, 30(9), 1466-1476.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.11.025] [PMID: 18191877]
[177]
Zheng, W.; Xin, N.; Chi, Z.H.; Zhao, B.L.; Zhang, J.; Li, J.Y.; Wang, Z.Y. Divalent metal transporter 1 is involved in amyloid precursor protein processing and Abeta generation. FASEB J., 2009, 23(12), 4207-4217.
[http://dx.doi.org/10.1096/fj.09-135749] [PMID: 19679638]
[178]
Xie, L.; Yu, D.; Hu, J.; Fang, Y.; Zuo, Z.; Gu, Y.; Li, D. DMT1 inhibitor ebselen inhibits iron-induced amyloidogenic APP processing. Int. J. Clin. Exp. Med., 2018, 11, 7907-7916.
[179]
Wang, Z.; Li, W.; Wang, Y.; Li, X.; Huang, L.; Li, X. Design, synthesis and evaluation of clioquinol-ebselen hybrids as multi-target-directed ligands against Alzheimer’s disease. RSC Adv., 2016, 2016, 7139-7158.
[http://dx.doi.org/10.1039/C5RA26797H]
[180]
Wang, B.; Wang, Z.; Chen, H.; Lu, C.J.; Li, X. Synthesis and evaluation of 8-hydroxyquinolin derivatives substituted with (ben-zo[d][1,2]selenazol-3(2H)-one) as effective inhibitor of metal-induced Aβ aggregation and antioxidant. Bioorg. Med. Chem., 2016, 24(19), 4741-4749.
[http://dx.doi.org/10.1016/j.bmc.2016.08.017] [PMID: 27567080]
[181]
Luo, Z.; Sheng, J.; Sun, Y.; Lu, C.; Yan, J.; Liu, A.; Luo, H.B.; Huang, L.; Li, X. Synthesis and evaluation of multi-target-directed lig-ands against Alzheimer’s disease based on the fusion of donepezil and ebselen. J. Med. Chem., 2013, 56(22), 9089-9099.
[http://dx.doi.org/10.1021/jm401047q] [PMID: 24160297]
[182]
Yan, J.; Pang, Y.; Zhuang, J.; Lin, H.; Zhang, Q.; Han, L.; Ke, P.; Zhuang, J.; Huang, X. Selenepezil, a selenium-containing compound, exerts neuroprotective effect via modulation of the Keap1-Nrf2-ARE pathway and attenuates Aβ-induced cognitive impairment in vivo. ACS Chem. Neurosci., 2019, 10(6), 2903-2914.
[http://dx.doi.org/10.1021/acschemneuro.9b00106] [PMID: 31035749]
[183]
Qu, L.; Ji, L.; Wang, C.; Luo, H.; Li, S.; Peng, W.; Yin, F.; Lu, D.; Liu, X.; Kong, L.; Wang, X. Synthesis and evaluation of multi-target-directed ligands with BACE-1 inhibitory and Nrf2 agonist activities as potential agents against Alzheimer’s disease. Eur. J. Med. Chem., 2021, 219, 113441.
[http://dx.doi.org/10.1016/j.ejmech.2021.113441] [PMID: 33862517]
[184]
Egan, M.F.; Kost, J.; Tariot, P.N.; Aisen, P.S.; Cummings, J.L.; Vellas, B.; Sur, C.; Mukai, Y.; Voss, T.; Furtek, C.; Mahoney, E.; Harper Mozley, L.; Vandenberghe, R.; Mo, Y.; Michelson, D. Randomized trial of verubecestat for mild-to-moderate Alzheimer’s Disease. N. Engl. J. Med., 2018, 378(18), 1691-1703.
[http://dx.doi.org/10.1056/NEJMoa1706441] [PMID: 29719179]
[185]
Thomé, G.R.; Oliveira, V.A.; Chitolina Schetinger, M.R.; Saraiva, R.A.; Souza, D.; Dorneles Rodrigues, O.E.; Teixeira Rocha, J.B.; Ineu, R.P.; Pereira, M.E. Selenothymidine protects against biochemical and behavioral alterations induced by ICV-STZ model of dementia in mice. Chem. Biol. Interact., 2018, 294, 135-143.
[http://dx.doi.org/10.1016/j.cbi.2018.08.004] [PMID: 30120923]
[186]
de Souza, D.; Mariano, D.O.C.; Nedel, F.; Schultze, E.; Campos, V.F.; Seixas, F.; da Silva, R.S.; Munchen, T.S.; Ilha, V.; Dornelles, L.; Braga, A.L.; Rocha, J.B.T.; Collares, T.; Rodrigues, O.E.D. New organochalcogen multitarget drug: Synthesis and antioxidant and antitumoral activities of chalcogenozidovudine derivatives. J. Med. Chem., 2015, 58(8), 3329-3339.
[http://dx.doi.org/10.1021/jm5015296] [PMID: 25811955]
[187]
Pinz, M.P.; Vogt, A.G.; da Costa Rodrigues, K.; Dos Reis, A.S.; Duarte, L.F.B.; Fronza, M.G.; Domingues, W.B.; Blodorn, E.B.; Alves, D.; Campos, V.F.; Savegnago, L.; Wilhelm, E.A.; Luchese, C. Effect of a purine derivative containing selenium to improve memory decline and anxiety through modulation of the cholinergic system and Na+/K+-ATPase in an Alzheimer’s disease model. Metab. Brain Dis., 2021, 36(5), 871-888.
[http://dx.doi.org/10.1007/s11011-021-00703-w] [PMID: 33651275]
[188]
Wilhelm, E.A.; Torres, M.L.C.P.; Pereira, C.F.; Vogt, A.G.; Cervo, R.; Dos Santos, B.G.T.; Cargnelutti, R.; Luchese, C. Therapeutic potential of selanyl amide derivatives in the in vitro anticholinesterase activity and in in vivo antiamnesic action. Can. J. Physiol. Pharmacol., 2020, 98(5), 304-313.
[http://dx.doi.org/10.1139/cjpp-2019-0291] [PMID: 31821013]
[189]
Rodrigues, J.; Saba, S.; Joussef, A.C.; Rafique, J.; Braga, A.L. KIO3-Catalyzed C(sp2)-H Bond Selenylation/Sulfenylation of (Hetero)arenes: Synthesis of Chalcogenated (Hetero)arenes and their Evaluation for Anti-Alzheimer Activity. Asian J. Org. Chem., 2018, 1819-1824.
[http://dx.doi.org/10.1002/ajoc.201800346]
[190]
Gülçin, İ.; Trofimov, B.; Kaya, R.; Taslimi, P.; Sobenina, L.; Schmidt, E.; Petrova, O.; Malysheva, S.; Gusarova, N.; Farzaliyev, V.; Sujayev, A.; Alwasel, S.; Supuran, C.T. Synthesis of nitrogen, phosphorus, selenium and sulfurcontaining heterocyclic compounds - Determination of their carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glycosidase inhibition properties. Bioorg. Chem., 2020, 103, 104171.
[http://dx.doi.org/10.1016/j.bioorg.2020.104171] [PMID: 32891857]
[191]
Leme, A.G.H.S.; Cardoso, B.R. Chapter 47 - Selenium and Alzheimer’s disease. In: Genetics, Neurology, Behavior, and Diet in Dementia: The Neuroscience of Dementia; Academic Press, Ed; Elsevier Science, 2020; 2, pp. 739-748.
[192]
Varikasuvu, S.R.; Prasad, V.S.; Kothapalli, J.; Manne, M. Brain selenium in Alzheimer’s Disease (BRAIN SEAD Study): A systematic review and meta-analysis. Biol. Trace Elem. Res., 2019, 189(2), 361-369.
[http://dx.doi.org/10.1007/s12011-018-1492-x] [PMID: 30171594]
[193]
Tysnes, O.B.; Storstein, A. Epidemiology of Parkinson’s disease. J. Neural Transm. (Vienna), 2017, 124(8), 901-905.
[http://dx.doi.org/10.1007/s00702-017-1686-y] [PMID: 28150045]
[194]
Litvan, I.; Bhatia, K.P.; Burn, D.J.; Goetz, C.G.; Lang, A.E.; McKeith, I.; Quinn, N.; Sethi, K.D.; Shults, C.; Wenning, G.K. Movement disorders society scientific issues committee report: SIC task force appraisal of clinical diagnostic criteria for Parkinsonian disorders. Mov. Disord., 2003, 18(5), 467-486.
[http://dx.doi.org/10.1002/mds.10459] [PMID: 12722160]
[195]
Chaudhuri, K.R.; Martinez-Martin, P. Quantitation of non-motor symptoms in Parkinson’s disease. Eur. J. Neurol., 2008, 15(Suppl. 2), 2-7.
[http://dx.doi.org/10.1111/j.1468-1331.2008.02212.x] [PMID: 18702736]
[196]
Chaudhuri, K.R.; Schapira, A.H.V. Non-motor symptoms of Parkinson’s disease: Dopaminergic pathophysiology and treatment. Lancet Neurol., 2009, 8(5), 464-474.
[http://dx.doi.org/10.1016/S1474-4422(09)70068-7] [PMID: 19375664]
[197]
Dauer, W.; Przedborski, S. Parkinson’s disease: Mechanisms and models. Neuron, 2003, 39(6), 889-909.
[http://dx.doi.org/10.1016/S0896-6273(03)00568-3] [PMID: 12971891]
[198]
Lim, K-L.; Zhang, C.W. Molecular events underlying Parkinson’s disease - an interwoven tapestry. Front. Neurol., 2013, 4, 33.
[http://dx.doi.org/10.3389/fneur.2013.00033] [PMID: 23580245]
[199]
Sampaio, T.B.; Pinton, S.; da Rocha, J.T.; Gai, B.M.; Nogueira, C.W. Involvement of BDNF/TrkB signaling in the effect of diphenyl diselenide on motor function in a Parkinson’s disease rat model. Eur. J. Pharmacol., 2017, 795, 28-35.
[http://dx.doi.org/10.1016/j.ejphar.2016.11.054] [PMID: 27915043]
[200]
de Freitas Couto, S.; Araujo, S.M.; Bortolotto, V.C.; Poetini, M.R.; Pinheiro, F.C.; Santos Musachio, E.A.; Meichtry, L.B.; do Sacramento, M.; Alves, D.; La Rosa Novo, D.; Mesko, M.F.; Prigol, M. 7-chloro-4-(phenylselanyl) quinoline prevents dopamine depletion in a Drosophila melanogaster model of Parkinson’s-like disease. J. Trace Elem. Med. Biol., 2019, 54, 232-243.
[http://dx.doi.org/10.1016/j.jtemb.2018.10.015] [PMID: 30366679]
[201]
Talbott, E.O.; Malek, A.M.; Lacomis, D. The epidemiology of amyotrophic lateral sclerosis. Handb. Clin. Neurol., 2016, 138, 225-238.
[http://dx.doi.org/10.1016/B978-0-12-802973-2.00013-6] [PMID: 27637961]
[202]
Brown, R.H.; Al-Chalabi, A. Amyotrophic Lateral Sclerosis. N. Engl. J. Med., 2017, 377(2), 162-172.
[http://dx.doi.org/10.1056/NEJMra1603471] [PMID: 28700839]
[203]
Juneja, T.; Pericak-Vance, M.A.; Laing, N.G.; Dave, S.; Siddique, T. Prognosis in familial amyotrophic lateral sclerosis: Progression and survival in patients with glu100gly and ala4val mutations in Cu, Zn superoxide dismutase. Neurology, 1997, 48(1), 55-57.
[http://dx.doi.org/10.1212/WNL.48.1.55] [PMID: 9008494]
[204]
Pansarasa, O.; Bordoni, M.; Diamanti, L.; Sproviero, D.; Gagliardi, S.; Cereda, C. SOD1 in amyotrophic lateral sclerosis: “Ambivalent” behavior connected to the disease. Int. J. Mol. Sci., 2018, 19(5), 1345.
[http://dx.doi.org/10.3390/ijms19051345] [PMID: 29751510]
[205]
Pardo, C.A.; Xu, Z.; Borchelt, D.R.; Price, D.L.; Sisodia, S.S.; Cleveland, D.W. Superoxide dismutase is an abundant component in cell bodies, dendrites, and axons of motor neurons and in a subset of other neurons. Proc. Natl. Acad. Sci. USA, 1995, 92(4), 954-958.
[http://dx.doi.org/10.1073/pnas.92.4.954] [PMID: 7862672]
[206]
Lang, L.; Zetterström, P.; Brännström, T.; Marklund, S.L.; Danielsson, J.; Oliveberg, M. SOD1 aggregation in ALS mice shows simplistic test tube behavior. Proc. Natl. Acad. Sci. USA, 2015, 112(32), 9878-9883.
[http://dx.doi.org/10.1073/pnas.1503328112] [PMID: 26221023]
[207]
Luchinat, E.; Barbieri, L.; Rubino, J.T.; Kozyreva, T.; Cantini, F.; Banci, L. In-cell NMR reveals potential precursor of toxic species from SOD1 fALS mutants. Nat. Commun., 2014, 5, 5502.
[http://dx.doi.org/10.1038/ncomms6502] [PMID: 25429517]
[208]
Kerman, A.; Liu, H.N.; Croul, S.; Bilbao, J.; Rogaeva, E.; Zinman, L.; Robertson, J.; Chakrabartty, A. Amyotrophic lateral sclerosis is a non-amyloid disease in which extensive misfolding of SOD1 is unique to the familial form. Acta Neuropathol., 2010, 119(3), 335-344.
[http://dx.doi.org/10.1007/s00401-010-0646-5] [PMID: 20111867]
[209]
Yerbury, J.J.; Ooi, L.; Dillin, A.; Saunders, D.N.; Hatters, D.M.; Beart, P.M.; Cashman, N.R.; Wilson, M.R.; Ecroyd, H. Walking the tightrope: Proteostasis and neurodegenerative disease. J. Neurochem., 2016, 137(4), 489-505.
[http://dx.doi.org/10.1111/jnc.13575] [PMID: 26872075]
[210]
Guttenplan, K.A.; Weigel, M.K.; Adler, D.I.; Couthouis, J.; Liddelow, S.A.; Gitler, A.D.; Barres, B.A. Knockout of reactive astrocyte activating factors slows disease progression in an ALS mouse model. Nat. Commun., 2020, 11(1), 3753.
[http://dx.doi.org/10.1038/s41467-020-17514-9] [PMID: 32719333]
[211]
Clement, A.M.; Nguyen, M.D.; Roberts, E.A.; Garcia, M.L.; Boillée, S.; Rule, M.; McMahon, A.P.; Doucette, W.; Siwek, D.; Ferrante, R.J.; Brown, R.H. Jr.; Julien, J-P.; Goldstein, L.S.B.; Cleveland, D.W. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science, 2003, 302(5642), 113-117.
[http://dx.doi.org/10.1126/science.1086071] [PMID: 14526083]
[212]
Yamanaka, K.; Boillee, S.; Roberts, E.A.; Garcia, M.L.; McAlonis-Downes, M.; Mikse, O.R.; Cleveland, D.W.; Goldstein, L.S.B. Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice. Proc. Natl. Acad. Sci. USA, 2008, 105(21), 7594-7599.
[http://dx.doi.org/10.1073/pnas.0802556105] [PMID: 18492803]
[213]
Di Giorgio, F.P.; Carrasco, M.A.; Siao, M.C.; Maniatis, T.; Eggan, K. Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat. Neurosci., 2007, 10(5), 608-614.
[http://dx.doi.org/10.1038/nn1885] [PMID: 17435754]
[214]
Ferraiuolo, L.; Meyer, K.; Sherwood, T.W.; Vick, J.; Likhite, S.; Frakes, A.; Miranda, C.J.; Braun, L.; Heath, P.R.; Pineda, R.; Beattie, C.E.; Shaw, P.J.; Askwith, C.C.; McTigue, D.; Kaspar, B.K. Oligodendrocytes contribute to motor neuron death in ALS via SOD1-dependent mechanism. Proc. Natl. Acad. Sci. USA, 2016, 113(42), E6496-E6505.
[http://dx.doi.org/10.1073/pnas.1607496113] [PMID: 27688759]
[215]
Cozzolino, M.; Amori, I.; Pesaresi, M.G.; Ferri, A.; Nencini, M.; Carrì, M.T. Cysteine 111 affects aggregation and cytotoxicity of mutant Cu, Zn-superoxide dismutase associated with familial amyotrophic lateral sclerosis. J. Biol. Chem., 2008, 283(2), 866-874.
[http://dx.doi.org/10.1074/jbc.M705657200] [PMID: 18006498]
[216]
Wang, L.; Gutmann, D.H.; Roos, R.P. Astrocyte loss of mutant SOD1 delays ALS disease onset and progression in G85R transgenic mice. Hum. Mol. Genet., 2011, 20(2), 286-293.
[http://dx.doi.org/10.1093/hmg/ddq463] [PMID: 20962037]
[217]
Boillée, S.; Yamanaka, K.; Lobsiger, C.S.; Copeland, N.G.; Jenkins, N.A.; Kassiotis, G.; Kollias, G.; Cleveland, D.W. Onset and progression in inherited ALS determined by motor neurons and microglia. Science, 2006, 312(5778), 1389-1392.
[http://dx.doi.org/10.1126/science.1123511] [PMID: 16741123]
[218]
Kang, S.H.; Li, Y.; Fukaya, M.; Lorenzini, I.; Cleveland, D.W.; Ostrow, L.W.; Rothstein, J.D.; Bergles, D.E. Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat. Neurosci., 2013, 16(5), 571-579.
[http://dx.doi.org/10.1038/nn.3357] [PMID: 23542689]
[219]
Liu, J.; Wang, F. Role of Neuroinflammation in amyotrophic lateral sclerosis: Cellular mechanisms and therapeutic implications. Front. Immunol., 2017, 8, 1005.
[http://dx.doi.org/10.3389/fimmu.2017.01005] [PMID: 28871262]
[220]
Henkel, J.S.; Engelhardt, J.I.; Siklós, L.; Simpson, E.P.; Kim, S.H.; Pan, T.; Goodman, J.C.; Siddique, T.; Beers, D.R.; Appel, S.H. Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann. Neurol., 2004, 55(2), 221-235.
[http://dx.doi.org/10.1002/ana.10805] [PMID: 14755726]
[221]
Capper, M.J.; Wright, G.S.A.; Barbieri, L.; Luchinat, E.; Mercatelli, E.; McAlary, L.; Yerbury, J.J.; O’Neill, P.M.; Antonyuk, S.V.; Banci, L.; Hasnain, S.S. The cysteine-reactive small molecule ebselen facilitates effective SOD1 maturation. Nat. Commun., 2018, 9(1), 1693.
[http://dx.doi.org/10.1038/s41467-018-04114-x] [PMID: 29703933]
[222]
Wright, G.S.; Antonyuk, S.V.; Hasnain, S.S. A faulty interaction between SOD1 and hCCS in neurodegenerative disease. Sci. Rep., 2016, 6, 27691.
[http://dx.doi.org/10.1038/srep27691] [PMID: 27282955]
[223]
Chantadul, V.; Wright, G.S.A.; Amporndanai, K.; Shahid, M.; Antonyuk, S.V.; Washbourn, G.; Rogers, M.; Roberts, N.; Pye, M.; O’Neill, P.M.; Hasnain, S.S. Ebselen as template for stabilization of A4V mutant dimer for motor neuron disease therapy. Commun. Biol., 2020, 3(1), 97.
[http://dx.doi.org/10.1038/s42003-020-0826-3] [PMID: 32139772]
[224]
Amporndanai, K.; Rogers, M.; Watanabe, S.; Yamanaka, K.; O’Neill, P.M.; Hasnain, S.S. Novel Selenium-based compounds with therapeutic potential for SOD1-linked amyotrophic lateral sclerosis. EBioMedicine, 2020, 59, 102980.
[http://dx.doi.org/10.1016/j.ebiom.2020.102980] [PMID: 32862101]
[225]
Zhang, C.; Wang, H.; Liang, W.; Yang, Y.; Cong, C.; Wang, Y.; Wang, S.; Wang, X.; Wang, D.; Huo, D.; Feng, H. Diphenyl diselenide protects motor neurons through inhibition of microglia-mediated inflammatory injury in amyotrophic lateral sclerosis. Pharmacol. Res., 2021, 165, 105457.
[http://dx.doi.org/10.1016/j.phrs.2021.105457] [PMID: 33515706]
[226]
NORD. The Multiple Sclerosis International Federation, Atlas of MS, 3rd Edition (September 2020).. 2020. Available from: https://www.msif.org/wp-content/uploads/2020/10/Atlas-3rd-Edition-Epidemiology-report-EN-updated-30-9-20.pdf
[227]
Leray, E.; Moreau, T.; Fromont, A.; Edan, G. Epidemiology of multiple sclerosis. Rev. Neurol. (Paris), 2016, 172(1), 3-13.
[http://dx.doi.org/10.1016/j.neurol.2015.10.006] [PMID: 26718593]
[228]
Oh, J.; Vidal-Jordana, A.; Montalban, X. Multiple sclerosis: Clinical aspects. Curr. Opin. Neurol., 2018, 31(6), 752-759.
[http://dx.doi.org/10.1097/WCO.0000000000000622] [PMID: 30300239]
[229]
Thormann, A.; Sørensen, P.S.; Koch-Henriksen, N.; Laursen, B.; Magyari, M. Comorbidity in multiple sclerosis is associated with diagnostic delays and increased mortality. Neurology, 2017, 89(16), 1668-1675.
[http://dx.doi.org/10.1212/WNL.0000000000004508] [PMID: 28931645]
[230]
Correale, J.; Gaitán, M.I.; Ysrraelit, M.C.; Fiol, M.P. Progressive multiple sclerosis: From pathogenic mechanisms to treatment. Brain, 2017, 140(3), 527-546.
[PMID: 27794524]
[231]
Compston, A.; Coles, A. Multiple sclerosis. Lancet, 2008, 372(9648), 1502-1517.
[http://dx.doi.org/10.1016/S0140-6736(08)61620-7] [PMID: 18970977]
[232]
Dendrou, C.A.; Fugger, L.; Friese, M.A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol., 2015, 15(9), 545-558.
[http://dx.doi.org/10.1038/nri3871] [PMID: 26250739]
[233]
Waisman, A.; Johann, L. Antigen-presenting cell diversity for T cell reactivation in central nervous system autoimmunity. J. Mol. Med. (Berl.), 2018, 96(12), 1279-1292.
[http://dx.doi.org/10.1007/s00109-018-1709-7] [PMID: 30386908]
[234]
de Toledo, J.H.D.S.; Fraga-Silva, T.F.C.; Borim, P.A.; de Oliveira, L.R.C.; Oliveira, E.D.S.; Périco, L.L.; Hiruma-Lima, C.A.; de Souza, A.A.L.; de Oliveira, C.A.F.; Padilha, P.M.; Pinatto-Botelho, M.F.; Dos Santos, A.A.; Sartori, A.; Zorzella-Pezavento, S.F.G. Organic selenium reaches the central nervous system and downmodulates local inflammation: A complementary therapy for multiple sclerosis? Front. Immunol., 2020, 11, 571844.
[http://dx.doi.org/10.3389/fimmu.2020.571844] [PMID: 33193354]
[235]
Chanaday, N.L.; de Bem, A.F.; Roth, G.A. Effect of diphenyl diselenide on the development of experimental autoimmune encephalomyelitis. Neurochem. Int., 2011, 59(8), 1155-1162.
[http://dx.doi.org/10.1016/j.neuint.2011.10.004] [PMID: 22032971]
[236]
Huang, Z.; Rose, A.H.; Hoffmann, P.R. The role of selenium in inflammation and immunity: From molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal., 2012, 16(7), 705-743.
[http://dx.doi.org/10.1089/ars.2011.4145] [PMID: 21955027]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy