Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Nanotechnology: A Promising Targeted Drug Delivery System for Brain Tumours and Alzheimer's Disease

Author(s): Aziz Unnisa, Nigel H. Greig and Mohammad A. Kamal*

Volume 30, Issue 3, 2023

Published on: 10 June, 2022

Page: [255 - 270] Pages: 16

DOI: 10.2174/0929867329666220328125206

Price: $65

conference banner
Abstract

Nanotechnology is the process of modulating shape and size at the nanoscale to design and manufacture structures, devices, and systems. Nanotechnology's prospective breakthroughs are incredible, and some cannot even be comprehended right now. The blood-brain barrier, which is a prominent physiological barrier in the brain, limits the adequate elimination of malignant cells by changing the concentration of therapeutic agents at the target tissue. Nanotechnology has sparked interest in recent years as a way to solve these issues and improve drug delivery. Inorganic and organic nanomaterials have been found to be beneficial for bioimaging approaches and controlled drug delivery systems. Brain cancer (BC) and Alzheimer’s disease (AD) are two of the prominent disorders of the brain. Even though the pathophysiology and pathways for both disorders are different, nanotechnology with common features can deliver drugs over the BBB, advancing the treatment of both disorders. This innovative technology could provide a foundation for combining diagnostics, treatments, and delivery of targeted drugs to the tumour site, further supervising the response and designing and delivering materials by employing atomic and molecular elements. There is currently limited treatment for Alzheimer's disease, and reversing further progression is difficult. Recently, various nanocarriers have been investigated to improve the bioavailability and efficacy of many AD treatment drugs. Nanotechnology-assisted drugs can penetrate the BBB and reach the target tissue. However, further research is required in this field to ensure the safety and efficacy of drug-loaded nanoparticles. The application of nanotechnology in the diagnosis and treatment of brain tumours and Alzheimer's disease is briefly discussed in this review.

Keywords: Nanotechnology, brain tumour, Alzheimer's disease, nanoparticles, blood-brain barrier, drug delivery.

[1]
Saini, R.; Saini, S.; Sharma, S. Nanotechnology: The future medicine. J. Cutan. Aesthet. Surg., 2010, 3(1), 32-33.
[http://dx.doi.org/10.4103/0974-2077.63301] [PMID: 20606992]
[2]
Suri, S.S.; Fenniri, H.; Singh, B. Nanotechnology-based drug delivery systems. J. Occup. Med. Toxicol, 2007, 2(1), 16.
[http://dx.doi.org/10.1186/1745-6673-2-16] [PMID: 18053152]
[3]
Serrano-Pozo, A.; Frosch, M.P.; Masliah, E.; Hyman, B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med., 2011, 1(1), a006189.
[http://dx.doi.org/10.1101/cshperspect.a006189] [PMID: 22229116]
[4]
Dong, X. Current strategies for brain drug delivery. Theranostics, 2018, 8(6), 1481-1493.
[http://dx.doi.org/10.7150/thno.21254] [PMID: 29556336]
[5]
Ma, J.; Porter, A.L.; Aminabhavi, T.M.; Zhu, D. Nano-enabled drug delivery systems for brain cancer and Alzheimer’s disease: Research patterns and opportunities. Nanomedicine, 2015, 11(7), 1763-1771.
[http://dx.doi.org/10.1016/j.nano.2015.06.006] [PMID: 26115642]
[6]
Daneman, R.; Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol., 2015, 7(1), a020412.
[http://dx.doi.org/10.1101/cshperspect.a020412] [PMID: 25561720]
[7]
Pardridge, W.M. Drug transport across the blood-brain barrier. J. Cereb. Blood Flow Metab, 2012, 32(11), 1959-1972.
[http://dx.doi.org/10.1038/jcbfm.2012.126] [PMID: 22929442]
[8]
Masserini, M. Nanoparticles for brain drug delivery. ISRN Biochem., 2013, 2013, 238428.
[http://dx.doi.org/10.1155/2013/238428] [PMID: 25937958]
[9]
Fisusi, F.A.; Schätzlein, A.G.; Uchegbu, I.F. Nanomedicines in the treatment of brain tumors. Nanomedicine (Lond.), 2018, 13(6), 579-583.
[http://dx.doi.org/10.2217/nnm-2017-0378] [PMID: 29376468]
[10]
Mukherjee, S.; Ray, S.; Thakur, R.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J. Pharm. Sci., 2009, 71(4), 349-358.
[http://dx.doi.org/10.4103/0250-474X.57282] [PMID: 20502539]
[11]
Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials (Basel), 2020, 10(7), 1403.
[http://dx.doi.org/10.3390/nano10071403] [PMID: 32707641]
[12]
Makadia, H.K.; Siegel, S.J. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel), 2011, 3(3), 1377-1397.
[http://dx.doi.org/10.3390/polym3031377] [PMID: 22577513]
[13]
Mohammed, M.A.; Syeda, J.T.M.; Wasan, K.M.; Wasan, E.K. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics, 2017, 9(4), 53.
[http://dx.doi.org/10.3390/pharmaceutics9040053] [PMID: 29156634]
[14]
Jhaveri, A.M.; Torchilin, V.P. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front. Pharmacol., 2014, 5, 77.
[http://dx.doi.org/10.3389/fphar.2014.00077] [PMID: 24795633]
[15]
Liechty, W.B.; Kryscio, D.R.; Slaughter, B.V.; Peppas, N.A. Polymers for drug delivery systems. Annu. Rev. Chem. Biomol. Eng., 2010, 1(1), 149-173.
[http://dx.doi.org/10.1146/annurev-chembioeng-073009-100847] [PMID: 22432577]
[16]
Batrakova, E.V.; Kabanov, A.V. Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J. Control. Release, 2008, 130(2), 98-106.
[http://dx.doi.org/10.1016/j.jconrel.2008.04.013] [PMID: 18534704]
[17]
Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[18]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[19]
Mukhtar, M.; Bilal, M.; Rahdar, A.; Barani, M.; Arshad, R.; Behl, T. Nanomaterials for diagnosis and treatment of brain cancer: Recent updates. Chemosensors, 2020, 8(4), 117.
[http://dx.doi.org/10.3390/chemosensors8040117]
[20]
Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.; Hanifehpour, Y.; Joo, S.W. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett., 2014, 9(1), 393.
[http://dx.doi.org/10.1186/1556-276X-9-393] [PMID: 25170330]
[21]
Khan, Ibrahim.; Saeed, Khalid.; Khan, Idrees. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2017, 7, 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[22]
Mody, V.; Singh, A.; Wesley, B. Basics of magnetic nanoparticles for their application in the field of magnetic fluid hyperthermia. Eur. J. Nanomed, 2013, 5(1), 11-21.
[http://dx.doi.org/10.1515/ejnm-2012-0008]
[23]
Mahmoudi, K.; Hadjipanayis, CG. The application of magnetic nanoparticles for the treatment of brain tumors. Front Chem, 2014, 2, 109.
[http://dx.doi.org/10.3389/fchem.2014.00109]
[24]
Wu, J.; Wang, C.; Sun, J.; Xue, Y. Neurotoxicity of silica nanoparticles: Brain localization and dopaminergic neurons damage pathways. ACS Nano, 2011, 5(6), 4476-4489.
[http://dx.doi.org/10.1021/nn103530b] [PMID: 21526751]
[25]
Sousa, F.; Mandal, S.; Garrovo, C.; Astolfo, A.; Bonifacio, A.; Latawiec, D.; Menk, R.H.; Arfelli, F.; Huewel, S.; Legname, G.; Galla, H.J.; Krol, S. Functionalized gold nanoparticles: A detailed in vivo multimodal microscopic brain distribution study. Nanoscale, 2010, 2(12), 2826-2834.
[http://dx.doi.org/10.1039/c0nr00345j] [PMID: 20949211]
[26]
Broadwell, R.D. Transcytosis of macromolecules through the blood-brain barrier: A cell biological perspective and critical appraisal. Acta Neuropathol, 1989, 79(2), 117-128.
[http://dx.doi.org/10.1007/BF00294368] [PMID: 2688350]
[27]
Kumagai, A.K.; Eisenberg, J.B.; Pardridge, W.M. Absorptive-mediated endocytosis of cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport. J. Biol. Chem., 1987, 262(31), 15214-15219.
[http://dx.doi.org/10.1016/S0021-9258(18)48160-4] [PMID: 2959663]
[28]
Gonzalez-Carter, D.; Liu, X.; Tockary, T.A.; Dirisala, A.; Toh, K.; Anraku, Y.; Kataoka, K. Targeting nanoparticles to the brain by exploiting the blood-brain barrier impermeability to selectively label the brain endothelium. Proc. Natl. Acad. Sci. USA, 2020, 117(32), 19141-19150.
[http://dx.doi.org/10.1073/pnas.2002016117] [PMID: 32703811]
[29]
Parikh, T.; Bommana, M.M.; Squillante, E., III Efficacy of surface charge in targeting pegylated nanoparticles of sulpiride to the brain. Eur. J. Pharm. Biopharm., 2010, 74(3), 442-450.
[http://dx.doi.org/10.1016/j.ejpb.2009.11.001] [PMID: 19941957]
[30]
Bergen, J.M.; Pun, S.H. Analysis of the intracellular barriers encountered by nonviral gene carriers in a model of spatially controlled delivery to neurons. J. Gene Med., 2008, 10(2), 187-197.
[http://dx.doi.org/10.1002/jgm.1137] [PMID: 18064730]
[31]
Sadekar, S.; Ghandehari, H. Transepithelial transport and toxicity of PAMAM dendrimers: Implications for oral drug delivery. Adv. Drug Deliv. Rev., 2012, 64(6), 571-588.
[http://dx.doi.org/10.1016/j.addr.2011.09.010] [PMID: 21983078]
[32]
Grabrucker, A.M.; Ruozi, B.; Belletti, D.; Pederzoli, F.; Forni, F.; Vandelli, M.A.; Tosi, G. Nanoparticle transport across the blood brain barrier. Tissue Barriers, 2016, 4(1), e1153568.
[http://dx.doi.org/10.1080/21688370.2016.1153568] [PMID: 27141426]
[33]
Betzer, O.; Shilo, M.; Opochinsky, R.; Barnoy, E.; Motiei, M.; Okun, E.; Yadid, G.; Popovtzer, R. The effect of nanoparticle size on the ability to cross the blood-brain barrier: An in vivo study. Nanomedicine (Lond.), 2017, 12(13), 1533-1546.
[http://dx.doi.org/10.2217/nnm-2017-0022] [PMID: 28621578]
[34]
Ou, H.; Cheng, T.; Zhang, Y.; Liu, J.; Ding, Y.; Zhen, J.; Shen, W.; Xu, Y.; Yang, W.; Niu, P.; Liu, J.; An, Y.; Liu, Y.; Shi, L. Surface-adaptive zwitterionic nanoparticles for prolonged blood circulation time and enhanced cellular uptake in tumor cells. Acta Biomater, 2018, 65, 339-348.
[http://dx.doi.org/10.1016/j.actbio.2017.10.034] [PMID: 29079515]
[35]
Martinez-Veracoechea, F.J.; Frenkel, D. Designing super selectivity in multivalent nano-particle binding. Proc. Natl. Acad. Sci. USA, 2011, 108(27), 10963-10968.
[http://dx.doi.org/10.1073/pnas.1105351108] [PMID: 21690358]
[36]
Lindgren, M.; Hällbrink, M.; Prochiantz, A.; Langel, U. Cell-penetrating peptides. Trends Pharmacol. Sci., 2000, 21(3), 99-103.
[http://dx.doi.org/10.1016/S0165-6147(00)01447-4] [PMID: 10689363]
[37]
Lerner, R.P.; Francardo, V.; Fujita, K.; Bimpisidis, Z.; Jourdain, V.A.; Tang, C.C.; Dewey, S.L.; Chaly, T.; Cenci, M.A.; Eidelberg, D. Levodopa-induced abnormal involuntary movements correlate with altered permeability of the blood-brain-barrier in the basal ganglia. Sci. Rep., 2017, 7(1), 16005.
[http://dx.doi.org/10.1038/s41598-017-16228-1] [PMID: 29167476]
[38]
Sokolova, V.; Mekky, G.; van der Meer, S.B.; Seeds, M.C.; Atala, A.J.; Epple, M. Transport of ultrasmall gold nanoparticles (2 nm) across the blood-brain barrier in a six-cell brain spheroid model. Sci. Rep., 2020, 10(1), 18033.
[http://dx.doi.org/10.1038/s41598-020-75125-2] [PMID: 33093563]
[39]
Gastaldi, L.; Battaglia, L.; Peira, E.; Chirio, D.; Muntoni, E.; Solazzi, I.; Gallarate, M.; Dosio, F. Solid lipid nanoparticles as vehicles of drugs to the brain: Current state of the art. Eur. J. Pharm. Biopharm., 2014, 87(3), 433-444.
[http://dx.doi.org/10.1016/j.ejpb.2014.05.004] [PMID: 24833004]
[40]
Pulgar, V.M. Transcytosis to cross the blood brain barrier, new advancements and challenges. Front. Neurosci., 2019, 12, 1019.
[http://dx.doi.org/10.3389/fnins.2018.01019] [PMID: 30686985]
[41]
Lesniak, A.; Kilinc, D.; Blasiak, A.; Galea, G.; Simpson, J.C.; Lee, G.U. Rapid growth cone uptake and dynein-mediated axonal retrograde transport of negatively charged nanoparticles in neurons is dependent on size and cell type. Small, 2019, 15(2), e1803758.
[http://dx.doi.org/10.1002/smll.201803758] [PMID: 30565853]
[42]
Saucier-Sawyer, J.K.; Deng, Y.; Seo, Y.E.; Cheng, C.J.; Zhang, J.; Quijano, E.; Saltzman, W.M. Systemic delivery of blood-brain barrier-targeted polymeric nanoparticles enhances delivery to brain tissue. J. Drug Target, 2015, 23(7-8), 736-749.
[http://dx.doi.org/10.3109/1061186X.2015.1065833] [PMID: 26453169]
[43]
Sevenich, L. Brain-Resident microglia and blood-borne macrophages orchestrate central nervous system inflammation in neurodegenerative disorders and brain cancer. Front. Immunol, 2018, 9, 697.
[http://dx.doi.org/10.3389/fimmu.2018.00697] [PMID: 29681904]
[44]
Mokhtarzadeh, A.; Eivazzadeh-Keihan, R.; Pashazadeh, P.; Hejazi, M.; Gharaatifar, N.; Hasanzadeh, M.; Baradaran, B.; de la Guardia, M. Nanomaterial-based biosensors for detection of pathogenic virus. Trends Analyt. Chem., 2017, 97, 445-457.
[http://dx.doi.org/10.1016/j.trac.2017.10.005] [PMID: 32287543]
[45]
Jin, C.; Wang, K.; Oppong-Gyebi, A.; Hu, J. Application of nanotechnology in cancer diagnosis and therapy - A mini-review. Int. J. Med. Sci., 2020, 17(18), 2964-2973.
[http://dx.doi.org/10.7150/ijms.49801] [PMID: 33173417]
[46]
Dai, X.; Li, Y.; Zhong, Y. Recent developments of nanotechnology for Alzheimer’s disease diagnosis and therapy. Glob J Nano, 2018, 4(4), 555644.
[http://dx.doi.org/10.19080/GJN.2018.04.555644]
[47]
Lai, L.; Zhao, C.; Li, X.; Liu, X.; Jiang, H.; Selke, M.; Wang, X.D. Fluorescent gold nanoclusters for in vivo target imaging of Alzheimer’s disease. RSC Advances, 2016, 6(36), 30081-30088.
[http://dx.doi.org/10.1039/C6RA01027J]
[48]
Han, L.; Duan, W.; Li, X.; Wang, C.; Jin, Z.; Zhai, Y.; Cao, C.; Chen, L.; Xu, W.; Liu, Y.; Bi, Y.Y.; Feng, J.; Mao, Y.; Yue, Q.; Zhang, X.Y.; Li, C. Surface-Enhanced resonance raman scattering-guided brain tumor surgery showing prognostic benefit in rat models. ACS Appl. Mater. Interfaces, 2019, 11(17), 15241-15250.
[http://dx.doi.org/10.1021/acsami.9b00227] [PMID: 30896915]
[49]
Song, C.; Guo, S.; Jin, S.; Chen, L.; Jung, Y.M. Biomarkers determination based on surface-enhanced raman scattering. Chemosensors (Basel), 2020, 8(4), 118.
[http://dx.doi.org/10.3390/chemosensors8040118]
[50]
Rees, J. Advances in magnetic resonance imaging of brain tumours. Curr. Opin. Neurol, 2003, 16(6), 643-650.
[http://dx.doi.org/10.1097/00019052-200312000-00001] [PMID: 14624071]
[51]
Chandra, A.; Dervenoulas, G.; Politis, M. Alzheimer’s disease neuroimaging initiative. Magnetic resonance imaging in Alzheimer’s disease and mild cognitive impairment. J. Neurol., 2019, 266(6), 1293-1302.
[http://dx.doi.org/10.1007/s00415-018-9016-3] [PMID: 30120563]
[52]
Hu, S.; Wang, L.V. Neurovascular photoacoustic tomography. Front. Neuroenergetics, 2010, 2, 10.
[http://dx.doi.org/10.3389/fnene.2010.00010] [PMID: 20616885]
[53]
Wang, D.; Wu, Y.; Xia, J. Review on photoacoustic imaging of the brain using nanoprobes. Neurophotonics, 2016, 3(1), 010901.
[http://dx.doi.org/10.1117/1.NPh.3.1.010901] [PMID: 26740961]
[54]
Charalampaki, P.; Nakamura, M.; Athanasopoulos, D.; Heimann, A. Confocal-assisted multispectral fluorescent microscopy for brain tumor surgery. Front. Oncol, 2019, 9, 583.
[http://dx.doi.org/10.3389/fonc.2019.00583] [PMID: 31380264]
[55]
Dou, W.T.; Zhang, J.J.; Li, Q.; Guo, Z.; Zhu, W.; Chen, G.R.; Zhang, H.Y.; He, X.P. Fluorescence imaging of Alzheimer’s disease with a flat ensemble formed between a quinoline-malononitrile aiegen and thin-layer molybdenum disulfide. ChemBioChem, 2019, 20(14), 1856-1860.
[http://dx.doi.org/10.1002/cbic.201800508] [PMID: 30295990]
[56]
Zhu, L.; Nazeri, A.; Pacia, C.P.; Yue, Y.; Chen, H. Focused ultrasound for safe and effective release of brain tumor biomarkers into the peripheral circulation. PLoS One, 2020, 15(6), e0234182.
[http://dx.doi.org/10.1371/journal.pone.0234182] [PMID: 32492056]
[57]
Souza, R.M.D.C.E.; da Silva, I.C.S.; Delgado, A.B.T.; da Silva, P.H.V.; Costa, V.R.X. Focused ultrasound and Alzheimer’s disease a systematic review. Dement. Neuropsychol, 2018, 12(4), 353-359.
[http://dx.doi.org/10.1590/1980-57642018dn12-040003] [PMID: 30546844]
[58]
Fink, J.R.; Muzi, M.; Peck, M.; Krohn, K.A. Multimodality brain tumor imaging: MR Imaging, PET, and PET/MR Imaging. J. Nucl. Med., 2015, 56(10), 1554-1561.
[http://dx.doi.org/10.2967/jnumed.113.131516] [PMID: 26294301]
[59]
Chételat, G. Multimodal neuroimaging in Alzheimer’s disease: Early diagnosis, physiopathological mechanisms, and impact of lifestyle. J. Alzheimers Dis., 2018, 64(s1), S199-S211.
[http://dx.doi.org/10.3233/JAD-179920] [PMID: 29504542]
[60]
Wong, T.Z.; van der Westhuizen, G.J.; Coleman, R.E. Positron emission tomography imaging of brain tumors. Neuroimaging Clin. N. Am., 2002, 12(4), 615-626.
[http://dx.doi.org/10.1016/S1052-5149(02)00033-3] [PMID: 12687915]
[61]
Marcus, C.; Mena, E.; Subramaniam, R.M. Brain PET in the diagnosis of Alzheimer’s disease. Clin. Nucl. Med., 2014, 39(10), e413-e422.
[http://dx.doi.org/10.1097/RLU.0000000000000547] [PMID: 25199063]
[62]
Bruzzone, M.G.; D’Incerti, L.; Farina, L.L.; Cuccarini, V.; Finocchiaro, G.C.T. MRI of brain tumors. Q. J. Nucl. Med. Mol. Imaging, 2012, 56(2), 112-137.
[PMID: 22617235]
[63]
Cuttler, J.M.; Moore, ER; Hosfeld, VD; Nadolski, DL Treatment of Alzheimer disease with CT scans: A case report Dose Response, 2016, 14(2), 1559325816640073.
[http://dx.doi.org/10.1177/1559325816640073]
[64]
Hu, G.; Guo, M.; Xu, J.; Wu, F.; Fan, J.; Huang, Q.; Yang, G.; Lv, Z.; Wang, X.; Jin, Y. Nanoparticles targeting macrophages as potential clinical therapeutic agents against cancer and inflammation. Front. Immunol., 2019, 10, 1998.
[http://dx.doi.org/10.3389/fimmu.2019.01998] [PMID: 31497026]
[65]
Zhao, M.; van Straten, D.; Broekman, M.L.D.; Préat, V.; Schiffelers, R.M. Nanocarrier-based drug combination therapy for glioblastoma. Theranostics, 2020, 10(3), 1355-1372.
[http://dx.doi.org/10.7150/thno.38147] [PMID: 31938069]
[66]
Kamaly, N.; Xiao, Z.; Valencia, P.M.; Radovic-Moreno, A.F.; Farokhzad, O.C. Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chem. Soc. Rev., 2012, 41(7), 2971-3010.
[http://dx.doi.org/10.1039/c2cs15344k] [PMID: 22388185]
[67]
Zhang, Y.W.; Xu, H. Molecular and cellular mechanisms for Alzheimer’s disease: Understanding APP metabolism. Curr. Mol. Med., 2007, 7(7), 687-696.
[http://dx.doi.org/10.2174/156652407782564462] [PMID: 18045146]
[68]
Jiang, X.; Xin, H.; Ren, Q.; Gu, J.; Zhu, L.; Du, F.; Feng, C.; Xie, Y.; Sha, X.; Fang, X. Nanoparticles of 2-deoxy-D-glucose functionalized poly(ethylene glycol)-co-poly(trimethylene carbonate) for dual-targeted drug delivery in glioma treatment. Biomaterials, 2014, 35(1), 518-529.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.094] [PMID: 24125772]
[69]
Tharkar, P.; Varanasi, R.; Wong, W.S.F.; Jin, C.T.; Chrzanowski, W. Nano-Enhanced drug delivery and therapeutic ultrasound for cancer treatment and beyond. Front. Bioeng. Biotechnol, 2019, 7, 324.
[http://dx.doi.org/10.3389/fbioe.2019.00324] [PMID: 31824930]
[70]
Chen, X.; Drew, J.; Berney, W.; Lei, W. Neuroprotective natural products for Alzheimer’s disease. Cells, 2021, 10(6), 1309.
[http://dx.doi.org/10.3390/cells10061309] [PMID: 34070275]
[71]
Nazem, A.; Mansoori, G.A. Nanotechnology solutions for Alzheimer’s disease: Advances in research tools, diagnostic methods and therapeutic agents. J. Alzheimers Dis, 2008, 13(2), 199-223.
[http://dx.doi.org/10.3233/JAD-2008-13210] [PMID: 18376062]
[72]
Cummings, J.L. Defining and labeling disease-modifying treatments for Alzheimer’s disease. Alzheimers Dement, 2009, 5(5), 406-418.
[http://dx.doi.org/10.1016/j.jalz.2008.12.003] [PMID: 19751920]
[73]
Badry, A.E.; Mattar, M.A. Nanotechnology in neurosurgical practice. Nanotechnology in neurosurgical practice. EC Neurology, 2017, 5(4), 149-171.
[74]
Ikeda, K.; Okada, T.; Sawada, S.; Akiyoshi, K.; Matsuzaki, K. Inhibition of the formation of amyloid beta-protein fibrils using biocompatible nanogels as artificial chaperones. FEBS Lett., 2006, 580(28-29), 6587-6595.
[http://dx.doi.org/10.1016/j.febslet.2006.11.009] [PMID: 17125770]
[75]
Boridy, S.; Takahashi, H.; Akiyoshi, K.; Maysinger, D. The binding of pullulan modified cholesteryl nanogels to Abeta oligomers and their suppression of cytotoxicity. Biomaterials, 2009, 30(29), 5583-5591.
[http://dx.doi.org/10.1016/j.biomaterials.2009.06.010] [PMID: 19577802]
[76]
Dugan, L.L.; Lovett, E.G.; Quick, K.L.; Lotharius, J.; Lin, T.T.; O’Malley, K.L. Fullerene-based antioxidants and neurodegenerative disorders. Parkinsonism Relat. Disord, 2001, 7(3), 243-246.
[http://dx.doi.org/10.1016/S1353-8020(00)00064-X] [PMID: 11331193]
[77]
Huang, H.M.; Ou, H.C.; Hsieh, S.J.; Chiang, L.Y. Blockage of amyloid beta peptide-induced cytosolic free calcium by fullerenol-1, carboxylate C60 in PC12 cells. Life Sci., 2000, 66(16), 1525-1533.
[http://dx.doi.org/10.1016/S0024-3205(00)00470-7] [PMID: 10794500]
[78]
D’Angelo, B.; Santucci, S.; Benedetti, E.; Di Loreto, S.; Phani, R.A.; Falone, S.; Amicarelli, F.; Ceru, M.; Cimini, A. Cerium oxide nanoparticles trigger neuronal survival in a human Alzheimer disease model by modulating BDNF pathway. Curr. Nanosci., 2009, 5(2), 167-176.
[http://dx.doi.org/10.2174/157341309788185523]
[79]
Suh, W.H.; Suslick, K.S.; Stucky, G.D.; Suh, Y.H. Nanotechnology, nanotoxicology, and neuroscience. Prog. Neurobiol, 2009, 87(3), 133-170.
[http://dx.doi.org/10.1016/j.pneurobio.2008.09.009] [PMID: 18926873]
[80]
Kogan, M.J.; Bastus, N.G.; Amigo, R.; Grillo-Bosch, D.; Araya, E.; Turiel, A.; Labarta, A.; Giralt, E.; Puntes, V.F. Nanoparticle-mediated local and remote manipulation of protein aggregation. Nano Lett., 2006, 6(1), 110-115.
[http://dx.doi.org/10.1021/nl0516862] [PMID: 16402797]
[81]
Mansoori, G.A.; George, T.F.; Assoufid, L.; Zhang, G. Molecular Building Blocks for Nanotechnology; Springer: New York, 2007.
[http://dx.doi.org/10.1007/978-0-387-39938-6]
[82]
Reisberg, B.; Doody, R.; Stöffler, A.; Schmitt, F.; Ferris, S.; Möbius, H.J. Memantine in moderate-to-severe Alzheimer’s disease. N. Engl. J. Med., 2003, 348(14), 1333-1341.
[http://dx.doi.org/10.1056/NEJMoa013128] [PMID: 12672860]
[83]
Lipton, S.A. Paradigm shift in NMDA receptor antagonist drug development: Molecular mechanism of uncompetitive inhibition by memantine in the treatment of Alzheimer’s disease and other neurologic disorders. J. Alzheimers Dis., 2004, 6(6)(Suppl.), S61-S74.
[PMID: 15665416]
[84]
Wang, J.; Valmikinathan, C.M.; Yu, X. Nanostructures for bypassing blood brain barrier. Curr. Bioact. Compd., 2009, 5(3), 195-205.
[http://dx.doi.org/10.2174/157340709789054777]
[85]
Blasi, P.; Giovagnoli, S.; Schoubben, A.; Ricci, M.; Rossi, C. Solid lipid nanoparticles for targeted brain drug delivery. Adv. Drug Deliv. Rev., 2007, 59(6), 454-477.
[http://dx.doi.org/10.1016/j.addr.2007.04.011] [PMID: 17570559]
[86]
Yang, F.; Lim, G.P.; Begum, A.N.; Ubeda, O.J.; Simmons, M.R.; Ambegaokar, S.S.; Chen, P.P.; Kayed, R.; Glabe, C.G.; Frautschy, S.A.; Cole, G.M. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem., 2005, 280(7), 5892-5901.
[http://dx.doi.org/10.1074/jbc.M404751200] [PMID: 15590663]
[87]
Mulik, R.S.; Mönkkönen, J.; Juvonen, R.O.; Mahadik, K.R.; Paradkar, A.R. ApoE3 mediated poly(butyl) cyanoacrylate nanoparticles containing curcumin: Study of enhanced activity of curcumin against beta amyloid induced cytotoxicity using in vitro cell culture model. Mol. Pharm., 2010, 7(3), 815-825.
[http://dx.doi.org/10.1021/mp900306x] [PMID: 20230014]
[88]
Brambilla, D.; Le Droumaguet, B.; Nicolas, J.; Hashemi, S.H.; Wu, L-P.; Moghimi, S.M.; Couvreur, P.; Andrieux, K. Nanotechnologies for Alzheimer’s disease: Diagnosis, therapy, and safety issues. Nanomedicine, 2011, 7(5), 521-540.
[http://dx.doi.org/10.1016/j.nano.2011.03.008] [PMID: 21477665]
[89]
Wilson, B.; Samanta, M.K.; Santhi, K.; Kumar, K.P.; Paramakrishnan, N.; Suresh, B. Poly(nbutylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer's disease. Brain Res, 2008, 1200, 159-68.
[90]
Yang, Z.; Zhang, Y.; Yang, Y.; Sun, L.; Han, D.; Li, H.; Wang, C. Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine, 2010, 6(3), 427-441.
[http://dx.doi.org/10.1016/j.nano.2009.11.007] [PMID: 20056170]
[91]
Pike, C.J.; Carroll, J.C.; Rosario, E.R.; Barron, A.M. Protective actions of sex steroid hormones in Alzheimer’s disease. Front. Neuroendocrinol, 2009, 30(2), 239-258.
[http://dx.doi.org/10.1016/j.yfrne.2009.04.015] [PMID: 19427328]
[92]
Sahni, J.K.; Doggui, S.; Ali, J.; Baboota, S.; Dao, L.; Ramassamy, C. Neurotherapeutic applications of nanoparticles in Alzheimer’s disease. J. Control. Release, 2011, 152(2), 208-231.
[http://dx.doi.org/10.1016/j.jconrel.2010.11.033] [PMID: 21134407]
[93]
Wang, X.; Chi, N.; Tang, X. Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur. J. Pharm. Biopharm, 2008, 70(3), 735-740.
[http://dx.doi.org/10.1016/j.ejpb.2008.07.005] [PMID: 18684400]
[94]
He, W.; Horn, S.W.; Hussain, M.D. Improved bioavailability of orally administered mifepristone from PLGA nanoparticles. Int. J. Pharm, 2007, 334(1-2), 173-178.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.025] [PMID: 17101249]
[95]
Belanoff, J.K.; Jurik, J.; Schatzberg, L.D.; DeBattista, C.; Schatzberg, A.F. Slowing the progression of cognitive decline in Alzheimer’s disease using mifepristone. J. Mol. Neurosci., 2002, 19(1-2), 201-206.
[http://dx.doi.org/10.1007/s12031-002-0033-3] [PMID: 12212781]
[96]
Rezai-Zadeh, K.; Arendash, G.W.; Hou, H.; Fernandez, F.; Jensen, M.; Runfeldt, M.; Shytle, R.D.; Tan, J. Green tea epigallocatechin-3-gallate (EGCG) reduces beta-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res., 2008, 1214, 177-187.
[http://dx.doi.org/10.1016/j.brainres.2008.02.107] [PMID: 18457818]
[97]
Bush, A.I. Drug development based on the metals hypothesis of Alzheimer’s disease. J. Alzheimers Dis., 2008, 15(2), 223-240.
[http://dx.doi.org/10.3233/JAD-2008-15208] [PMID: 18953111]
[98]
Cui, Z.; Lockman, P.R.; Atwood, C.S.; Hsu, C.H.; Gupte, A.; Allen, D.D.; Mumper, R.J. Novel D-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer’s and other CNS diseases. Eur. J. Pharm. Biopharm, 2005, 59(2), 263-272.
[http://dx.doi.org/10.1016/j.ejpb.2004.07.009] [PMID: 15661498]
[99]
Picone, P.; Bondi, M.L.; Montana, G.; Bruno, A.; Pitarresi, G.; Giammona, G.; Di Carlo, M. Ferulic acid inhibits oxidative stress and cell death induced by Ab oligomers: Improved delivery by solid lipid nanoparticles. Free Radic. Res., 2009, 43(11), 1133-1145.
[http://dx.doi.org/10.1080/10715760903214454] [PMID: 19863373]
[100]
Bondi, M.L.; Montana, G.; Craparo, E.F.; Picone, P.; Capuano, G.; Di Carlo, M. Ferulic acid-loaded lipid nanostructures as drug delivery systems for Alzheimer’s disease: Preparation, characterization and cytotoxicity studies. Curr. Nanosci., 2009, 5(1), 26-32.
[http://dx.doi.org/10.2174/157341309787314656]
[101]
Roy, I.; Stachowiak, M.K.; Bergey, E.J. Nonviral gene transfection nanoparticles: Function and applications in the brain. Nanomedicine, 2008, 4(2), 89-97.
[http://dx.doi.org/10.1016/j.nano.2008.01.002] [PMID: 18313990]
[102]
Suh, J.; Wirtz, D.; Hanes, J. Efficient active transport of gene nanocarriers to the cell nucleus. Proc. Natl. Acad. Sci. USA, 2003, 100(7), 3878-3882.
[http://dx.doi.org/10.1073/pnas.0636277100] [PMID: 12644705]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy