Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Selenium-Derivative Compounds: A Review of New Perspectives in the Treatment of Alzheimer’s Disease

Author(s): Flavio A.R. Barbosa, Rômulo F.S. Canto, Kerolain F. Teixeira, Anacleto S. de Souza, Aldo S. de Oliveira* and Antonio L. Braga*

Volume 30, Issue 6, 2023

Published on: 01 April, 2022

Page: [689 - 700] Pages: 12

DOI: 10.2174/0929867329666220224161454

Price: $65

conference banner
Abstract

Background: Alzheimer’s disease (AD) is one of the most prevalent types of dementia, affecting millions of older people worldwide. AD is stimulating efforts to develop novel molecules targeting its main features associated with a decrease in acetylcholine levels, an increase in oxidative stress and depositions of amyloid-β (Aβ) and tau protein. In this regard, selenium-containing compounds have been demonstrated as potential multi-targeted compounds in the treatment of AD. These compounds are known for their antioxidant and anticholinesterase properties, causing a decrease in Aβ aggregation.

Objective: In this review, we approach structure-activity relationships of each compound, associating the decrease of ROS activity, an increase of tau-like activity and inhibition of AChE with a decrease in the self-aggregation of Aβ.

Methods: We also verify that the molecular descriptors apol, nHBAcc and MlogP may be related to optimized pharmacokinetic properties for anti-AD drugs.

Results: In our analysis, few selenium-derived compounds presented similar molecular features to FDA-approved drugs.

Conclusion: We suggest that unknown selenium-derived molecules with apol, nHBAcc and MlogP like FDA-approved drugs may be better successes with optimized pharmacokinetic properties in future studies in AD.

Keywords: Organoselenium, Alzheimer’s disease, multi-targeted drugs, antioxidant, GPx, selenium.

[1]
Yiannopoulou, K.G.; Papageorgiou, S.G. Current and future treatments in Alzheimer Disease: An update. J. Cent. Nerv. Syst. Dis., 2020, 12, 1179573520907397.
[http://dx.doi.org/10.1177/1179573520907397] [PMID: 32165850]
[2]
van der Kant, R.; Goldstein, L.S.B.; Ossenkoppele, R. Amyloid-β-independent regulators of tau pathology in Alzheimer disease. Nat. Rev. Neurosci., 2020, 21(1), 21-35.
[http://dx.doi.org/10.1038/s41583-019-0240-3] [PMID: 31780819]
[3]
Jia, R-X.; Liang, J-H.; Xu, Y.; Wang, Y-Q. Effects of physical activity and exercise on the cognitive function of patients with Alzheimer disease: A meta-analysis. BMC Geriatr., 2019, 19(1), 181.
[http://dx.doi.org/10.1186/s12877-019-1175-2] [PMID: 31266451]
[4]
Keszycki, R.M.; Fisher, D.W.; Dong, H. The hyperactivity-impulsivity-irritiability-disinhibition-aggression-agitation domain in Alzheimer’s Disease: Current management and future directions. Front. Pharmacol., 2019, 10, 1109.
[http://dx.doi.org/10.3389/fphar.2019.01109] [PMID: 31611794]
[5]
DeSouza, K.; Pit, S.W.; Moehead, A. Translating facilitated multimodal online learning into effective person-centred practice for the person living with dementia among health care staff in Australia: An observational study. BMC Geriatr., 2020, 20(1), 33.
[http://dx.doi.org/10.1186/s12877-020-1417-3] [PMID: 32005158]
[6]
Huynh, T.V.; Holtzman, D.M. In search of an identity for Amyloid Plaques. Trends Neurosci., 2018, 41(8), 483-486.
[http://dx.doi.org/10.1016/j.tins.2018.06.002] [PMID: 30053949]
[7]
Glenner, G.G.; Wong, C.W. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun., 1984, 120(3), 885-890.
[http://dx.doi.org/10.1016/S0006-291X(84)80190-4] [PMID: 6375662]
[8]
Masters, C.L.; Simms, G.; Weinman, N.A.; Multhaup, G.; McDonald, B.L.; Beyreuther, K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. USA, 1985, 82(12), 4245-4249.
[http://dx.doi.org/10.1073/pnas.82.12.4245] [PMID: 3159021]
[9]
Tanzi, R.E.; Gusella, J.F.; Watkins, P.C.; Bruns, G.A.; St George-Hyslop, P.; Van Keuren, M.L.; Patterson, D.; Pagan, S.; Kurnit, D.M.; Neve, R.L. Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science, 1987, 235(4791), 880-884.
[http://dx.doi.org/10.1126/science.2949367] [PMID: 2949367]
[10]
Kang, J.; Lemaire, H-G.; Unterbeck, A.; Salbaum, J.M.; Masters, C.L.; Grzeschik, K-H.; Multhaup, G.; Beyreuther, K.; Müller-Hill, B. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature, 1987, 325(6106), 733-736.
[http://dx.doi.org/10.1038/325733a0] [PMID: 2881207]
[11]
Head, E.; Lott, I.T.; Wilcock, D.M.; Lemere, C.A. Aging in down syndrome and the development of Alzheimer’s Disease neuropathology. Curr. Alzheimer Res., 2016, 13(1), 18-29.
[http://dx.doi.org/10.2174/1567205012666151020114607] [PMID: 26651341]
[12]
Golde, T.E.; Eckman, C.B.; Younkin, S.G. Biochemical detection of Aβ isoforms: implications for pathogenesis, diagnosis, and treatment of Alzheimer’s disease. Biochim. Biophys. Acta, 2000, 1502, 172-187.
[http://dx.doi.org/10.1016/S0925-4439(00)00043-0] [PMID: 10899442]
[13]
Bekris, L.M.; Yu, C-E.; Bird, T.D.; Tsuang, D.W. Genetics of Alzheimer disease. J. Geriatr. Psychiatry Neurol., 2010, 23(4), 213-227.
[http://dx.doi.org/10.1177/0891988710383571] [PMID: 21045163]
[14]
Theuns, J.; Del-Favero, J.; Dermaut, B.; van Duijn, C.M.; Backhovens, H.; Van den Broeck, M.V.; Serneels, S.; Corsmit, E.; Van Broeckhoven, C.V.; Cruts, M. Genetic variability in the regulatory region of presenilin 1 associated with risk for Alzheimer’s disease and variable expression. Hum. Mol. Genet., 2000, 9(3), 325-331.
[http://dx.doi.org/10.1093/hmg/9.3.325] [PMID: 10655540]
[15]
Wolfe, M.S. Unlocking truths of γ-secretase in Alzheimer’s disease: what is the translational potential? Future Neurol., 2014, 9(4), 419-429.
[http://dx.doi.org/10.2217/fnl.14.35] [PMID: 26146489]
[16]
Szaruga, M.; Veugelen, S.; Benurwar, M.; Lismont, S.; Sepulveda-Falla, D.; Lleo, A.; Ryan, N.S.; Lashley, T.; Fox, N.C.; Murayama, S.; Gijsen, H.; De Strooper, B.; Chávez-Gutiérrez, L. Qualitative changes in human γ-secretase underlie familial Alzheimer’s disease. J. Exp. Med., 2015, 212(12), 2003-2013.
[http://dx.doi.org/10.1084/jem.20150892] [PMID: 26481686]
[17]
Scheuner, D.; Eckman, C.; Jensen, M.; Song, X.; Citron, M.; Suzuki, N.; Bird, T.D.; Hardy, J.; Hutton, M.; Kukull, W.; Larson, E.; Levy-Lahad, E.; Viitanen, M.; Peskind, E.; Poorkaj, P.; Schellenberg, G.; Tanzi, R.; Wasco, W.; Lannfelt, L.; Selkoe, D.; Younkin, S. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat. Med., 1996, 2(8), 864-870.
[http://dx.doi.org/10.1038/nm0896-864] [PMID: 8705854]
[18]
Hecimovic, S.; Wang, J.; Dolios, G.; Martinez, M.; Wang, R.; Goate, A.M. Mutations in APP have independent effects on Abeta and CTFgamma generation. Neurobiol. Dis., 2004, 17(2), 205-218.
[http://dx.doi.org/10.1016/j.nbd.2004.04.018] [PMID: 15474359]
[19]
Gu, L.; Guo, Z. Alzheimer’s Aβ42 and Aβ40 peptides form interlaced amyloid fibrils. J. Neurochem., 2013, 126(3), 305-311.
[http://dx.doi.org/10.1111/jnc.12202] [PMID: 23406382]
[20]
Masters, C.L.; Bateman, R.; Blennow, K.; Rowe, C.C.; Sperling, R.A.; Cummings, J.L. Alzheimer’s disease. Nat. Rev. Dis. Primers, 2015, 1, 15056.
[http://dx.doi.org/10.1038/nrdp.2015.56] [PMID: 27188934]
[21]
O’Brien, R.J.; Wong, P.C. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci., 2011, 34, 185-204.
[http://dx.doi.org/10.1146/annurev-neuro-061010-113613] [PMID: 21456963]
[22]
Oh, E.S.; Savonenko, A.V.; King, J.F.; Fangmark Tucker, S.M.; Rudow, G.L.; Xu, G.; Borchelt, D.R.; Troncoso, J.C. Amyloid precursor protein increases cortical neuron size in transgenic mice. Neurobiol. Aging, 2009, 30(8), 1238-1244.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.12.024] [PMID: 18304698]
[23]
Rice, H.C.; de Malmazet, D.; Schreurs, A.; Frere, S.; Van Molle, I.; Volkov, A.N.; Creemers, E.; Vertkin, I.; Nys, J.; Ranaivoson, F.M.; Comoletti, D.; Savas, J.N.; Remaut, H.; Balschun, D.; Wierda, K.D.; Slutsky, I.; Farrow, K.; De Strooper, B.; de Wit, J. Secreted amyloid-β precursor protein functions as a GABA B R1a ligand to modulate synaptic transmission. Science, 2019, 363(6423), eaao4827.
[24]
Mawuenyega, K.G.; Sigurdson, W.; Ovod, V.; Munsell, L.; Kasten, T.; Morris, J.C.; Yarasheski, K.E.; Bateman, R.J. Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science, 2010, 330(6012), 1774.
[http://dx.doi.org/10.1126/science.1197623] [PMID: 21148344]
[25]
Wang, C.; Holtzman, D.M. Bidirectional relationship between sleep and Alzheimer’s disease: Role of amyloid, tau, and other factors. Neuropsychopharmacology, 2020, 45(1), 104-120.
[http://dx.doi.org/10.1038/s41386-019-0478-5] [PMID: 31408876]
[26]
Arriagada, P.V.; Growdon, J.H.; Hedley-Whyte, E.T.; Hyman, B.T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology, 1992, 42(3 Pt 1), 631-639.
[http://dx.doi.org/10.1212/WNL.42.3.631] [PMID: 1549228]
[27]
Bierer, L.M.; Hof, P.R.; Purohit, D.P.; Carlin, L.; Schmeidler, J.; Davis, K.L.; Perl, D.P. Neocortical neurofibrillary tangles correlate with dementia severity in Alzheimer’s disease. Arch. Neurol., 1995, 52(1), 81-88.
[http://dx.doi.org/10.1001/archneur.1995.00540250089017] [PMID: 7826280]
[28]
Guillozet, A.L.; Weintraub, S.; Mash, D.C.; Mesulam, M.M. Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Arch. Neurol., 2003, 60(5), 729-736.
[http://dx.doi.org/10.1001/archneur.60.5.729] [PMID: 12756137]
[29]
Agatonovic-Kustrin, S.; Kettle, C.; Morton, D.W. A molecular approach in drug development for Alzheimer’s disease. Biomed. Pharmacother., 2018, 106, 553-565.
[http://dx.doi.org/10.1016/j.biopha.2018.06.147] [PMID: 29990843]
[30]
Cummings, J.; Aisen, P.; Lemere, C.; Atri, A.; Sabbagh, M.; Salloway, S. Aducanumab produced a clinically meaningful benefit in association with amyloid lowering. Alzheimers Res. Ther., 2021, 13(1), 98.
[http://dx.doi.org/10.1186/s13195-021-00838-z] [PMID: 33971962]
[31]
U.S. Food & Drug Administration. FDA Grants Accelerated Approval for Alzheimer’s Drug. Available from: https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-alzheimers-drug (Accessed on: Jul 13, 2021).
[32]
Tariot, P.N. Contemporary issues in the treatment of Alzheimer’s disease: tangible benefits of current therapies. J. Clin. Psychiatry, 2006, 67(Suppl. 3), 15-22.
[PMID: 16649847]
[33]
Nordberg, J.; Arnér, E.S.J. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med., 2001, 31(11), 1287-1312.
[http://dx.doi.org/10.1016/S0891-5849(01)00724-9] [PMID: 11728801]
[34]
Cenini, G.; Lloret, A.; Cascella, R. Oxidative stress in neurodegenerative diseases: From a mitochondrial point of view. Oxid. Med. Cell. Longev., 2019, 2019, 2105607.
[http://dx.doi.org/10.1155/2019/2105607] [PMID: 31210837]
[35]
Daoud, A.H.; Griffin, A.C. Effect of retinoic acid, butylated hydroxytoluene, selenium and sorbic acid on azo-dye hepatocarcinogenesis. Cancer Lett., 1980, 9(4), 299-304.
[http://dx.doi.org/10.1016/0304-3835(80)90021-X] [PMID: 6772298]
[36]
van Rensburg, S.J.; Hall, J.M.; Gathercole, P.S. Inhibition of esophageal carcinogenesis in corn-fed rats by riboflavin, nicotinic acid, selenium, molybdenum, zinc, and magnesium. Nutr. Cancer, 1986, 8(3), 163-170.
[http://dx.doi.org/10.1080/01635588609513890] [PMID: 3737421]
[37]
Scheide, M.R.; Schneider, A.R.; Jardim, G.A.M.; Martins, G.M.; Durigon, D.C.; Saba, S.; Rafique, J.; Braga, A.L. Electrochemical synthesis of selenyl-dihydrofurans via anodic selenofunctionalization of allyl-naphthol/phenol derivatives and their anti-Alzheimer activity. Org. Biomol. Chem., 2020, 18(26), 4916-4921.
[http://dx.doi.org/10.1039/D0OB00629G] [PMID: 32353091]
[38]
Wang, L.; Bonorden, M.J.L.; Li, G-X.; Lee, H-J.; Hu, H.; Zhang, Y.; Liao, J.D.; Cleary, M.P.; Lü, J. Methyl-selenium compounds inhibit prostate carcinogenesis in the transgenic adenocarcinoma of mouse prostate model with survival benefit. Cancer Prev. Res. (Phila.), 2009, 2(5), 484-495.
[http://dx.doi.org/10.1158/1940-6207.CAPR-08-0173] [PMID: 19401524]
[39]
Baines, A.T.; Holubec, H.; Basye, J.L.; Thorne, P.; Bhattacharyya, A.K.; Spallholz, J.; Shriver, B.; Cui, H.; Roe, D.; Clark, L.C.; Earnest, D.L.; Nelson, M.A. The effects of dietary selenomethionine on polyamines and azoxymethane-induced aberrant crypts. Cancer Lett., 2000, 160(2), 193-198.
[http://dx.doi.org/10.1016/S0304-3835(00)00585-1] [PMID: 11053649]
[40]
Clark, L.C.; Dalkin, B.; Krongrad, A.; Combs, G.F., Jr; Turnbull, B.W.; Slate, E.H.; Witherington, R.; Herlong, J.H.; Janosko, E.; Carpenter, D.; Borosso, C.; Falk, S.; Rounder, J. Decreased incidence of prostate cancer with selenium supplementation: results of a double-blind cancer prevention trial. Br. J. Urol., 1998, 81(5), 730-734.
[http://dx.doi.org/10.1046/j.1464-410x.1998.00630.x] [PMID: 9634050]
[41]
Ujjawal, G.H.; Tejo, N.P.; Prabhu, S.K. Selenoproteins and their role in oxidative stress and inflammation. Curr. Chem. Biol., 2013, 7, 65.
[42]
Santi, C.; Tidei, C.; Scalera, C.; Piroddi, M.; Galli, F. Selenium containing compounds from poison to drug candidates: A review on the GPx-like activity. Curr. Chem. Biol., 2013, 7, 25.
[http://dx.doi.org/10.2174/2212796811307010003]
[43]
Nogueira, C.W.; Zeni, G.; Rocha, J.B.T. Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem. Rev., 2004, 104(12), 6255-6285.
[http://dx.doi.org/10.1021/cr0406559] [PMID: 15584701]
[44]
Web of Science Platform. https://clarivate.com/webofsciencegroup/solutions/webofscience-platform/ (Accessed July 15, 2021).
[45]
ChemAxon. Software Solutions and Services for Chemistry & Biology. 2021. Available from: https://www.chemaxon.com (Accessed on: Apr 28, 2021).
[46]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[47]
Trott, O.; Olson, A.J. Autodock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[48]
Schrödinger. Maestro. Available from: https://www.schrodinger.com/maestro (Accessed on: Jun 25, 2021).
[49]
Steinbeck, C.; Han, Y.; Kuhn, S.; Horlacher, O.; Luttmann, E.; Willighagen, E. The chemistry development Kit (CDK): An open-source java library for chemo- and bioinformatics. J. Chem. Inf. Comput. Sci., 2003, 43(2), 493-500.
[http://dx.doi.org/10.1021/ci025584y] [PMID: 12653513]
[50]
Steinbeck, C.; Hoppe, C.; Kuhn, S.; Floris, M.; Guha, R.; Willighagen, E.L. Recent developments of the chemistry development kit (CDK) - an open-source java library for chemo- and bioinformatics. Curr. Pharm. Des., 2006, 12(17), 2111-2120.
[http://dx.doi.org/10.2174/138161206777585274] [PMID: 16796559]
[51]
May, J.W.; Steinbeck, C. Efficient ring perception for the Chemistry Development Kit. J. Cheminform., 2014, 6(1), 3.
[http://dx.doi.org/10.1186/1758-2946-6-3] [PMID: 24479757]
[52]
Willighagen, E.L.; Mayfield, J.W.; Alvarsson, J.; Berg, A.; Carlsson, L.; Jeliazkova, N.; Kuhn, S.; Pluskal, T.; Rojas-Chertó, M.; Spjuth, O.; Torrance, G.; Evelo, C.T.; Guha, R.; Steinbeck, C. The Chemistry Development Kit (CDK) v2.0: Atom typing, depiction, molecular formulas, and substructure searching. J. Cheminform., 2017, 9(1), 33.
[http://dx.doi.org/10.1186/s13321-017-0220-4] [PMID: 29086040]
[55]
Clark, D.E. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood-brain barrier penetration. J. Pharm. Sci., 1999, 88(8), 815-821.
[http://dx.doi.org/10.1021/js980402t] [PMID: 10430548]
[56]
Speight, J.G. A review of: “Origin scientific analysis and graphing software. Petrol. Sci. Technol., 2005, 23, 1021-1021.
[http://dx.doi.org/10.1080/10916460500214992]
[57]
Wang, Z.; Wang, Y.; Li, W.; Mao, F.; Sun, Y.; Huang, L.; Li, X. Design, synthesis, and evaluation of multitarget-directed selenium-containing clioquinol derivatives for the treatment of Alzheimer’s disease. ACS Chem. Neurosci., 2014, 5(10), 952-962.
[http://dx.doi.org/10.1021/cn500119g] [PMID: 25121395]
[58]
Chiapinotto Spiazzi, C.; Bucco Soares, M.; Pinto Izaguirry, A.; Musacchio Vargas, L.; Zanchi, M.M.; Frasson Pavin, N.; Ferreira Affeldt, R.; Seibert Lüdtke, D.; Prigol, M.; Santos, F.W. Selenofuranoside Ameliorates Memory Loss in Alzheimer-Like Sporadic Dementia: AChE Activity, Oxidative Stress, and Inflammation Involvement. Oxid. Med. Cell. Longev., 2015, 2015, 976908.
[http://dx.doi.org/10.1155/2015/976908] [PMID: 26090073]
[59]
Duarte, L.F.B.; Oliveira, R.L.; Rodrigues, K.C.; Voss, G.T.; Godoi, B.; Schumacher, R.F.; Perin, G.; Wilhelm, E.A.; Luchese, C.; Alves, D. Organoselenium compounds from purines: Synthesis of 6-arylselanylpurines with antioxidant and anticholinesterase activities and memory improvement effect. Bioorg. Med. Chem., 2017, 25(24), 6718-6723.
[http://dx.doi.org/10.1016/j.bmc.2017.11.019] [PMID: 29157728]
[60]
Xuan, D.D. Recent progress in the synthesis of quinolines. Curr. Org. Synth., 2019, 16(5), 671-708.
[http://dx.doi.org/10.2174/1570179416666190719112423] [PMID: 31984888]
[61]
Duarte, L.F.B.; Barbosa, E.S.; Oliveira, R.L.; Pinz, M.P.; Godoi, B.; Schumacher, R.F.; Luchese, C.; Wilhelm, E.A.; Alves, D. A simple method for the synthesis of 4-arylselanyl-7-chloroquinolines used as in vitro acetylcholinesterase inhibitors and in vivo memory improvement. Tetrahedron Lett., 2017, 58, 3319-3322.
[http://dx.doi.org/10.1016/j.tetlet.2017.07.039]
[62]
Pinz, M.P.; Dos Reis, A.S.; Vogt, A.G.; Krüger, R.; Alves, D.; Jesse, C.R.; Roman, S.S.; Soares, M.P.; Wilhelm, E.A.; Luchese, C. Current advances of pharmacological properties of 7-chloro-4-(phenylselanyl) quinoline: Prevention of cognitive deficit and anxiety in Alzheimer’s disease model. Biomed. Pharmacother., 2018, 105, 1006-1014.
[http://dx.doi.org/10.1016/j.biopha.2018.06.049] [PMID: 30021335]
[63]
Rodrigues, J.; Saba, S.; Joussef, A.C.; Rafique, J.; Braga, A.L. KIO3-catalyzed C(sp2)-H bond selenylation/sulfenylation of (hetero)arenes: Synthesis of chalcogenated (hetero)arenes and their evaluation for anti-Alzheimer activity. Asian J. Org. Chem., 2018, 7(9), 1819-1824.
[64]
Barritt, A.S., IV; Jhaveri, R. Treatment of Hepatitis C during pregnancy-weighing the risks and benefits in contrast to HIV. Curr. HIV/AIDS Rep., 2018, 15, 155.
[http://dx.doi.org/10.1007/s11904-018-0386-z]
[65]
Thomé, G.R.; Oliveira, V.A.; Chitolina Schetinger, M.R.; Saraiva, R.A.; Souza, D.; Dorneles Rodrigues, O.E.; Teixeira Rocha, J.B.; Ineu, R.P.; Pereira, M.E. Selenothymidine protects against biochemical and behavioral alterations induced by ICV-STZ model of dementia in mice. Chem. Biol. Interact., 2018, 294, 135-143.
[http://dx.doi.org/10.1016/j.cbi.2018.08.004] [PMID: 30120923]
[66]
Wu, W-Y.; Dai, Y-C.; Li, N-G.; Dong, Z-X.; Gu, T.; Shi, Z-H.; Xue, X.; Tang, Y-P.; Duan, J-A. Novel multitarget-directed tacrine derivatives as potential candidates for the treatment of Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 572-587.
[http://dx.doi.org/10.1080/14756366.2016.1210139] [PMID: 28133981]
[67]
Obulesu, M. Alzheimer’s Disease Theranostics; Academic Press, 2019.
[68]
Roldán-Peña, J.M.; Alejandre-Ramos, D.; López, Ó.; Maya, I.; Lagunes, I.; Padrón, J.M.; Peña-Altamira, L.E.; Bartolini, M.; Monti, B.; Bolognesi, M.L.; Fernández-Bolaños, J.G. New tacrine dimers with antioxidant linkers as dual drugs: Anti-Alzheimer’s and antiproliferative agents. Eur. J. Med. Chem., 2017, 138, 761-773.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.048] [PMID: 28728108]
[69]
Xie, Y.; Liu, Q.; Zheng, L.; Wang, B.; Qu, X.; Ni, J.; Zhang, Y.; Du, X. Se-Methylselenocysteine ameliorates neuropathology and cognitive deficits by attenuating oxidative stress and metal dyshomeostasis in Alzheimer model mice. Mol. Nutr. Food Res., 2018, 62(12), e1800107.
[http://dx.doi.org/10.1002/mnfr.201800107] [PMID: 29688618]
[70]
Quispe, R.L.; Jaramillo, M.L.; Galant, L.S.; Engel, D.; Dafre, A.L.; Teixeira da Rocha, J.B.; Radi, R.; Farina, M.; de Bem, A.F. Diphenyl diselenide protects neuronal cells against oxidative stress and mitochondrial dysfunction: Involvement of the glutathione-dependent antioxidant system. Redox Biol., 2019, 20, 118-129.
[http://dx.doi.org/10.1016/j.redox.2018.09.014] [PMID: 30308475]
[71]
Zamberlan, D.C.; Arantes, L.P.; Machado, M.L.; Golombieski, R.; Soares, F.A.A. Diphenyl-diselenide suppresses amyloid-β peptide in Caenorhabditis elegans model of Alzheimer’s disease. Neuroscience, 2014, 278, 40-50.
[http://dx.doi.org/10.1016/j.neuroscience.2014.07.068] [PMID: 25130558]
[72]
Peglow, T.J.; Schumacher, R.F.; Cargnelutti, R.; Reis, A.S.; Luchese, C.; Wilhelm, E.A.; Perin, G. Preparation of bis(2-pyridyl) diselenide derivatives: Synthesis of selenazolo[5,4-b]pyridines and unsymmetrical diorganyl selenides, and evaluation of antioxidant and anticholinesterasic activities. Tetrahedron Lett., 2017, 58, 3734-3738.
[http://dx.doi.org/10.1016/j.tetlet.2017.08.030]
[73]
Pinton, S.; Brüning, C.A.; Sartori Oliveira, C.E.; Prigol, M.; Nogueira, C.W. Therapeutic effect of organoselenium dietary supplementation in a sporadic dementia of Alzheimer’s type model in rats. J. Nutr. Biochem., 2013, 24(1), 311-317.
[http://dx.doi.org/10.1016/j.jnutbio.2012.06.012] [PMID: 22959057]
[74]
Pinton, S.; da Rocha, J.T.; Zeni, G.; Nogueira, C.W. Organoselenium improves memory decline in mice: involvement of acetylcholinesterase activity. Neurosci. Lett., 2010, 472(1), 56-60.
[http://dx.doi.org/10.1016/j.neulet.2010.01.057] [PMID: 20122991]
[75]
Pinton, S.; Souza, A.C.; Sari, M.H.M.; Ramalho, R.M.; Rodrigues, C.M.P.; Nogueira, C.W. p,p′-Methoxyl-diphenyl diselenide protects against amyloid-β induced cytotoxicity in vitro and improves memory deficits in vivo. Behav. Brain Res., 2013, 247, 241-247.
[http://dx.doi.org/10.1016/j.bbr.2013.03.034] [PMID: 23557695]
[76]
Pinton, S.; da Rocha, J.T.; Gai, B.M.; Prigol, M.; da Rosa, L.V.; Nogueira, C.W. Neuroprotector effect of p,p′-methoxyl-diphenyl diselenide in a model of sporadic dementia of Alzheimer’s type in mice: contribution of antioxidant mechanism. Cell Biochem. Funct., 2011, 29(3), 235-243.
[http://dx.doi.org/10.1002/cbf.1741] [PMID: 21465495]
[77]
Santos, D.B.; Peres, K.C.; Ribeiro, R.P.; Colle, D.; dos Santos, A.A.; Moreira, E.L.; Souza, D.O.; Figueiredo, C.P.; Farina, M. Probucol, a lipid-lowering drug, prevents cognitive and hippocampal synaptic impairments induced by amyloid β peptide in mice. Exp. Neurol., 2012, 233(2), 767-775.
[http://dx.doi.org/10.1016/j.expneurol.2011.11.036] [PMID: 22173317]
[78]
Huhtaniemi, I. Encyclopedia of Endocrine Diseases; Academic Press, 2018.
[79]
Quispe, R.L.; Canto, R.F.S.; Jaramillo, M.L.; Barbosa, F.A.R.; Braga, A.L.; de Bem, A.F.; Farina, M. Design, synthesis, and in vitro evaluation of a novel probucol derivative: protective activity in neuronal cells through GPx upregulation. Mol. Neurobiol., 2018, 55(10), 7619-7634.
[http://dx.doi.org/10.1007/s12035-018-0939-6] [PMID: 29430618]
[80]
Minarini, A.; Milelli, A.; Tumiatti, V.; Rosini, M.; Simoni, E.; Bolognesi, M.L.; Andrisano, V.; Bartolini, M.; Motori, E.; Angeloni, C.; Hrelia, S. Cystamine-tacrine dimer: A new multi-target-directed ligand as potential therapeutic agent for Alzheimer’s disease treatment. Neuropharmacology, 2012, 62(2), 997-1003.
[http://dx.doi.org/10.1016/j.neuropharm.2011.10.007] [PMID: 22032870]
[81]
Sies, H. Ebselen, a selenoorganic compound as glutathione peroxidase mimic. Free Radic. Biol. Med., 1993, 14(3), 313-323.
[http://dx.doi.org/10.1016/0891-5849(93)90028-S] [PMID: 8458589]
[82]
Schewe, T. Molecular actions of ebselen--an antiinflammatory antioxidant. Gen. Pharmacol., 1995, 26(6), 1153-1169.
[http://dx.doi.org/10.1016/0306-3623(95)00003-J] [PMID: 7590103]
[83]
Unsal, C.; Oran, M.; Albayrak, Y.; Aktas, C.; Erboga, M.; Topcu, B.; Uygur, R.; Tulubas, F.; Yanartas, O.; Ates, O.; Ozen, O.A. Neuroprotective effect of ebselen against intracerebroventricular streptozotocin-induced neuronal apoptosis and oxidative stress in rats. Toxicol. Ind. Health, 2016, 32(4), 730-740.
[http://dx.doi.org/10.1177/0748233713509429] [PMID: 24231787]
[84]
Xie, Y.; Tan, Y.; Zheng, Y.; Du, X.; Liu, Q. Ebselen ameliorates β-amyloid pathology, tau pathology, and cognitive impairment in triple-transgenic Alzheimer’s disease mice. Eur. J. Biochem., 2017, 22(6), 851-865.
[http://dx.doi.org/10.1007/s00775-017-1463-2] [PMID: 28502066]
[85]
Martini, F.; Pesarico, A.P.; Brüning, C.A.; Zeni, G.; Nogueira, C.W. Ebselen inhibits the activity of acetylcholinesterase globular isoform G4 in vitro and attenuates scopolamine-induced amnesia in mice. J. Cell. Biochem., 2018, 119(7), 5598-5608.
[http://dx.doi.org/10.1002/jcb.26731] [PMID: 29405440]
[86]
Martini, F.; Rosa, S.G.; Klann, I.P.; Fulco, B.C.W.; Carvalho, F.B.; Rahmeier, F.L.; Fernandes, M.C.; Nogueira, C.W. A multifunctional compound ebselen reverses memory impairment, apoptosis and oxidative stress in a mouse model of sporadic Alzheimer’s disease. J. Psychiatr. Res., 2019, 109, 107-117.
[http://dx.doi.org/10.1016/j.jpsychires.2018.11.021] [PMID: 30521994]
[87]
Wang, B.; Wang, Z.; Chen, H.; Lu, C-J.; Li, X. Synthesis and evaluation of 8-hydroxyquinolin derivatives substituted with (benzo[d][1,2]selenazol-3(2H)-one) as effective inhibitor of metal-induced Aβ aggregation and antioxidant. Bioorg. Med. Chem., 2016, 24(19), 4741-4749.
[http://dx.doi.org/10.1016/j.bmc.2016.08.017] [PMID: 27567080]
[88]
Wang, Z.; Li, W.; Wang, Y.; Li, X.; Huang, L.; Li, X. Design, synthesis and evaluation of clioquinol–ebselen hybrids as multi-target-directed ligands against Alzheimer’s disease. RSC Advances, 2016, 6, 7139-7158.
[http://dx.doi.org/10.1039/C5RA26797H]
[89]
Wang, Z.; Wang, Y.; Li, W.; Liu, Z.; Luo, Z.; Sun, Y.; Wu, R.; Huang, L.; Li, X. Computer-assisted designed “selenoxy-chinolin”: a new catalytic mechanism of the GPx-like cycle and inhibition of metal-free and metal-associated Aβ aggregation. Dalton Trans., 2015, 44(48), 20913-20925.
[http://dx.doi.org/10.1039/C5DT02130H] [PMID: 26575390]
[90]
Hu, J.; An, B.; Pan, T.; Li, Z.; Huang, L.; Li, X. Design, synthesis, and biological evaluation of histone deacetylase inhibitors possessing glutathione peroxidase-like and antioxidant activities against Alzheimer’s disease. Bioorg. Med. Chem., 2018, 26(21), 5718-5729.
[http://dx.doi.org/10.1016/j.bmc.2018.10.022] [PMID: 30385227]
[91]
Canto, R.F.S.; Barbosa, F.A.R.; Nascimento, V.; de Oliveira, A.S.; Brighente, I.M.C.; Braga, A.L. Design, synthesis and evaluation of seleno-dihydropyrimidinones as potential multi-targeted therapeutics for Alzheimer’s disease. Org. Biomol. Chem., 2014, 12(21), 3470-3477.
[http://dx.doi.org/10.1039/C4OB00598H] [PMID: 24752799]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy