Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

Transcriptome Profiling of Cisplatin Resistance in Triple-negative Breast Cancer: New Insight into the Role of PI3k/Akt Pathway

Author(s): Maryam Memar, Touraj Farazmandfar, Amir Sabaghian, Majid Shahbazi and Masoud Golalipour*

Volume 23, Issue 6, 2023

Published on: 15 August, 2022

Page: [559 - 568] Pages: 10

DOI: 10.2174/1566524022666220517102423

Price: $65

conference banner
Abstract

Background: Aggressive nature of triple negative breast cancer (TNBC) is associated with poor prognosis compared with other breast cancer types. Current guidelines recommend the use of Cisplatin for the management of TNBC. However, the development of resistance to cisplatin is the primary cause of chemotherapy failure.

Objective: In the present study, we aimed to develop a stable cisplatin-resistant TNBC cell line to investigate the key pathways and genes involved in cisplatin-resistant TNBC.

Methods: The MDA-MB-231 cell was exposed to different concentrations of cisplatin. After 33 generations, cells showed a resistant phenotype. Then, RNA-sequencing analysis was performed in cisplatin-resistant and parent cell lines. The RNA-sequencing data was verified by quantitative PCR (qPCR).

Results: The IC50 of the resistant cell increased to 10-fold of a parental cell (p<0.001). Also, cisplatin-resistant cells show cross-resistance to other drugs, including 5- fluorouracil, paclitaxel, and doxorubicin. Resistant cells demonstrated reduced drug accumulation compared to the parental cells. Results showed there were 116 differentially expression genes (DEGs) (p<0.01). Gene ontology analysis revealed that the DEGs have several molecular functions, including binding and transporter activity. Functional annotation showed that the DEGs were enriched in the drug resistancerelated pathways, especially the PI3K-Akt signaling pathway. The most important genes identified in the protein-protein interaction network were heme oxygenase 1 (HMOX1) and TIMP metallopeptidase inhibitor 3 (TIMP3).

Conclusion: We have identified several pathways and DEGs associated with the PI3KAkt pathway, which provides new insights into the mechanism of cisplatin resistance, and potential drug targets in TNBC.

Keywords: Cisplatin, breast cancer, drug resistance, TNBC, PI3k/Akt, RNA-seq.

[1]
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin 2021; 71(1): 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[2]
Dai X, Cheng H, Bai Z, Li J. Breast cancer cell line classification and its relevance with breast tumor subtyping. J Cancer 2017; 8(16): 3131-41.
[http://dx.doi.org/10.7150/jca.18457] [PMID: 29158785]
[3]
Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med 2010; 363(20): 1938-48.
[http://dx.doi.org/10.1056/NEJMra1001389] [PMID: 21067385]
[4]
Kala C, Athar M, Kala S, Khan L, Jauhari RK, Satsangi A. Clinical and cyto-morphological characterization of triple negative breast cancer. J Cytol 2019; 36(2): 84-8.
[http://dx.doi.org/10.4103/JOC.JOC_47_18] [PMID: 30992642]
[5]
Sharma P. Biology and management of patients with triple-negative breast cancer. Oncologist 2016; 21(9): 1050-62.
[http://dx.doi.org/10.1634/theoncologist.2016-0067] [PMID: 27401886]
[6]
Janni W, Schneeweiss A, Müller V, et al. Update breast cancer 2019 Part 2 - Implementation of novel diagnostics and therapeutics in advanced breast cancer patients in clinical practice. Geburtshilfe Frauenheilkd 2019; 79(3): 268-80.
[http://dx.doi.org/10.1055/a-0842-6661] [PMID: 30880825]
[7]
Lebert JM, Lester R, Powell E, Seal M, McCarthy J. Advances in the systemic treatment of triple-negative breast cancer. Curr Oncol 2018; 25 (Suppl. 1): S142-50.
[http://dx.doi.org/10.3747/co.25.3954] [PMID: 29910657]
[8]
Zhang J, Fan M, Xie J, et al. Chemotherapy of metastatic triple negative breast cancer: Experience of using platinum-based chemotherapy. Oncotarget 2015; 6(40): 43135-43.
[http://dx.doi.org/10.18632/oncotarget.5654] [PMID: 26447756]
[9]
Guan X, Ma F, Fan Y, Zhu W, Hong R, Xu B. Platinum-based chemotherapy in triple-negative breast cancer: A systematic review and meta-analysis of randomized-controlled trials. Anticancer Drugs 2015; 26(8): 894-901.
[http://dx.doi.org/10.1097/CAD.0000000000000260] [PMID: 26086398]
[10]
Dasari S, Tchounwou PB. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol 2014; 740: 364-78.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[11]
Garutti M, Pelizzari G, Bartoletti M, et al. Platinum salts in patients with breast cancer: A focus on predictive factors. Int J Mol Sci 2019; 20(14): E3390.
[http://dx.doi.org/10.3390/ijms20143390] [PMID: 31295913]
[12]
Amable L. Cisplatin resistance and opportunities for precision medicine. Pharmacol Res 2016; 106: 27-36.
[http://dx.doi.org/10.1016/j.phrs.2016.01.001] [PMID: 26804248]
[13]
Pink RC, Samuel P, Massa D, Caley DP, Brooks SA, Carter DRF. The passenger strand, miR-21-3p, plays a role in mediating cisplatin resistance in ovarian cancer cells. Gynecol Oncol 2015; 137(1): 143-51.
[http://dx.doi.org/10.1016/j.ygyno.2014.12.042] [PMID: 25579119]
[14]
Lo Iacono M, Monica V, Vavalà T, et al. ATF2 contributes to cisplatin resistance in non-small cell lung cancer and celastrol induces cisplatin resensitization through inhibition of JNK/ATF2 pathway. Int J Cancer 2015; 136(11): 2598-609.
[http://dx.doi.org/10.1002/ijc.29302] [PMID: 25359574]
[15]
Yu L, Gu C, Zhong D, et al. Induction of autophagy counteracts the anticancer effect of cisplatin in human esophageal cancer cells with acquired drug resistance. Cancer Lett 2014; 355(1): 34-45.
[http://dx.doi.org/10.1016/j.canlet.2014.09.020] [PMID: 25236911]
[16]
Kim H, D’Andrea AD. Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev 2012; 26(13): 1393-408.
[http://dx.doi.org/10.1101/gad.195248.112] [PMID: 22751496]
[17]
Wu D-W, Lee M-C, Hsu N-Y, et al. FHIT loss confers cisplatin resistance in lung cancer via the AKT/NF-κB/Slug-mediated PUMA reduction. Oncogene 2015; 34(29): 3882-3.
[http://dx.doi.org/10.1038/onc.2015.203] [PMID: 26179457]
[18]
Haslehurst AM, Koti M, Dharsee M, et al. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer 2012; 12: 91.
[http://dx.doi.org/10.1186/1471-2407-12-91] [PMID: 22429801]
[19]
Campos-Parra AD, López-Urrutia E, Orozco Moreno LT, et al. Long non-coding RNAs as new master regulators of resistance to systemic treatments in breast cancer. Int J Mol Sci 2018; 19(9): E2711.
[http://dx.doi.org/10.3390/ijms19092711] [PMID: 30208633]
[20]
Liu J, Chen X, Ward T, Pegram M, Shen K. Combined niclosamide with cisplatin inhibits epithelial-mesenchymal transition and tumor growth in cisplatin-resistant triple-negative breast cancer. Tumour Biol 2016; 37(7): 9825-35.
[http://dx.doi.org/10.1007/s13277-015-4650-1] [PMID: 26810188]
[21]
Kuo W-Y, Hwu L, Wu C-Y, Lee J-S, Chang C-W, Liu R-S. STAT3/NF-κB-regulated lentiviral TK/GCV suicide gene therapy for cisplatin-resistant triple-negative breast cancer. Theranostics 2017; 7(3): 647-63.
[http://dx.doi.org/10.7150/thno.16827] [PMID: 28255357]
[22]
Krishan A, Hamelik RM. Flow cytometric monitoring of fluorescent drug retention and efflux. Methods Mol Med 2005; 111: 149-66.
[http://dx.doi.org/10.1385/1-59259-889-7:149] [PMID: 15911978]
[23]
Afgan E, Baker D, Batut B, et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 2018; 46(W1): W537-44.
[PMID: 29790989]
[24]
Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11): 2498-504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[25]
Nedeljković M, Damjanović A. Mechanisms of chemotherapy resistance in triple-negative breast cancer-how we can rise to the challenge. Cells 2019; 8(9): E957.
[http://dx.doi.org/10.3390/cells8090957] [PMID: 31443516]
[26]
Bell CC, Gilan O. Principles and mechanisms of non-genetic resistance in cancer. Br J Cancer 2020; 122(4): 465-72.
[http://dx.doi.org/10.1038/s41416-019-0648-6] [PMID: 31831859]
[27]
Golalipour M, Mahjoubi F, Sanati MH, Alimoghaddam K, Kamran A. Gene dosage is not responsible for the upregulation of MRP1 gene expression in adult leukemia patients. Arch Med Res 2007; 38(3): 297-304.
[http://dx.doi.org/10.1016/j.arcmed.2006.10.016] [PMID: 17350479]
[28]
Kuo MT, Huang Y-F, Chou C-Y, Chen HHW. Targeting the copper transport system to improve treatment efficacies of platinum-containing drugs in cancer chemotherapy. Pharmaceuticals (Basel) 2021; 14(6): 549.
[http://dx.doi.org/10.3390/ph14060549] [PMID: 34201235]
[29]
Shimizu T, Fujii T, Sakai H. The relationship between actin cytoskeleton and membrane transporters in cisplatin resistance of cancer cells. Front Cell Dev Biol 2020; 8: 597835.
[http://dx.doi.org/10.3389/fcell.2020.597835] [PMID: 33195280]
[30]
Timmerman LA, Holton T, Yuneva M, et al. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell 2013; 24(4): 450-65.
[http://dx.doi.org/10.1016/j.ccr.2013.08.020] [PMID: 24094812]
[31]
Wang K, Cao F, Fang W, et al. Activation of SNAT1/SLC38A1 in human breast cancer: Correlation with p-Akt overexpression. BMC Cancer 2013; 13: 343.
[http://dx.doi.org/10.1186/1471-2407-13-343] [PMID: 23848995]
[32]
Wang B, Zhang Y, Ye M, Wu J, Ma L, Chen H. Cisplatin-resistant MDA-MB-231 cell-derived exosomes increase the resistance of recipient cells in an exosomal miR-423-5p-dependent Manner. Curr Drug Metab 2019; 20(10): 804-14.
[http://dx.doi.org/10.2174/1389200220666190819151946] [PMID: 31424364]
[33]
Eke I, Cordes N. Focal adhesion signaling and therapy resistance in cancer. Semin Cancer Biol 2015; 31: 65-75.
[http://dx.doi.org/10.1016/j.semcancer.2014.07.009] [PMID: 25117005]
[34]
Wang Z, Erb B. Receptors and cancer. Methods Mol Biol 2017; 1652: 3-35.
[http://dx.doi.org/10.1007/978-1-4939-7219-7_1] [PMID: 28791631]
[35]
Hill DP, Harper A, Malcolm J, et al. Cisplatin-resistant triple-negative breast cancer subtypes: Multiple mechanisms of resistance. BMC Cancer 2019; 19(1): 1039.
[http://dx.doi.org/10.1186/s12885-019-6278-9] [PMID: 31684899]
[36]
Chen T-C, Hung Y-C, Lin T-Y, et al. Human papillomavirus infection and expression of ATPase family AAA domain containing 3A, a novel anti-autophagy factor, in uterine cervical cancer. Int J Mol Med 2011; 28(5): 689-96.
[PMID: 21743956]
[37]
Zhao R, Feng J, He G. Hypoxia increases Nrf2-induced HO-1 expression via the PI3K/Akt pathway. Front Biosci 2016; 21: 385-96.
[http://dx.doi.org/10.2741/4395] [PMID: 26709780]
[38]
Reddy NM, Potteti HR, Vegiraju S, Chen H-J, Tamatam CM, Reddy SP. PI3K-AKT signaling via Nrf2 protects against hyperoxia-induced acute lung injury, but promotes inflammation post-injury independent of Nrf2 in mice. PLoS One 2015; 10(6): e0129676.
[http://dx.doi.org/10.1371/journal.pone.0129676] [PMID: 26075390]
[39]
Zhe N, Wang J, Chen S, et al. Heme oxygenase-1 plays a crucial role in chemoresistance in acute myeloid leukemia. Hematology 2015; 20(7): 384-91.
[http://dx.doi.org/10.1179/1607845414Y.0000000212] [PMID: 26218201]
[40]
Han L, Jiang J, Ma Q, Wu Z, Wang Z. The inhibition of heme oxygenase-1 enhances the chemosensitivity and suppresses the proliferation of pancreatic cancer cells through the SHH signaling pathway. Int J Oncol 2018; 52(6): 2101-9.
[http://dx.doi.org/10.3892/ijo.2018.4363] [PMID: 29620188]
[41]
Wei QT, Liu BY, Ji HY, et al. Exosome-mediated transfer of MIF confers temozolomide resistance by regulating TIMP3/PI3K/AKT axis in gliomas. Mol Ther Oncolytics 2021; 22: 114-28.
[http://dx.doi.org/10.1016/j.omto.2021.08.004] [PMID: 34514093]
[42]
Chen J, Zhou C, Li J, et al. miR-21-5p confers doxorubicin resistance in gastric cancer cells by targeting PTEN and TIMP3. Int J Mol Med 2018; 41(4): 1855-66.
[http://dx.doi.org/10.3892/ijmm.2018.3405] [PMID: 29393355]
[43]
Han XG, Mo HM, Liu XQ, et al. TIMP3 overexpression improves the sensitivity of osteosarcoma to cisplatin by reducing IL-6 production. Front Genet 2018; 9: 135.
[http://dx.doi.org/10.3389/fgene.2018.00135] [PMID: 29731768]
[44]
Pascual J, Turner NC. Targeting the PI3-kinase pathway in triple-negative breast cancer. Ann Oncol 2019; 30(7): 1051-60.
[http://dx.doi.org/10.1093/annonc/mdz133] [PMID: 31050709]
[45]
Liu R, Chen Y, Liu G, et al. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis 2020; 11(9): 797.
[http://dx.doi.org/10.1038/s41419-020-02998-6] [PMID: 32973135]
[46]
Johnson-Holiday C, Singh R, Johnson EL, Grizzle WE, Lillard JW Jr, Singh S. CCR9-CCL25 interactions promote cisplatin resistance in breast cancer cell through Akt activation in a PI3K-dependent and FAK-independent fashion. World J Surg Oncol 2011; 9: 46.
[http://dx.doi.org/10.1186/1477-7819-9-46] [PMID: 21539750]
[47]
Gohr K, Hamacher A, Engelke LH, Kassack MU. Inhibition of PI3K/Akt/mTOR overcomes cisplatin resistance in the triple negative breast cancer cell line HCC38. BMC Cancer 2017; 17(1): 711.
[http://dx.doi.org/10.1186/s12885-017-3695-5] [PMID: 29100507]
[48]
Luo J, Yao J-F, Deng X-F, et al. 14, 15-EET induces breast cancer cell EMT and cisplatin resistance by up-regulating integrin αvβ3 and activating FAK/PI3K/AKT signaling. J Exp Clin Cancer Res 2018; 37(1): 23.
[http://dx.doi.org/10.1186/s13046-018-0694-6] [PMID: 29426357]
[49]
Marquard FE, Jücker M. PI3K/AKT/mTOR signaling as a molecular target in head and neck cancer. Biochem Pharmacol 2020; 172: 113729.
[http://dx.doi.org/10.1016/j.bcp.2019.113729] [PMID: 31785230]
[50]
Kumar S, Patil HS, Sharma P, et al. Andrographolide inhibits osteopontin expression and breast tumor growth through down regulation of PI3 kinase/Akt signaling pathway. Curr Mol Med 2012; 12(8): 952-66.
[http://dx.doi.org/10.2174/156652412802480826] [PMID: 22804248]
[51]
Tsou S-H, Chen T-M, Hsiao H-T, Chen Y-H. A critical dose of doxorubicin is required to alter the gene expression profiles in MCF-7 cells acquiring multidrug resistance. PLoS One 2015; 10(1): e0116747.
[http://dx.doi.org/10.1371/journal.pone.0116747] [PMID: 25635866]
[52]
Dong C, Chen Y, Ma J, et al. Econazole nitrate reversed the resistance of breast cancer cells to adriamycin through inhibiting the PI3K/AKT signaling pathway. Am J Cancer Res 2020; 10(1): 263-74.
[PMID: 32064166]
[53]
Hu Y, Guo R, Wei J, et al. Effects of PI3K inhibitor NVP-BKM120 on overcoming drug resistance and eliminating cancer stem cells in human breast cancer cells. Cell Death Dis 2015; 6: e2020.
[http://dx.doi.org/10.1038/cddis.2015.363] [PMID: 26673665]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy