Review Article

硒衍生物:治疗阿尔茨海默病的新观点综述

卷 30, 期 6, 2023

发表于: 01 April, 2022

页: [689 - 700] 页: 12

弟呕挨: 10.2174/0929867329666220224161454

价格: $65

conference banner
摘要

背景:阿尔茨海默病(AD)是最常见的痴呆症类型之一,影响着全球数百万老年人。阿尔茨海默病的主要特征包括乙酰胆碱水平的降低、氧化应激的增加以及淀粉样蛋白β (Aβ)和tau蛋白的沉积。在这方面,含硒化合物已被证明是治疗AD的潜在多靶点化合物。这些化合物以其抗氧化和抗胆碱酯酶特性而闻名,导致Aβ聚集减少。 目的:在本文综述中,我们探讨了每种化合物的构效关系,将ROS活性的降低,tau样活性的增加和AChE的抑制与Aβ自聚集的减少联系起来。 方法:验证分子描述符apol、nHBAcc和MlogP可能与优化抗AD药物的药代动力学性质有关。 结果:在我们的分析中,很少硒衍生化合物表现出与FDA批准的药物相似的分子特征。 结论:我们认为,在未来的AD研究中,含有apol、nHBAcc和MlogP的未知硒源分子,如FDA批准的药物,可能会在优化药代动力学特性方面取得更好的成功。

关键词: 有机硒,阿尔茨海默病,多靶向药物,抗氧化的,GPx,硒。

[1]
Yiannopoulou, K.G.; Papageorgiou, S.G. Current and future treatments in Alzheimer Disease: An update. J. Cent. Nerv. Syst. Dis., 2020, 12, 1179573520907397.
[http://dx.doi.org/10.1177/1179573520907397] [PMID: 32165850]
[2]
van der Kant, R.; Goldstein, L.S.B.; Ossenkoppele, R. Amyloid-β-independent regulators of tau pathology in Alzheimer disease. Nat. Rev. Neurosci., 2020, 21(1), 21-35.
[http://dx.doi.org/10.1038/s41583-019-0240-3] [PMID: 31780819]
[3]
Jia, R-X.; Liang, J-H.; Xu, Y.; Wang, Y-Q. Effects of physical activity and exercise on the cognitive function of patients with Alzheimer disease: A meta-analysis. BMC Geriatr., 2019, 19(1), 181.
[http://dx.doi.org/10.1186/s12877-019-1175-2] [PMID: 31266451]
[4]
Keszycki, R.M.; Fisher, D.W.; Dong, H. The hyperactivity-impulsivity-irritiability-disinhibition-aggression-agitation domain in Alzheimer’s Disease: Current management and future directions. Front. Pharmacol., 2019, 10, 1109.
[http://dx.doi.org/10.3389/fphar.2019.01109] [PMID: 31611794]
[5]
DeSouza, K.; Pit, S.W.; Moehead, A. Translating facilitated multimodal online learning into effective person-centred practice for the person living with dementia among health care staff in Australia: An observational study. BMC Geriatr., 2020, 20(1), 33.
[http://dx.doi.org/10.1186/s12877-020-1417-3] [PMID: 32005158]
[6]
Huynh, T.V.; Holtzman, D.M. In search of an identity for Amyloid Plaques. Trends Neurosci., 2018, 41(8), 483-486.
[http://dx.doi.org/10.1016/j.tins.2018.06.002] [PMID: 30053949]
[7]
Glenner, G.G.; Wong, C.W. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun., 1984, 120(3), 885-890.
[http://dx.doi.org/10.1016/S0006-291X(84)80190-4] [PMID: 6375662]
[8]
Masters, C.L.; Simms, G.; Weinman, N.A.; Multhaup, G.; McDonald, B.L.; Beyreuther, K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. USA, 1985, 82(12), 4245-4249.
[http://dx.doi.org/10.1073/pnas.82.12.4245] [PMID: 3159021]
[9]
Tanzi, R.E.; Gusella, J.F.; Watkins, P.C.; Bruns, G.A.; St George-Hyslop, P.; Van Keuren, M.L.; Patterson, D.; Pagan, S.; Kurnit, D.M.; Neve, R.L. Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science, 1987, 235(4791), 880-884.
[http://dx.doi.org/10.1126/science.2949367] [PMID: 2949367]
[10]
Kang, J.; Lemaire, H-G.; Unterbeck, A.; Salbaum, J.M.; Masters, C.L.; Grzeschik, K-H.; Multhaup, G.; Beyreuther, K.; Müller-Hill, B. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature, 1987, 325(6106), 733-736.
[http://dx.doi.org/10.1038/325733a0] [PMID: 2881207]
[11]
Head, E.; Lott, I.T.; Wilcock, D.M.; Lemere, C.A. Aging in down syndrome and the development of Alzheimer’s Disease neuropathology. Curr. Alzheimer Res., 2016, 13(1), 18-29.
[http://dx.doi.org/10.2174/1567205012666151020114607] [PMID: 26651341]
[12]
Golde, T.E.; Eckman, C.B.; Younkin, S.G. Biochemical detection of Aβ isoforms: implications for pathogenesis, diagnosis, and treatment of Alzheimer’s disease. Biochim. Biophys. Acta, 2000, 1502, 172-187.
[http://dx.doi.org/10.1016/S0925-4439(00)00043-0] [PMID: 10899442]
[13]
Bekris, L.M.; Yu, C-E.; Bird, T.D.; Tsuang, D.W. Genetics of Alzheimer disease. J. Geriatr. Psychiatry Neurol., 2010, 23(4), 213-227.
[http://dx.doi.org/10.1177/0891988710383571] [PMID: 21045163]
[14]
Theuns, J.; Del-Favero, J.; Dermaut, B.; van Duijn, C.M.; Backhovens, H.; Van den Broeck, M.V.; Serneels, S.; Corsmit, E.; Van Broeckhoven, C.V.; Cruts, M. Genetic variability in the regulatory region of presenilin 1 associated with risk for Alzheimer’s disease and variable expression. Hum. Mol. Genet., 2000, 9(3), 325-331.
[http://dx.doi.org/10.1093/hmg/9.3.325] [PMID: 10655540]
[15]
Wolfe, M.S. Unlocking truths of γ-secretase in Alzheimer’s disease: what is the translational potential? Future Neurol., 2014, 9(4), 419-429.
[http://dx.doi.org/10.2217/fnl.14.35] [PMID: 26146489]
[16]
Szaruga, M.; Veugelen, S.; Benurwar, M.; Lismont, S.; Sepulveda-Falla, D.; Lleo, A.; Ryan, N.S.; Lashley, T.; Fox, N.C.; Murayama, S.; Gijsen, H.; De Strooper, B.; Chávez-Gutiérrez, L. Qualitative changes in human γ-secretase underlie familial Alzheimer’s disease. J. Exp. Med., 2015, 212(12), 2003-2013.
[http://dx.doi.org/10.1084/jem.20150892] [PMID: 26481686]
[17]
Scheuner, D.; Eckman, C.; Jensen, M.; Song, X.; Citron, M.; Suzuki, N.; Bird, T.D.; Hardy, J.; Hutton, M.; Kukull, W.; Larson, E.; Levy-Lahad, E.; Viitanen, M.; Peskind, E.; Poorkaj, P.; Schellenberg, G.; Tanzi, R.; Wasco, W.; Lannfelt, L.; Selkoe, D.; Younkin, S. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat. Med., 1996, 2(8), 864-870.
[http://dx.doi.org/10.1038/nm0896-864] [PMID: 8705854]
[18]
Hecimovic, S.; Wang, J.; Dolios, G.; Martinez, M.; Wang, R.; Goate, A.M. Mutations in APP have independent effects on Abeta and CTFgamma generation. Neurobiol. Dis., 2004, 17(2), 205-218.
[http://dx.doi.org/10.1016/j.nbd.2004.04.018] [PMID: 15474359]
[19]
Gu, L.; Guo, Z. Alzheimer’s Aβ42 and Aβ40 peptides form interlaced amyloid fibrils. J. Neurochem., 2013, 126(3), 305-311.
[http://dx.doi.org/10.1111/jnc.12202] [PMID: 23406382]
[20]
Masters, C.L.; Bateman, R.; Blennow, K.; Rowe, C.C.; Sperling, R.A.; Cummings, J.L. Alzheimer’s disease. Nat. Rev. Dis. Primers, 2015, 1, 15056.
[http://dx.doi.org/10.1038/nrdp.2015.56] [PMID: 27188934]
[21]
O’Brien, R.J.; Wong, P.C. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci., 2011, 34, 185-204.
[http://dx.doi.org/10.1146/annurev-neuro-061010-113613] [PMID: 21456963]
[22]
Oh, E.S.; Savonenko, A.V.; King, J.F.; Fangmark Tucker, S.M.; Rudow, G.L.; Xu, G.; Borchelt, D.R.; Troncoso, J.C. Amyloid precursor protein increases cortical neuron size in transgenic mice. Neurobiol. Aging, 2009, 30(8), 1238-1244.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.12.024] [PMID: 18304698]
[23]
Rice, H.C.; de Malmazet, D.; Schreurs, A.; Frere, S.; Van Molle, I.; Volkov, A.N.; Creemers, E.; Vertkin, I.; Nys, J.; Ranaivoson, F.M.; Comoletti, D.; Savas, J.N.; Remaut, H.; Balschun, D.; Wierda, K.D.; Slutsky, I.; Farrow, K.; De Strooper, B.; de Wit, J. Secreted amyloid-β precursor protein functions as a GABA B R1a ligand to modulate synaptic transmission. Science, 2019, 363(6423), eaao4827.
[24]
Mawuenyega, K.G.; Sigurdson, W.; Ovod, V.; Munsell, L.; Kasten, T.; Morris, J.C.; Yarasheski, K.E.; Bateman, R.J. Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science, 2010, 330(6012), 1774.
[http://dx.doi.org/10.1126/science.1197623] [PMID: 21148344]
[25]
Wang, C.; Holtzman, D.M. Bidirectional relationship between sleep and Alzheimer’s disease: Role of amyloid, tau, and other factors. Neuropsychopharmacology, 2020, 45(1), 104-120.
[http://dx.doi.org/10.1038/s41386-019-0478-5] [PMID: 31408876]
[26]
Arriagada, P.V.; Growdon, J.H.; Hedley-Whyte, E.T.; Hyman, B.T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology, 1992, 42(3 Pt 1), 631-639.
[http://dx.doi.org/10.1212/WNL.42.3.631] [PMID: 1549228]
[27]
Bierer, L.M.; Hof, P.R.; Purohit, D.P.; Carlin, L.; Schmeidler, J.; Davis, K.L.; Perl, D.P. Neocortical neurofibrillary tangles correlate with dementia severity in Alzheimer’s disease. Arch. Neurol., 1995, 52(1), 81-88.
[http://dx.doi.org/10.1001/archneur.1995.00540250089017] [PMID: 7826280]
[28]
Guillozet, A.L.; Weintraub, S.; Mash, D.C.; Mesulam, M.M. Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Arch. Neurol., 2003, 60(5), 729-736.
[http://dx.doi.org/10.1001/archneur.60.5.729] [PMID: 12756137]
[29]
Agatonovic-Kustrin, S.; Kettle, C.; Morton, D.W. A molecular approach in drug development for Alzheimer’s disease. Biomed. Pharmacother., 2018, 106, 553-565.
[http://dx.doi.org/10.1016/j.biopha.2018.06.147] [PMID: 29990843]
[30]
Cummings, J.; Aisen, P.; Lemere, C.; Atri, A.; Sabbagh, M.; Salloway, S. Aducanumab produced a clinically meaningful benefit in association with amyloid lowering. Alzheimers Res. Ther., 2021, 13(1), 98.
[http://dx.doi.org/10.1186/s13195-021-00838-z] [PMID: 33971962]
[31]
U.S. Food & Drug Administration. FDA Grants Accelerated Approval for Alzheimer’s Drug. Available from: https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-alzheimers-drug (Accessed on: Jul 13, 2021).
[32]
Tariot, P.N. Contemporary issues in the treatment of Alzheimer’s disease: tangible benefits of current therapies. J. Clin. Psychiatry, 2006, 67(Suppl. 3), 15-22.
[PMID: 16649847]
[33]
Nordberg, J.; Arnér, E.S.J. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med., 2001, 31(11), 1287-1312.
[http://dx.doi.org/10.1016/S0891-5849(01)00724-9] [PMID: 11728801]
[34]
Cenini, G.; Lloret, A.; Cascella, R. Oxidative stress in neurodegenerative diseases: From a mitochondrial point of view. Oxid. Med. Cell. Longev., 2019, 2019, 2105607.
[http://dx.doi.org/10.1155/2019/2105607] [PMID: 31210837]
[35]
Daoud, A.H.; Griffin, A.C. Effect of retinoic acid, butylated hydroxytoluene, selenium and sorbic acid on azo-dye hepatocarcinogenesis. Cancer Lett., 1980, 9(4), 299-304.
[http://dx.doi.org/10.1016/0304-3835(80)90021-X] [PMID: 6772298]
[36]
van Rensburg, S.J.; Hall, J.M.; Gathercole, P.S. Inhibition of esophageal carcinogenesis in corn-fed rats by riboflavin, nicotinic acid, selenium, molybdenum, zinc, and magnesium. Nutr. Cancer, 1986, 8(3), 163-170.
[http://dx.doi.org/10.1080/01635588609513890] [PMID: 3737421]
[37]
Scheide, M.R.; Schneider, A.R.; Jardim, G.A.M.; Martins, G.M.; Durigon, D.C.; Saba, S.; Rafique, J.; Braga, A.L. Electrochemical synthesis of selenyl-dihydrofurans via anodic selenofunctionalization of allyl-naphthol/phenol derivatives and their anti-Alzheimer activity. Org. Biomol. Chem., 2020, 18(26), 4916-4921.
[http://dx.doi.org/10.1039/D0OB00629G] [PMID: 32353091]
[38]
Wang, L.; Bonorden, M.J.L.; Li, G-X.; Lee, H-J.; Hu, H.; Zhang, Y.; Liao, J.D.; Cleary, M.P.; Lü, J. Methyl-selenium compounds inhibit prostate carcinogenesis in the transgenic adenocarcinoma of mouse prostate model with survival benefit. Cancer Prev. Res. (Phila.), 2009, 2(5), 484-495.
[http://dx.doi.org/10.1158/1940-6207.CAPR-08-0173] [PMID: 19401524]
[39]
Baines, A.T.; Holubec, H.; Basye, J.L.; Thorne, P.; Bhattacharyya, A.K.; Spallholz, J.; Shriver, B.; Cui, H.; Roe, D.; Clark, L.C.; Earnest, D.L.; Nelson, M.A. The effects of dietary selenomethionine on polyamines and azoxymethane-induced aberrant crypts. Cancer Lett., 2000, 160(2), 193-198.
[http://dx.doi.org/10.1016/S0304-3835(00)00585-1] [PMID: 11053649]
[40]
Clark, L.C.; Dalkin, B.; Krongrad, A.; Combs, G.F., Jr; Turnbull, B.W.; Slate, E.H.; Witherington, R.; Herlong, J.H.; Janosko, E.; Carpenter, D.; Borosso, C.; Falk, S.; Rounder, J. Decreased incidence of prostate cancer with selenium supplementation: results of a double-blind cancer prevention trial. Br. J. Urol., 1998, 81(5), 730-734.
[http://dx.doi.org/10.1046/j.1464-410x.1998.00630.x] [PMID: 9634050]
[41]
Ujjawal, G.H.; Tejo, N.P.; Prabhu, S.K. Selenoproteins and their role in oxidative stress and inflammation. Curr. Chem. Biol., 2013, 7, 65.
[42]
Santi, C.; Tidei, C.; Scalera, C.; Piroddi, M.; Galli, F. Selenium containing compounds from poison to drug candidates: A review on the GPx-like activity. Curr. Chem. Biol., 2013, 7, 25.
[http://dx.doi.org/10.2174/2212796811307010003]
[43]
Nogueira, C.W.; Zeni, G.; Rocha, J.B.T. Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem. Rev., 2004, 104(12), 6255-6285.
[http://dx.doi.org/10.1021/cr0406559] [PMID: 15584701]
[44]
Web of Science Platform. https://clarivate.com/webofsciencegroup/solutions/webofscience-platform/ (Accessed July 15, 2021).
[45]
ChemAxon. Software Solutions and Services for Chemistry & Biology. 2021. Available from: https://www.chemaxon.com (Accessed on: Apr 28, 2021).
[46]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[47]
Trott, O.; Olson, A.J. Autodock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[48]
Schrödinger. Maestro. Available from: https://www.schrodinger.com/maestro (Accessed on: Jun 25, 2021).
[49]
Steinbeck, C.; Han, Y.; Kuhn, S.; Horlacher, O.; Luttmann, E.; Willighagen, E. The chemistry development Kit (CDK): An open-source java library for chemo- and bioinformatics. J. Chem. Inf. Comput. Sci., 2003, 43(2), 493-500.
[http://dx.doi.org/10.1021/ci025584y] [PMID: 12653513]
[50]
Steinbeck, C.; Hoppe, C.; Kuhn, S.; Floris, M.; Guha, R.; Willighagen, E.L. Recent developments of the chemistry development kit (CDK) - an open-source java library for chemo- and bioinformatics. Curr. Pharm. Des., 2006, 12(17), 2111-2120.
[http://dx.doi.org/10.2174/138161206777585274] [PMID: 16796559]
[51]
May, J.W.; Steinbeck, C. Efficient ring perception for the Chemistry Development Kit. J. Cheminform., 2014, 6(1), 3.
[http://dx.doi.org/10.1186/1758-2946-6-3] [PMID: 24479757]
[52]
Willighagen, E.L.; Mayfield, J.W.; Alvarsson, J.; Berg, A.; Carlsson, L.; Jeliazkova, N.; Kuhn, S.; Pluskal, T.; Rojas-Chertó, M.; Spjuth, O.; Torrance, G.; Evelo, C.T.; Guha, R.; Steinbeck, C. The Chemistry Development Kit (CDK) v2.0: Atom typing, depiction, molecular formulas, and substructure searching. J. Cheminform., 2017, 9(1), 33.
[http://dx.doi.org/10.1186/s13321-017-0220-4] [PMID: 29086040]
[55]
Clark, D.E. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood-brain barrier penetration. J. Pharm. Sci., 1999, 88(8), 815-821.
[http://dx.doi.org/10.1021/js980402t] [PMID: 10430548]
[56]
Speight, J.G. A review of: “Origin scientific analysis and graphing software. Petrol. Sci. Technol., 2005, 23, 1021-1021.
[http://dx.doi.org/10.1080/10916460500214992]
[57]
Wang, Z.; Wang, Y.; Li, W.; Mao, F.; Sun, Y.; Huang, L.; Li, X. Design, synthesis, and evaluation of multitarget-directed selenium-containing clioquinol derivatives for the treatment of Alzheimer’s disease. ACS Chem. Neurosci., 2014, 5(10), 952-962.
[http://dx.doi.org/10.1021/cn500119g] [PMID: 25121395]
[58]
Chiapinotto Spiazzi, C.; Bucco Soares, M.; Pinto Izaguirry, A.; Musacchio Vargas, L.; Zanchi, M.M.; Frasson Pavin, N.; Ferreira Affeldt, R.; Seibert Lüdtke, D.; Prigol, M.; Santos, F.W. Selenofuranoside Ameliorates Memory Loss in Alzheimer-Like Sporadic Dementia: AChE Activity, Oxidative Stress, and Inflammation Involvement. Oxid. Med. Cell. Longev., 2015, 2015, 976908.
[http://dx.doi.org/10.1155/2015/976908] [PMID: 26090073]
[59]
Duarte, L.F.B.; Oliveira, R.L.; Rodrigues, K.C.; Voss, G.T.; Godoi, B.; Schumacher, R.F.; Perin, G.; Wilhelm, E.A.; Luchese, C.; Alves, D. Organoselenium compounds from purines: Synthesis of 6-arylselanylpurines with antioxidant and anticholinesterase activities and memory improvement effect. Bioorg. Med. Chem., 2017, 25(24), 6718-6723.
[http://dx.doi.org/10.1016/j.bmc.2017.11.019] [PMID: 29157728]
[60]
Xuan, D.D. Recent progress in the synthesis of quinolines. Curr. Org. Synth., 2019, 16(5), 671-708.
[http://dx.doi.org/10.2174/1570179416666190719112423] [PMID: 31984888]
[61]
Duarte, L.F.B.; Barbosa, E.S.; Oliveira, R.L.; Pinz, M.P.; Godoi, B.; Schumacher, R.F.; Luchese, C.; Wilhelm, E.A.; Alves, D. A simple method for the synthesis of 4-arylselanyl-7-chloroquinolines used as in vitro acetylcholinesterase inhibitors and in vivo memory improvement. Tetrahedron Lett., 2017, 58, 3319-3322.
[http://dx.doi.org/10.1016/j.tetlet.2017.07.039]
[62]
Pinz, M.P.; Dos Reis, A.S.; Vogt, A.G.; Krüger, R.; Alves, D.; Jesse, C.R.; Roman, S.S.; Soares, M.P.; Wilhelm, E.A.; Luchese, C. Current advances of pharmacological properties of 7-chloro-4-(phenylselanyl) quinoline: Prevention of cognitive deficit and anxiety in Alzheimer’s disease model. Biomed. Pharmacother., 2018, 105, 1006-1014.
[http://dx.doi.org/10.1016/j.biopha.2018.06.049] [PMID: 30021335]
[63]
Rodrigues, J.; Saba, S.; Joussef, A.C.; Rafique, J.; Braga, A.L. KIO3-catalyzed C(sp2)-H bond selenylation/sulfenylation of (hetero)arenes: Synthesis of chalcogenated (hetero)arenes and their evaluation for anti-Alzheimer activity. Asian J. Org. Chem., 2018, 7(9), 1819-1824.
[64]
Barritt, A.S., IV; Jhaveri, R. Treatment of Hepatitis C during pregnancy-weighing the risks and benefits in contrast to HIV. Curr. HIV/AIDS Rep., 2018, 15, 155.
[http://dx.doi.org/10.1007/s11904-018-0386-z]
[65]
Thomé, G.R.; Oliveira, V.A.; Chitolina Schetinger, M.R.; Saraiva, R.A.; Souza, D.; Dorneles Rodrigues, O.E.; Teixeira Rocha, J.B.; Ineu, R.P.; Pereira, M.E. Selenothymidine protects against biochemical and behavioral alterations induced by ICV-STZ model of dementia in mice. Chem. Biol. Interact., 2018, 294, 135-143.
[http://dx.doi.org/10.1016/j.cbi.2018.08.004] [PMID: 30120923]
[66]
Wu, W-Y.; Dai, Y-C.; Li, N-G.; Dong, Z-X.; Gu, T.; Shi, Z-H.; Xue, X.; Tang, Y-P.; Duan, J-A. Novel multitarget-directed tacrine derivatives as potential candidates for the treatment of Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 572-587.
[http://dx.doi.org/10.1080/14756366.2016.1210139] [PMID: 28133981]
[67]
Obulesu, M. Alzheimer’s Disease Theranostics; Academic Press, 2019.
[68]
Roldán-Peña, J.M.; Alejandre-Ramos, D.; López, Ó.; Maya, I.; Lagunes, I.; Padrón, J.M.; Peña-Altamira, L.E.; Bartolini, M.; Monti, B.; Bolognesi, M.L.; Fernández-Bolaños, J.G. New tacrine dimers with antioxidant linkers as dual drugs: Anti-Alzheimer’s and antiproliferative agents. Eur. J. Med. Chem., 2017, 138, 761-773.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.048] [PMID: 28728108]
[69]
Xie, Y.; Liu, Q.; Zheng, L.; Wang, B.; Qu, X.; Ni, J.; Zhang, Y.; Du, X. Se-Methylselenocysteine ameliorates neuropathology and cognitive deficits by attenuating oxidative stress and metal dyshomeostasis in Alzheimer model mice. Mol. Nutr. Food Res., 2018, 62(12), e1800107.
[http://dx.doi.org/10.1002/mnfr.201800107] [PMID: 29688618]
[70]
Quispe, R.L.; Jaramillo, M.L.; Galant, L.S.; Engel, D.; Dafre, A.L.; Teixeira da Rocha, J.B.; Radi, R.; Farina, M.; de Bem, A.F. Diphenyl diselenide protects neuronal cells against oxidative stress and mitochondrial dysfunction: Involvement of the glutathione-dependent antioxidant system. Redox Biol., 2019, 20, 118-129.
[http://dx.doi.org/10.1016/j.redox.2018.09.014] [PMID: 30308475]
[71]
Zamberlan, D.C.; Arantes, L.P.; Machado, M.L.; Golombieski, R.; Soares, F.A.A. Diphenyl-diselenide suppresses amyloid-β peptide in Caenorhabditis elegans model of Alzheimer’s disease. Neuroscience, 2014, 278, 40-50.
[http://dx.doi.org/10.1016/j.neuroscience.2014.07.068] [PMID: 25130558]
[72]
Peglow, T.J.; Schumacher, R.F.; Cargnelutti, R.; Reis, A.S.; Luchese, C.; Wilhelm, E.A.; Perin, G. Preparation of bis(2-pyridyl) diselenide derivatives: Synthesis of selenazolo[5,4-b]pyridines and unsymmetrical diorganyl selenides, and evaluation of antioxidant and anticholinesterasic activities. Tetrahedron Lett., 2017, 58, 3734-3738.
[http://dx.doi.org/10.1016/j.tetlet.2017.08.030]
[73]
Pinton, S.; Brüning, C.A.; Sartori Oliveira, C.E.; Prigol, M.; Nogueira, C.W. Therapeutic effect of organoselenium dietary supplementation in a sporadic dementia of Alzheimer’s type model in rats. J. Nutr. Biochem., 2013, 24(1), 311-317.
[http://dx.doi.org/10.1016/j.jnutbio.2012.06.012] [PMID: 22959057]
[74]
Pinton, S.; da Rocha, J.T.; Zeni, G.; Nogueira, C.W. Organoselenium improves memory decline in mice: involvement of acetylcholinesterase activity. Neurosci. Lett., 2010, 472(1), 56-60.
[http://dx.doi.org/10.1016/j.neulet.2010.01.057] [PMID: 20122991]
[75]
Pinton, S.; Souza, A.C.; Sari, M.H.M.; Ramalho, R.M.; Rodrigues, C.M.P.; Nogueira, C.W. p,p′-Methoxyl-diphenyl diselenide protects against amyloid-β induced cytotoxicity in vitro and improves memory deficits in vivo. Behav. Brain Res., 2013, 247, 241-247.
[http://dx.doi.org/10.1016/j.bbr.2013.03.034] [PMID: 23557695]
[76]
Pinton, S.; da Rocha, J.T.; Gai, B.M.; Prigol, M.; da Rosa, L.V.; Nogueira, C.W. Neuroprotector effect of p,p′-methoxyl-diphenyl diselenide in a model of sporadic dementia of Alzheimer’s type in mice: contribution of antioxidant mechanism. Cell Biochem. Funct., 2011, 29(3), 235-243.
[http://dx.doi.org/10.1002/cbf.1741] [PMID: 21465495]
[77]
Santos, D.B.; Peres, K.C.; Ribeiro, R.P.; Colle, D.; dos Santos, A.A.; Moreira, E.L.; Souza, D.O.; Figueiredo, C.P.; Farina, M. Probucol, a lipid-lowering drug, prevents cognitive and hippocampal synaptic impairments induced by amyloid β peptide in mice. Exp. Neurol., 2012, 233(2), 767-775.
[http://dx.doi.org/10.1016/j.expneurol.2011.11.036] [PMID: 22173317]
[78]
Huhtaniemi, I. Encyclopedia of Endocrine Diseases; Academic Press, 2018.
[79]
Quispe, R.L.; Canto, R.F.S.; Jaramillo, M.L.; Barbosa, F.A.R.; Braga, A.L.; de Bem, A.F.; Farina, M. Design, synthesis, and in vitro evaluation of a novel probucol derivative: protective activity in neuronal cells through GPx upregulation. Mol. Neurobiol., 2018, 55(10), 7619-7634.
[http://dx.doi.org/10.1007/s12035-018-0939-6] [PMID: 29430618]
[80]
Minarini, A.; Milelli, A.; Tumiatti, V.; Rosini, M.; Simoni, E.; Bolognesi, M.L.; Andrisano, V.; Bartolini, M.; Motori, E.; Angeloni, C.; Hrelia, S. Cystamine-tacrine dimer: A new multi-target-directed ligand as potential therapeutic agent for Alzheimer’s disease treatment. Neuropharmacology, 2012, 62(2), 997-1003.
[http://dx.doi.org/10.1016/j.neuropharm.2011.10.007] [PMID: 22032870]
[81]
Sies, H. Ebselen, a selenoorganic compound as glutathione peroxidase mimic. Free Radic. Biol. Med., 1993, 14(3), 313-323.
[http://dx.doi.org/10.1016/0891-5849(93)90028-S] [PMID: 8458589]
[82]
Schewe, T. Molecular actions of ebselen--an antiinflammatory antioxidant. Gen. Pharmacol., 1995, 26(6), 1153-1169.
[http://dx.doi.org/10.1016/0306-3623(95)00003-J] [PMID: 7590103]
[83]
Unsal, C.; Oran, M.; Albayrak, Y.; Aktas, C.; Erboga, M.; Topcu, B.; Uygur, R.; Tulubas, F.; Yanartas, O.; Ates, O.; Ozen, O.A. Neuroprotective effect of ebselen against intracerebroventricular streptozotocin-induced neuronal apoptosis and oxidative stress in rats. Toxicol. Ind. Health, 2016, 32(4), 730-740.
[http://dx.doi.org/10.1177/0748233713509429] [PMID: 24231787]
[84]
Xie, Y.; Tan, Y.; Zheng, Y.; Du, X.; Liu, Q. Ebselen ameliorates β-amyloid pathology, tau pathology, and cognitive impairment in triple-transgenic Alzheimer’s disease mice. Eur. J. Biochem., 2017, 22(6), 851-865.
[http://dx.doi.org/10.1007/s00775-017-1463-2] [PMID: 28502066]
[85]
Martini, F.; Pesarico, A.P.; Brüning, C.A.; Zeni, G.; Nogueira, C.W. Ebselen inhibits the activity of acetylcholinesterase globular isoform G4 in vitro and attenuates scopolamine-induced amnesia in mice. J. Cell. Biochem., 2018, 119(7), 5598-5608.
[http://dx.doi.org/10.1002/jcb.26731] [PMID: 29405440]
[86]
Martini, F.; Rosa, S.G.; Klann, I.P.; Fulco, B.C.W.; Carvalho, F.B.; Rahmeier, F.L.; Fernandes, M.C.; Nogueira, C.W. A multifunctional compound ebselen reverses memory impairment, apoptosis and oxidative stress in a mouse model of sporadic Alzheimer’s disease. J. Psychiatr. Res., 2019, 109, 107-117.
[http://dx.doi.org/10.1016/j.jpsychires.2018.11.021] [PMID: 30521994]
[87]
Wang, B.; Wang, Z.; Chen, H.; Lu, C-J.; Li, X. Synthesis and evaluation of 8-hydroxyquinolin derivatives substituted with (benzo[d][1,2]selenazol-3(2H)-one) as effective inhibitor of metal-induced Aβ aggregation and antioxidant. Bioorg. Med. Chem., 2016, 24(19), 4741-4749.
[http://dx.doi.org/10.1016/j.bmc.2016.08.017] [PMID: 27567080]
[88]
Wang, Z.; Li, W.; Wang, Y.; Li, X.; Huang, L.; Li, X. Design, synthesis and evaluation of clioquinol–ebselen hybrids as multi-target-directed ligands against Alzheimer’s disease. RSC Advances, 2016, 6, 7139-7158.
[http://dx.doi.org/10.1039/C5RA26797H]
[89]
Wang, Z.; Wang, Y.; Li, W.; Liu, Z.; Luo, Z.; Sun, Y.; Wu, R.; Huang, L.; Li, X. Computer-assisted designed “selenoxy-chinolin”: a new catalytic mechanism of the GPx-like cycle and inhibition of metal-free and metal-associated Aβ aggregation. Dalton Trans., 2015, 44(48), 20913-20925.
[http://dx.doi.org/10.1039/C5DT02130H] [PMID: 26575390]
[90]
Hu, J.; An, B.; Pan, T.; Li, Z.; Huang, L.; Li, X. Design, synthesis, and biological evaluation of histone deacetylase inhibitors possessing glutathione peroxidase-like and antioxidant activities against Alzheimer’s disease. Bioorg. Med. Chem., 2018, 26(21), 5718-5729.
[http://dx.doi.org/10.1016/j.bmc.2018.10.022] [PMID: 30385227]
[91]
Canto, R.F.S.; Barbosa, F.A.R.; Nascimento, V.; de Oliveira, A.S.; Brighente, I.M.C.; Braga, A.L. Design, synthesis and evaluation of seleno-dihydropyrimidinones as potential multi-targeted therapeutics for Alzheimer’s disease. Org. Biomol. Chem., 2014, 12(21), 3470-3477.
[http://dx.doi.org/10.1039/C4OB00598H] [PMID: 24752799]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy