Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Pyrimidine-fused Dinitrogenous Penta-heterocycles as a Privileged Scaffold for Anti-Cancer Drug Discovery

Author(s): Wen Li, Jinyang Zhang, Min Wang, Ru Dong, Xin Zhou, Xin Zheng and Liping Sun*

Volume 22, Issue 4, 2022

Published on: 11 January, 2022

Page: [284 - 304] Pages: 21

DOI: 10.2174/1568026622666220111143949

Price: $65

conference banner
Abstract

Pyrimidine-fused derivatives that are the inextricable part of DNA and RNA play a key role in the normal life cycle of cells. Pyrimidine-fused dinitrogenous penta-heterocycles, including pyrazolopyrimidines and imidazopyrimidines are a special class of pyrimidine-fused compounds contributing to an important portion in anti-cancer drug discovery, which has been discovered as the core structure for promising anti-cancer agents used in the clinic or clinical evaluations. Pyrimidinefused dinitrogenous penta-heterocycles have become one privileged scaffold for anti-cancer drug discovery. This review consists of the recent progress of pyrimidine-fused dinitrogenous pentaheterocycles as anti-cancer agents and their synthetic strategies. In addition, this review also summarizes some key structure-activity relationships (SARs) of pyrimidine-fused dinitrogenous pentaheterocycle derivatives as anti-cancer agents.

Keywords: Privileged scaffold, Pyrazolo[1, 5-a]pyrimidines, Pyrazolo[3, 4-b]pyrimidines, Pyrazolo[4, 3-b]pyrimidines, Purines, Imidazo[1, 2-a] pyrimidines, Anti-cancer agents.

Graphical Abstract
[1]
Evans, B.E.; Rittle, K.E.; Bock, M.G.; DiPardo, R.M.; Freidinger, R.M.; Whitter, W.L.; Lundell, G.F.; Veber, D.F.; Anderson, P.S.; Chang, R.S. Methods for drug discovery: Development of potent, selective, orally effective cholecystokinin antagonists. J. Med. Chem., 1988, 31(12), 2235-2246.
[http://dx.doi.org/10.1021/jm00120a002] [PMID: 2848124]
[2]
Schneider, P.; Schneider, G. Privileged structures revisited. Angew. Chem. Int. Ed. Engl., 2017, 56(27), 7971-7974.
[http://dx.doi.org/10.1002/anie.201702816] [PMID: 28558125]
[3]
Jakubczyk, D.; Pfau, R.; Encinas, A.; Rösch, E.; Gil, C.; Masters, K.; Gläser, F.; Kramer, C.S.; Newman, D.; Albericio, F. Privileged scaffolds in medicinal chemistry: Design, synthesis, evaluation; Royal Society of Chemistry, 2015.
[4]
Böhm, H.J.; Flohr, A.; Stahl, M. Scaffold hopping. Drug Discov. Today. Technol., 2004, 1(3), 217-224.
[http://dx.doi.org/10.1016/j.ddtec.2004.10.009] [PMID: 24981488]
[5]
Zhao, H.; Dietrich, J. Privileged scaffolds in lead generation. Expert Opin. Drug Discov., 2015, 10(7), 781-790.
[http://dx.doi.org/10.1517/17460441.2015.1041496] [PMID: 25959748]
[6]
Kaur, G.; Kaur, M.; Silakari, O. Benzimidazoles: An ideal privileged drug scaffold for the design of multitargeted anti-inflammatory ligands. Mini Rev. Med. Chem., 2014, 14(9), 747-767.
[http://dx.doi.org/10.2174/1389557514666140820120518] [PMID: 25138088]
[7]
Keri, R.S.; Chand, K.; Budagumpi, S.; Balappa Somappa, S.; Patil, S.A.; Nagaraja, B.M. An overview of benzo[b]thiophene-based medicinal chemistry. Eur. J. Med. Chem., 2017, 138, 1002-1033.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.038] [PMID: 28759875]
[8]
Li, Z.; Zhan, P.; Liu, X. 1,3,4-oxadiazole: A privileged structure in antiviral agents. Mini Rev. Med. Chem., 2011, 11(13), 1130-1142.
[http://dx.doi.org/10.2174/138955711797655407] [PMID: 22353222]
[9]
Wan, Y.; Li, Y.; Yan, C.; Yan, M.; Tang, Z. Indole: A privileged scaffold for the design of anti-cancer agents. Eur. J. Med. Chem., 2019, 183, 111691
[http://dx.doi.org/10.1016/j.ejmech.2019.111691] [PMID: 31536895]
[10]
Triggle, D.J. 1,4-Dihydropyridines as calcium channel ligands and privileged structures. Cell. Mol. Neurobiol., 2003, 23(3), 293-303.
[http://dx.doi.org/10.1023/A:1023632419813] [PMID: 12825828]
[11]
Pairas, G.N.; Perperopoulou, F.; Tsoungas, P.G.; Varvounis, G. The isoxazole ring and its N-oxide: A privileged core structure in neuropsychiatric therapeutics. ChemMedChem, 2017, 12(6), 408-419.
[http://dx.doi.org/10.1002/cmdc.201700023] [PMID: 28252249]
[12]
Gaba, M.; Singh, S.; Mohan, C. Benzimidazole: An emerging scaffold for analgesic and anti-inflammatory agents. Eur. J. Med. Chem., 2014, 76, 494-505.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.030] [PMID: 24602792]
[13]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
[http://dx.doi.org/10.3322/caac.20107] [PMID: 21296855]
[14]
Liu, W.; Wang, X.; Zhu, H.; Duan, Y. Precision tumor medicine and drug targets. Curr. Top. Med. Chem., 2019, 19(17), 1488-1489.
[http://dx.doi.org/10.2174/156802661917190828111130] [PMID: 31592750]
[15]
Legesse Bedada, T.; Feto, T.K.; Awoke, K.S.; Garedew, A.D.; Yifat, F.T.; Birri, D.J. Probiotics for cancer alternative prevention and treatment. Biomed. Pharmacother., 2020, 129, 110409
[http://dx.doi.org/10.1016/j.biopha.2020.110409] [PMID: 32563987]
[16]
Borri, F.; Granaglia, A. Pathology of triple negative breast cancer. Semin. Cancer Biol., 2021, 72, 136-145.
[http://dx.doi.org/10.1016/j.semcancer.2020.06.005] [PMID: 32544511]
[17]
Wang, Y.; Zou, S.; Zhao, Z.; Liu, P.; Ke, C.; Xu, S. New insights into small-cell lung cancer development and therapy. Cell Biol. Int., 2020, 44(8), 1564-1576.
[http://dx.doi.org/10.1002/cbin.11359] [PMID: 32281704]
[18]
Iwata, M.; Hirose, L.; Kohara, H.; Liao, J.; Sawada, R.; Akiyoshi, S.; Tani, K.; Yamanishi, Y. Pathway-based drug repositioning for cancers: Computational prediction and experimental validation. J. Med. Chem., 2018, 61(21), 9583-9595.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01044] [PMID: 30371064]
[19]
Sun, J.; Chen, Y.H.; Liu, H.Y.; Hondo, E.; Zhou, Y.; Wu, Y.F. Thiazolidinedione: A privileged scaffold for the development of anticancer agents. Curr. Top. Med. Chem., 2021, 21(28), 2529-2545.
[http://dx.doi.org/10.2174/1568026621666210521143550] [PMID: 34355685]
[20]
Joshi, G.; Nayyar, H.; Alex, J.M.; Vishwakarma, G.S.; Mittal, S.; Kumar, R. Pyrimidine-fused derivatives: Synthetic strategies and medicinal attributes. Curr. Top. Med. Chem., 2016, 16(28), 3175-3210.
[http://dx.doi.org/10.2174/1568026616666160506145046] [PMID: 27150371]
[21]
Silva, D.G.; Junker, A.; de Melo, S.M.G.; Fumagalli, F.; Gillespie, J.R.; Molasky, N.; Buckner, F.S.; Matheeussen, A.; Caljon, G.; Maes, L.; Emery, F.S. Synthesis and structure-activity relationships of imidazopyridine/pyrimidine- and furopyridine-based anti-infective agents against trypanosomiases. ChemMedChem, 2021, 16(6), 966-975.
[http://dx.doi.org/10.1002/cmdc.202000616] [PMID: 33078573]
[22]
Scott, L.J. Larotrectinib: First global approval. Drugs, 2019, 79(2), 201-206.
[http://dx.doi.org/10.1007/s40265-018-1044-x] [PMID: 30635837]
[23]
Blair, H.A. Duvelisib: First global approval. Drugs, 2018, 78(17), 1847-1853.
[http://dx.doi.org/10.1007/s40265-018-1013-4] [PMID: 30430368]
[24]
Dhillon, S. Tirabrutinib: First approval. Drugs, 2020, 80(8), 835-840.
[http://dx.doi.org/10.1007/s40265-020-01318-8] [PMID: 32382949]
[25]
Dhillon, S.; Keam, S.J. Umbralisib: First approval. Drugs, 2021, 81(7), 857-866.
[http://dx.doi.org/10.1007/s40265-021-01504-2] [PMID: 33797740]
[26]
Chauhan, M.; Kumar, R. Medicinal attributes of pyrazolo[3,4-d]pyrimidines: A review. Bioorg. Med. Chem., 2013, 21(18), 5657-5668.
[http://dx.doi.org/10.1016/j.bmc.2013.07.027] [PMID: 23932070]
[27]
Asati, V.; Anant, A.; Patel, P.; Kaur, K.; Gupta, G.D. Pyrazolopyrimidines as anticancer agents: A review on structural and target-based approaches. Eur. J. Med. Chem., 2021, 225(5), 113781
[http://dx.doi.org/10.1016/j.ejmech.2021.113781] [PMID: 34438126]
[28]
Robins, R.K. Potential purine antagonists. XV. Preparation of some 6, 8-disubstituted purines1. J. Am. Chem. Soc., 1958, 80(24), 6671-6679.
[http://dx.doi.org/10.1021/ja01557a051]
[29]
Anderson, D.T.; Elbogen, J.L. Determination of specific absorbance (A|) for Zaleplon (Sonata) by spectrophotometry. J. Anal. Toxicol., 2009, 33(8), 478-480.
[http://dx.doi.org/10.1093/jat/33.8.478] [PMID: 19874655]
[30]
Luna, G.; Dolzhenko, A.V.; Mancera, R.L. Inhibitors of xanthine oxidase: Scaffold diversity and structure-based drug design. ChemMedChem, 2019, 14(7), 714-743.
[http://dx.doi.org/10.1002/cmdc.201900034] [PMID: 30740924]
[31]
Zuccarello, E.; Acquarone, E.; Calcagno, E.; Argyrousi, E.K.; Deng, S.X.; Landry, D.W.; Arancio, O.; Fiorito, J. Development of novel phosphodiesterase 5 inhibitors for the therapy of Alzheimer’s disease. Biochem. Pharmacol., 2020, 176, 113818
[http://dx.doi.org/10.1016/j.bcp.2020.113818] [PMID: 31978378]
[32]
Cameron, F.; Sanford, M. Ibrutinib: First global approval. Drugs, 2014, 74(2), 263-271.
[http://dx.doi.org/10.1007/s40265-014-0178-8] [PMID: 24464309]
[33]
Mitri, Z.; Karakas, C.; Wei, C.; Briones, B.; Simmons, H.; Ibrahim, N.; Alvarez, R.; Murray, J.L.; Keyomarsi, K.; Moulder, S. A phase 1 study with dose expansion of the CDK inhibitor dinaciclib (SCH 727965) in combination with epirubicin in patients with metastatic triple negative breast cancer. Invest. New Drugs, 2015, 33(4), 890-894.
[http://dx.doi.org/10.1007/s10637-015-0244-4] [PMID: 25947565]
[34]
Abdellatif, K.R.A.; Bakr, R.B. New advances in synthesis and clinical aspects of pyrazolo[3,4-d]pyrimidine scaffolds. Bioorg. Chem., 2018, 78, 341-357.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.032] [PMID: 29627655]
[35]
Cherukupalli, S.; Hampannavar, G.A.; Chinnam, S.; Chandrasekaran, B.; Sayyad, N.; Kayamba, F.; Reddy Aleti, R.; Karpoormath, R. An appraisal on synthetic and pharmaceutical perspectives of pyrazolo[4,3-d]pyrimidine scaffold. Bioorg. Med. Chem., 2018, 26(2), 309-339.
[http://dx.doi.org/10.1016/j.bmc.2017.10.012] [PMID: 29273417]
[36]
Cherukupalli, S.; Karpoormath, R.; Chandrasekaran, B.; Hampannavar, G.A.; Thapliyal, N.; Palakollu, V.N. An insight on synthetic and medicinal aspects of pyrazolo[1,5-a]pyrimidine scaffold. Eur. J. Med. Chem., 2017, 126, 298-352.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.019] [PMID: 27894044]
[37]
Cocco, E.; Scaltriti, M.; Drilon, A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol., 2018, 15(12), 731-747.
[http://dx.doi.org/10.1038/s41571-018-0113-0] [PMID: 30333516]
[38]
Amatu, A.; Sartore-Bianchi, A.; Siena, S. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open, 2016, 1(2), e000023
[http://dx.doi.org/10.1136/esmoopen-2015-000023] [PMID: 27843590]
[39]
Weiss, L.M.; Funari, V.A. NTRK fusions and Trk proteins: What are they and how to test for them. Hum. Pathol., 2021, 112, 59-69.
[http://dx.doi.org/10.1016/j.humpath.2021.03.007] [PMID: 33794242]
[40]
Khotskaya, Y.B.; Holla, V.R.; Farago, A.F.; Mills Shaw, K.R.; Meric-Bernstam, F.; Hong, D.S. Targeting TRK family proteins in cancer. Pharmacol. Ther., 2017, 173, 58-66.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.006] [PMID: 28174090]
[41]
Bailey, J.J.; Schirrmacher, R.; Farrell, K.; Bernard-Gauthier, V. Tropomyosin receptor kinase inhibitors: An updated patent review for 2010-2016 - Part II. Expert Opin. Ther. Pat., 2017, 27(7), 831-849.
[http://dx.doi.org/10.1080/13543776.2017.1297797] [PMID: 28270021]
[42]
Pachis, S.T.; Kops, G.J.P.L. Leader of the SAC: Molecular mechanisms of Mps1/TTK regulation in mitosis. Open Biol., 2018, 8(8), 180109
[http://dx.doi.org/10.1098/rsob.180109] [PMID: 30111590]
[43]
Liu, Y.; Lang, Y.; Patel, N.K.; Ng, G.; Laufer, R.; Li, S.W.; Edwards, L.; Forrest, B.; Sampson, P.B.; Feher, M.; Ban, F.; Awrey, D.E.; Beletskaya, I.; Mao, G.; Hodgson, R.; Plotnikova, O.; Qiu, W.; Chirgadze, N.Y.; Mason, J.M.; Wei, X.; Lin, D.C.; Che, Y.; Kiarash, R.; Madeira, B.; Fletcher, G.C.; Mak, T.W.; Bray, M.R.; Pauls, H.W. The discovery of orally bioavailable tyrosine threonine kinase (TTK) inhibitors: 3-(4-(Heterocyclyl)phenyl)-1H-inda-zole-5-carbo-xamides as anticancer agents. J. Med. Chem., 2015, 58(8), 3366-3392.
[http://dx.doi.org/10.1021/jm501740a] [PMID: 25763473]
[44]
Xie, Y.; Wang, A.; Lin, J.; Wu, L.; Zhang, H.; Yang, X.; Wan, X.; Miao, R.; Sang, X.; Zhao, H. Mps1/TTK: A novel target and biomarker for cancer. J. Drug Target., 2017, 25(2), 112-118.
[http://dx.doi.org/10.1080/1061186X.2016.1258568] [PMID: 27819146]
[45]
Riggs, J.R.; Elsner, J.; Cashion, D.; Robinson, D.; Tehrani, L.; Nagy, M.; Fultz, K.E.; Krishna Narla, R.; Peng, X.; Tran, T.; Kulkarni, A.; Bahmanyar, S.; Condroski, K.; Pagarigan, B.; Fenalti, G.; LeBrun, L.; Leftheris, K.; Zhu, D.; Boylan, J.F. Design and optimization leading to an orally active TTK protein kinase inhibitor with robust single agent efficacy. J. Med. Chem., 2019, 62(9), 4401-4410.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01869] [PMID: 30998356]
[46]
Riggs, J.R.; Nagy, M.; Elsner, J.; Erdman, P.; Cashion, D.; Robinson, D.; Harris, R.; Huang, D.; Tehrani, L.; Deyanat-Yazdi, G.; Narla, R.K.; Peng, X.; Tran, T.; Barnes, L.; Miller, T.; Katz, J.; Tang, Y.; Chen, M.; Moghaddam, M.F.; Bahmanyar, S.; Pagarigan, B.; Delker, S.; LeBrun, L.; Chamberlain, P.P.; Calabrese, A.; Canan, S.S.; Leftheris, K.; Zhu, D.; Boylan, J.F. The discovery of a dual TTK protein kinase/CDC2-like kinase (CLK2) inhibitor for the treatment of triple negative breast cancer initiated from a phenotypic screen. J. Med. Chem., 2017, 60(21), 8989-9002.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01223] [PMID: 28991472]
[47]
Huang, M.; Huang, Y.; Guo, J.; Yu, L.; Chang, Y.; Wang, X.; Luo, J.; Huang, Y.; Tu, Z.; Lu, X.; Xu, Y.; Zhang, Z.; Zhang, Z.; Ding, K. Pyrido[2, 3-d]pyrimidin-7(8H)-ones as new selective orally bioavailable Threonine Tyrosine Kinase (TTK) inhibitors. Eur. J. Med. Chem., 2021, 211, 113023
[http://dx.doi.org/10.1016/j.ejmech.2020.113023] [PMID: 33248853]
[48]
Liu, Y.; Laufer, R.; Patel, N.K.; Ng, G.; Sampson, P.B.; Li, S.W.; Lang, Y.; Feher, M.; Brokx, R.; Beletskaya, I.; Hodgson, R.; Plotnikova, O.; Awrey, D.E.; Qiu, W.; Chirgadze, N.Y.; Mason, J.M.; Wei, X.; Lin, D.C.; Che, Y.; Kiarash, R.; Fletcher, G.C.; Mak, T.W.; Bray, M.R.; Pauls, H.W. Discovery of pyrazolo[1,5-a]pyrimidine TTK inhibitors: CFI-402257 is a potent, selective, bioavailable anticancer agent. ACS Med. Chem. Lett., 2016, 7(7), 671-675.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00485] [PMID: 27437075]
[49]
Thu, K.L.; Silvester, J.; Elliott, M.J.; Ba-Alawi, W.; Duncan, M.H.; Elia, A.C.; Mer, A.S.; Smirnov, P. Disruption of the anaphase-promoting complex confers resistance to TTK inhibitors in triple-negative breast cancer. Proc. Natl. Acad. Sci. USA, 2018, 115(7), E1570-E1577.
[http://dx.doi.org/10.1073/pnas.1719577115] [PMID: 29378962]
[50]
Zheng, L.; Chen, Z.; Kawakami, M. Tyrosine threonine kinase inhibition eliminates lung cancers by augmenting apoptosis and polyploidy. Mol. Cancer Ther., 2019, 18(10), 1775-1786.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0864] [PMID: 31358662]
[51]
Morgan, D.O. Principles of CDK regulation. Nature, 1995, 374(6518), 131-134.
[http://dx.doi.org/10.1038/374131a0] [PMID: 7877684]
[52]
Williamson, D.S.; Parratt, M.J.; Bower, J.F.; Moore, J.D.; Richardson, C.M.; Dokurno, P.; Cansfield, A.D.; Francis, G.L.; Hebdon, R.J.; Howes, R.; Jackson, P.S.; Lockie, A.M.; Murray, J.B.; Nunns, C.L.; Powles, J.; Robertson, A.; Surgenor, A.E.; Torrance, C.J. Structure-guided design of pyrazolo[1,5-a]pyrimidines as inhibitors of human cyclin-dependent kinase 2. Bioorg. Med. Chem. Lett., 2005, 15(4), 863-867.
[http://dx.doi.org/10.1016/j.bmcl.2004.12.073] [PMID: 15686876]
[53]
Paruch, K.; Dwyer, M.P.; Alvarez, C.; Brown, C.; Chan, T.Y.; Doll, R.J.; Keertikar, K.; Knutson, C.; McKittrick, B.; Rivera, J.; Rossman, R.; Tucker, G.; Fischmann, T.O.; Hruza, A.; Madison, V.; Nomeir, A.A.; Wang, Y.; Lees, E.; Parry, D.; Sgambellone, N.; Seghezzi, W.; Schultz, L.; Shanahan, F.; Wiswell, D.; Xu, X.; Zhou, Q.; James, R.A.; Paradkar, V.M.; Park, H.; Rokosz, L.R.; Stauffer, T.M.; Guzi, T.J. Pyrazolo[1,5-a]pyrimidines as orally available inhibitors of cyclin-dependent kinase 2. Bioorg. Med. Chem. Lett., 2007, 17(22), 6220-6223.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.017] [PMID: 17904841]
[54]
Heathcote, D.A.; Patel, H.; Kroll, S.H.; Hazel, P.; Periyasamy, M.; Alikian, M.; Kanneganti, S.K.; Jogalekar, A.S.; Scheiper, B.; Barbazanges, M.; Blum, A.; Brackow, J.; Siwicka, A.; Pace, R.D.; Fuchter, M.J.; Snyder, J.P.; Liotta, D.C.; Freemont, P.S.; Aboagye, E.O.; Coombes, R.C.; Barrett, A.G.; Ali, S. A novel pyrazolo[1,5-a]pyrimidine is a potent inhibitor of cyclin-dependent protein kinases 1, 2, and 9, which demonstrates antitumor effects in human tumor xenografts following oral administration. J. Med. Chem., 2010, 53(24), 8508-8522.
[http://dx.doi.org/10.1021/jm100732t] [PMID: 21080703]
[55]
Kamal, A.; Tamboli, J.R.; Nayak, V.L.; Adil, S.F.; Vishnuvardhan, M.V.; Ramakrishna, S. Synthesis of pyrazolo[1,5-a]pyrimidine linked aminobenzothiazole conjugates as potential anticancer agents. Bioorg. Med. Chem. Lett., 2013, 23(11), 3208-3215.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.129] [PMID: 23623491]
[56]
Li, Y.; Gao, W.; Li, F.; Wang, J.; Zhang, J.; Yang, Y.; Zhang, S.; Yang, L. An in silico exploration of the interaction mechanism of pyrazolo[1,5-a]pyrimidine type CDK2 inhibitors. Mol. Biosyst., 2013, 9(9), 2266-2281.
[http://dx.doi.org/10.1039/c3mb70186g] [PMID: 23864105]
[57]
Phillipson, L.J.; Segal, D.H.; Nero, T.L.; Parker, M.W.; Wan, S.S.; de Silva, M.; Guthridge, M.A.; Wei, A.H.; Burns, C.J. Discovery and SAR of novel pyrazolo[1,5-a]pyrimidines as inhibitors of CDK9. Bioorg. Med. Chem., 2015, 23(19), 6280-6296.
[http://dx.doi.org/10.1016/j.bmc.2015.08.035] [PMID: 26349627]
[58]
Ali, G.M.E.; Ibrahim, D.A.; Elmetwali, A.M.; Ismail, N.S.M. Design, synthesis and biological evaluation of certain CDK2 inhibitors based on pyrazole and pyrazolo[1,5-a] pyrimidine scaffold with apoptotic activity. Bioorg. Chem., 2019, 86, 1-14.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.008] [PMID: 30682722]
[59]
Davidson, J.D.; Feigelson, P. The inhibition of adenosine deaminase by 8-azaguanine in vitro. J. Biol. Chem., 1956, 223(1), 65-73.
[http://dx.doi.org/10.1016/S0021-9258(18)65117-8] [PMID: 13376577]
[60]
Saikia, P.; Gogoi, S.; Boruah, R.C. Carbon-carbon bond cleavage reaction: Synthesis of multisubstituted pyrazolo[1,5-a]pyrimidines. J. Org. Chem., 2015, 80(13), 6885-6889.
[http://dx.doi.org/10.1021/acs.joc.5b00933] [PMID: 26083788]
[61]
Castillo, J.C.; Estupiñan, D.; Nogueras, M.; Cobo, J.; Portilla, J. 6-(Aryldiazenyl)pyrazolo[1,5-a]pyrimidines as strategic intermediates for the synthesis of pyrazolo[5,1-b]purines. J. Org. Chem., 2016, 81(24), 12364-12373.
[http://dx.doi.org/10.1021/acs.joc.6b02431] [PMID: 27978735]
[62]
Sun, J.; Qiu, J.K.; Jiang, B.; Hao, W.J.; Guo, C.; Tu, S.J. I2-catalyzed multicomponent reactions for accessing densely functionalized pyrazolo[1,5-a]pyrimidines and their disulphenylated derivatives. J. Org. Chem., 2016, 81(8), 3321-3328.
[http://dx.doi.org/10.1021/acs.joc.6b00332] [PMID: 26991413]
[63]
Hoang, G.L.; Streit, A.D.; Ellman, J.A. Three-component coupling of aldehydes, aminopyrazoles, and sulfoxonium ylides via rhodium(III)-catalyzed imidoyl C-H activation: Synthesis of pyrazolo[1,5- a]pyrimidines. J. Org. Chem., 2018, 83(24), 15347-15360.
[http://dx.doi.org/10.1021/acs.joc.8b02606] [PMID: 30525637]
[64]
El-Naggar, M.; Hassan, A.S.; Awad, H.M.; Mady, M.F. Design, synthesis and antitumor evaluation of novel pyrazolopyrimidines and pyrazoloquinazolines. Molecules, 2018, 23(6), 1249.
[http://dx.doi.org/10.3390/molecules23061249] [PMID: 29882908]
[65]
Singleton, J.D.; Dass, R.; Neubert, N.R.; Smith, R.M.; Webber, Z.; Hansen, M.D.H.; Peterson, M.A. Synthesis and biological evaluation of novel pyrazolo[1,5-a]pyrimidines: Discovery of a selective inhibitor of JAK1 JH2 pseudokinase and VPS34. Bioorg. Med. Chem. Lett., 2020, 30(2), 126813
[http://dx.doi.org/10.1016/j.bmcl.2019.126813] [PMID: 31831383]
[66]
Ortiz, M.A.; Mikhailova, T.; Li, X.; Porter, B.A.; Bah, A.; Kotula, L. Src family kinases, adaptor proteins and the actin cytoskeleton in epithelial-to-mesenchymal transition. Cell Commun. Signal., 2021, 19(1), 67.
[http://dx.doi.org/10.1186/s12964-021-00750-x] [PMID: 34193161]
[67]
Sonoshita, M.; Cagan, R.L. Modeling human cancers in drosophila. Curr. Top. Dev. Biol., 2017, 121, 287-309.
[http://dx.doi.org/10.1016/bs.ctdb.2016.07.008] [PMID: 28057303]
[68]
Carraro, F.; Pucci, A.; Naldini, A.; Schenone, S.; Bruno, O.; Ranise, A.; Bondavalli, F.; Brullo, C.; Fossa, P.; Menozzi, G.; Mosti, L.; Manetti, F.; Botta, M. Pyrazolo[3,4-d]pyrimidines endowed with antiproliferative activity on ductal infiltrating carcinoma cells. J. Med. Chem., 2004, 47(7), 1595-1598.
[http://dx.doi.org/10.1021/jm034257u] [PMID: 15027847]
[69]
Tintori, C.; La Sala, G.; Vignaroli, G.; Botta, L.; Fallacara, A.L.; Falchi, F.; Radi, M.; Zamperini, C.; Dreassi, E.; Dello Iacono, L.; Orioli, D.; Biamonti, G.; Garbelli, M.; Lossani, A.; Gasparrini, F.; Tuccinardi, T.; Laurenzana, I.; Angelucci, A.; Maga, G.; Schenone, S.; Brullo, C.; Musumeci, F.; Desogus, A.; Crespan, E.; Botta, M. Studies on the ATP binding site of Fyn kinase for the identification of new inhibitors and their evaluation as potential agents against tauopathies and tumors. J. Med. Chem., 2015, 58(11), 4590-4609.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00140] [PMID: 25923950]
[70]
Laurenzana, I.; Caivano, A.; La Rocca, F.; Trino, S.; De Luca, L.; D’Alessio, F.; Schenone, S.; Falco, G.; Botta, M.; Del Vecchio, L.; Musto, P. A pyrazolo[3,4-d]pyrimidine compound reduces cell viability and induces apoptosis in different hematological malignancies. Front. Pharmacol., 2016, 7, 416.
[http://dx.doi.org/10.3389/fphar.2016.00416] [PMID: 27872592]
[71]
Tintori, C.; Fallacara, A.L.; Radi, M.; Zamperini, C.; Dreassi, E.; Crespan, E.; Maga, G.; Schenone, S.; Musumeci, F.; Brullo, C.; Richters, A.; Gasparrini, F.; Angelucci, A.; Festuccia, C.; Delle Monache, S.; Rauh, D.; Botta, M. Combining X-ray crystallography and molecular modeling toward the optimization of pyrazolo[3,4-d]pyrimidines as potent c-Src inhibitors active in vivo against neuroblastoma. J. Med. Chem., 2015, 58(1), 347-361.
[http://dx.doi.org/10.1021/jm5013159] [PMID: 25469771]
[72]
Calgani, A.; Vignaroli, G.; Zamperini, C.; Coniglio, F.; Festuccia, C.; Di Cesare, E.; Gravina, G.L.; Mattei, C.; Vitale, F.; Schenone, S.; Botta, M.; Angelucci, A. Suppression of SRC signaling is effective in reducing synergy between glioblastoma and stromal cells. Mol. Cancer Ther., 2016, 15(7), 1535-1544.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-1011] [PMID: 27196762]
[73]
Vignaroli, G.; Iovenitti, G.; Zamperini, C.; Coniglio, F.; Calandro, P.; Molinari, A.; Fallacara, A.L.; Sartucci, A.; Calgani, A.; Colecchia, D.; Mancini, A.; Festuccia, C.; Dreassi, E.; Valoti, M.; Musumeci, F.; Chiariello, M.; Angelucci, A.; Botta, M.; Schenone, S. Prodrugs of pyrazolo[3,4-d]pyrimidines: From library synthesis to evaluation as potential anticancer agents in an orthotopic glioblastoma model. J. Med. Chem., 2017, 60(14), 6305-6320.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00637] [PMID: 28650650]
[74]
Fallacara, A.L.; Zamperini, C.; Podolski-Renić, A.; Dinić, J.; Stanković, T.; Stepanović, M.; Mancini, A.; Rango, E.; Iovenitti, G.; Molinari, A.; Bugli, F.; Sanguinetti, M.; Torelli, R.; Martini, M.; Maccari, L.; Valoti, M.; Dreassi, E.; Botta, M.; Pešić, M.; Schenone, S. A new strategy for glioblastoma treatment: In vitro and in vivo preclinical characterization of Si306, a pyrazolo[3,4-d]pyrimidine dual Src/P-glycoprotein inhibitor. Cancers (Basel), 2019, 11(6), 848.
[http://dx.doi.org/10.3390/cancers11060848] [PMID: 31248184]
[75]
Fallacara, A.L.; Passannanti, R.; Mori, M.; Iovenitti, G.; Musumeci, F.; Greco, C.; Crespan, E.; Kissova, M.; Maga, G.; Tarantelli, C.; Spriano, F.; Gaudio, E.; Bertoni, F.; Botta, M.; Schenone, S. Identification of a new family of pyrazolo[3,4-d]pyrimidine derivatives as multitarget Fyn-Blk-Lyn inhibitors active on B- and T-lymphoma cell lines. Eur. J. Med. Chem., 2019, 181, 111545
[http://dx.doi.org/10.1016/j.ejmech.2019.07.048] [PMID: 31400706]
[76]
Cherukupalli, S.; Chandrasekaran, B.; Kryštof, V.; Aleti, R.R.; Sayyad, N.; Merugu, S.R.; Kushwaha, N.D.; Karpoormath, R. Synthesis, anticancer evaluation, and molecular docking studies of some novel 4,6-disubstituted pyrazolo[3,4-d]pyrimidines as cyclin-dependent kinase 2 (CDK2) inhibitors. Bioorg. Chem., 2018, 79, 46-59.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.030] [PMID: 29753773]
[77]
Maher, M.; Kassab, A.E.; Zaher, A.F.; Mahmoud, Z. Novel Pyrazolo[3,4-d]pyrimidines as potential cytotoxic agents: Design, synthesis, molecular docking and CDK2 inhibition. Anticancer. Agents Med. Chem., 2019, 19(11), 1368-1381.
[http://dx.doi.org/10.2174/1871520619666190417153350] [PMID: 31038080]
[78]
Kiyoi, H. FLT3 inhibitors: Recent advances and problems for clinical application. Nagoya J. Med. Sci., 2015, 77(1-2), 7-17.
[PMID: 25797966]
[79]
Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol., 2018, 12(1), 3-20.
[http://dx.doi.org/10.1002/1878-0261.12155] [PMID: 29124875]
[80]
Meador, C.B.; Sequist, L.V.; Piotrowska, Z. Targeting EGFR exon 20 insertions in non-small cell lung cancer: Recent advances and clinical updates. Cancer Discov., 2021, 11(9), 2145-2157.
[http://dx.doi.org/10.1158/2159-8290.CD-21-0226] [PMID: 34301786]
[81]
Wu, H.; Hu, C.; Wang, A.; Weisberg, E.L.; Wang, W.; Chen, C.; Zhao, Z.; Yu, K.; Liu, J.; Wu, J.; Nonami, A.; Wang, L.; Wang, B.; Stone, R.M.; Liu, S.; Griffin, J.D.; Liu, J.; Liu, Q. Ibrutinib selectively targets FLT3-ITD in mutant FLT3-positive AML. Leukemia, 2016, 30(3), 754-757.
[http://dx.doi.org/10.1038/leu.2015.175] [PMID: 26139428]
[82]
Wu, H.; Wang, A.; Zhang, W.; Wang, B.; Chen, C.; Wang, W.; Hu, C.; Ye, Z.; Zhao, Z.; Wang, L.; Li, X.; Yu, K.; Liu, J.; Wu, J.; Yan, X.E.; Zhao, P.; Wang, J.; Wang, C.; Weisberg, E.L.; Gray, N.S.; Yun, C.H.; Liu, J.; Chen, L.; Liu, Q. Ibrutinib selectively and irreversibly targets EGFR (L858R, Del19) mutant but is moderately resistant to EGFR (T790M) mutant NSCLC cells. Oncotarget, 2015, 6(31), 31313-31322.
[http://dx.doi.org/10.18632/oncotarget.5182] [PMID: 26375053]
[83]
Li, X.; Wang, A.; Yu, K.; Qi, Z.; Chen, C.; Wang, W.; Hu, C.; Wu, H.; Wu, J.; Zhao, Z.; Liu, J.; Zou, F.; Wang, L.; Wang, B.; Wang, W.; Zhang, S.; Liu, J.; Liu, Q. Discovery of (R)-1-(3-(4-Amino-3-(4-phenoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)piperidin-1-yl)-2-(dimethyla-mino)ethanone (CHMFL-FLT3-122) as a potent and orally available FLT3 kinase inhibitor for FLT3-ITD positive acute myeloid leukemia. J. Med. Chem., 2015, 58(24), 9625-9638.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01611] [PMID: 26630553]
[84]
Wang, Z.; Cai, J.; Cheng, J.; Yang, W.; Zhu, Y.; Li, H.; Lu, T.; Chen, Y.; Lu, S. FLT3 Inhibitors in acute myeloid leukemia: Challenges and recent developments in overcoming resistance. J. Med. Chem., 2021, 64(6), 2878-2900.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01851] [PMID: 33719439]
[85]
Wang, A.; Li, X.; Chen, C.; Wu, H.; Qi, Z.; Hu, C.; Yu, K.; Wu, J.; Liu, J.; Liu, X.; Hu, Z.; Wang, W.; Wang, W.; Wang, W.; Wang, L.; Wang, B.; Liu, Q.; Li, L.; Ge, J.; Ren, T.; Zhang, S.; Xia, R.; Liu, J.; Liu, Q. Discovery of 1-(4-(4-Amino-3-(4-(2-morpholinoethoxy)phenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)phenyl)-3-(5-(tert-butyl)isoxazol-3-yl)urea (CHMFL-FLT3-213) as a highly potent type II FLT3 kinase inhibitor capable of overcoming a variety of FLT3 kinase mutants in FLT3-ITD positive AML. J. Med. Chem., 2017, 60(20), 8407-8424.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00840] [PMID: 28956923]
[86]
Wang, A.; Li, X.; Wu, H.; Zou, F.; Yan, X.E.; Chen, C.; Hu, C.; Yu, K.; Wang, W.; Zhao, P.; Wu, J.; Qi, Z.; Wang, W.; Wang, B.; Wang, L.; Ren, T.; Zhang, S.; Yun, C.H.; Liu, J.; Liu, Q. Discovery of (R)-1-(3-(4-Amino-3-(3-chloro-4-(pyridin-2-ylmethoxy) phenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)piperidin-1-yl)prop-2-en-1-one (CHMFL-EGFR-202) as a novel irreversible EGFR mutant kinase inhibitor with a distinct binding mode. J. Med. Chem., 2017, 60(7), 2944-2962.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01907] [PMID: 28282122]
[87]
Saleh, N.M.; El-Gazzar, M.G.; Aly, H.M.; Othman, R.A. Novel anticancer fused pyrazole derivatives as EGFR and VEGFR-2 dual TK inhibitors. Front Chem., 2020, 7, 917.
[http://dx.doi.org/10.3389/fchem.2019.00917] [PMID: 32039146]
[88]
Gaber, A.A.; Bayoumi, A.H.; El-Morsy, A.M.; Sherbiny, F.F.; Mehany, A.B.M.; Eissa, I.H. Design, synthesis and anticancer evaluation of 1H-pyrazolo[3,4-d]pyrimidine derivatives as potent EGFRWT and EGFRT790M inhibitors and apoptosis inducers. Bioorg. Chem., 2018, 80, 375-395.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.017] [PMID: 29986185]
[89]
Elshaier, Y.A.M.M.; Shaaban, M.A.; Abd El Hamid, M.K.; Abdelrahman, M.H.; Abou-Salim, M.A.; Elgazwi, S.M.; Halaweish, F. Design and synthesis of pyrazolo[3,4-d]pyrimidines: Nitric oxide releasing compounds targeting hepatocellular carcinoma. Bioorg. Med. Chem., 2017, 25(12), 2956-2970.
[http://dx.doi.org/10.1016/j.bmc.2017.03.002] [PMID: 28487127]
[90]
Maher, M.; Kassab, A.E.; Zaher, A.F.; Mahmoud, Z. Novel pyrazolo[3,4-d]pyrimidines: Design, synthesis, anticancer activity, dual EGFR/ErbB2 receptor tyrosine kinases inhibitory activity, effects on cell cycle profile and caspase-3-mediated apoptosis. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 532-546.
[http://dx.doi.org/10.1080/14756366.2018.1564046] [PMID: 30688116]
[91]
Bakr, R.B.; Mehany, A.B.M.; Abdellatif, K.R.A. Synthesis, EGFR Inhibition and Anti-cancer Activity of New 3,6-dimethyl-1-phenyl-4-(substituted-methoxy)pyrazolo[3,4-d] pyrimidine derivatives. Anticancer. Agents Med. Chem., 2017, 17(10), 1389-1400.
[http://dx.doi.org/10.2174/1872211311666170213105004] [PMID: 28270084]
[92]
Abdelgawad, M.A.; Bakr, R.B.; Alkhoja, O.A.; Mohamed, W.R. Design, synthesis and antitumor activity of novel pyrazolo[3,4-d]pyrimidine derivatives as EGFR-TK inhibitors. Bioorg. Chem., 2016, 66, 88-96.
[http://dx.doi.org/10.1016/j.bioorg.2016.03.011] [PMID: 27043178]
[93]
Shah, A.A.; Chenard, L.K.; Tucker, J.W.; Helal, C.J. Parallel Synthesis of 1H-Pyrazolo[3,4-d]pyrimidines via condensation of N-pyrazolylamides and nitriles. ACS Comb. Sci., 2017, 19(11), 675-680.
[http://dx.doi.org/10.1021/acscombsci.7b00116] [PMID: 28985050]
[94]
Abdellatif, K.R.; Abdelall, E.K.; Abdelgawad, M.A.; Ahmed, R.R.; Bakr, R.B. Synthesis and anticancer activity of some new pyrazolo[3,4-d]pyrimidin-4-one derivatives. Molecules, 2014, 19(3), 3297-3309.
[http://dx.doi.org/10.3390/molecules19033297] [PMID: 24647032]
[95]
Abd El Hamid, M.K.; Mihovilovic, M.D.; El-Nassan, H.B. Synthesis of novel pyrazolo[3,4-d]pyrimidine derivatives as potential anti-breast cancer agents. Eur. J. Med. Chem., 2012, 57, 323-328.
[http://dx.doi.org/10.1016/j.ejmech.2012.09.031] [PMID: 23085106]
[96]
Shamroukh, A.H.; Rashad, A.E.; Abdel-Megeid, R.E.; Ali, H.S.; Ali, M.M. Some pyrazole and pyrazolo[3,4-d]pyrimidine derivatives: Synthesis and anticancer evaluation. Arch. Pharm. (Weinheim), 2014, 347(8), 559-565.
[http://dx.doi.org/10.1002/ardp.201400064] [PMID: 24801813]
[97]
Slavish, P.J.; Price, J.E.; Hanumesh, P.; Webb, T.R. Efficient synthesis of pyrazolopyrimidine libraries. J. Comb. Chem., 2010, 12(6), 807-809.
[http://dx.doi.org/10.1021/cc1001204] [PMID: 20804211]
[98]
Liu, M.; Li, J.; Chai, H.; Zhang, K.; Yang, D.; Zhang, Q.; Shi, D. A convenient four-component one-pot strategy toward the synthesis of pyrazolo[3,4-d]pyrimidines. Beilstein J. Org. Chem., 2015, 11, 2125-2131.
[http://dx.doi.org/10.3762/bjoc.11.229] [PMID: 26664633]
[99]
Yen, W.P.; Tsai, S.E.; Uramaru, N.; Takayama, H.; Wong, F.F. One-Flask synthesis of pyrazolo[3,4-d]pyrimidines from 5-aminopyrazoles and mechanistic study. Molecules, 2017, 22(5), 820.
[http://dx.doi.org/10.3390/molecules22050820] [PMID: 28509884]
[100]
Cicenas, J.; Kalyan, K.; Sorokinas, A.; Stankunas, E.; Levy, J.; Meskinyte, I.; Stankevicius, V.; Kaupinis, A.; Valius, M. Roscovitine in cancer and other diseases. Ann. Transl. Med., 2015, 3(10), 135.
[PMID: 26207228]
[101]
Moravcová, D.; Krystof, V.; Havlícek, L.; Moravec, J.; Lenobel, R.; Strnad, M. Pyrazolo[4,3-d]pyrimidines as new generation of cyclin-dependent kinase inhibitors. Bioorg. Med. Chem. Lett., 2003, 13(18), 2989-2992.
[http://dx.doi.org/10.1016/S0960-894X(03)00631-0] [PMID: 12941318]
[102]
Jorda, R.; Havlícek, L.; McNae, I.W.; Walkinshaw, M.D.; Voller, J.; Sturc, A.; Navrátilová, J.; Kuzma, M.; Mistrík, M.; Bártek, J.; Strnad, M.; Krystof, V. Pyrazolo[4,3-d]pyrimidine bioisostere of roscovitine: Evaluation of a novel selective inhibitor of cyclin-dependent kinases with antiproliferative activity. J. Med. Chem., 2011, 54(8), 2980-2993.
[http://dx.doi.org/10.1021/jm200064p] [PMID: 21417417]
[103]
Krystof, V.; Moravcová, D.; Paprskárová, M.; Barbier, P.; Peyrot, V.; Hlobilková, A.; Havlícek, L.; Strnad, M. Synthesis and biological activity of 8-azapurine and pyrazolo[4,3-d]pyrimidine analogues of myoseverin. Eur. J. Med. Chem., 2006, 41(12), 1405-1411.
[http://dx.doi.org/10.1016/j.ejmech.2006.07.004] [PMID: 16996651]
[104]
Reddy, G.L.; Guru, S.K.; Srinivas, M.; Pathania, A.S.; Mahajan, P.; Nargotra, A.; Bhushan, S.; Vishwakarma, R.A.; Sawant, S.D. Synthesis of 5-substituted-1H-pyrazolo[4,3-d]pyrimidin-7(6H)-one analogs and their biological evaluation as anticancer agents: mTOR inhibitors. Eur. J. Med. Chem., 2014, 80, 201-208.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.051] [PMID: 24780597]
[105]
Řezníčková, E.; Weitensteiner, S.; Havlíček, L.; Jorda, R.; Gucký, T.; Berka, K.; Bazgier, V.; Zahler, S.; Kryštof, V.; Strnad, M. Characterization of a pyrazolo[4,3-d]pyrimidine inhibitor of cyclin-dependent kinases 2 and 5 and Aurora A with pro-apoptotic and anti-angiogenic activity in vitro. Chem. Biol. Drug Des., 2015, 86(6), 1528-1540.
[http://dx.doi.org/10.1111/cbdd.12618] [PMID: 26198005]
[106]
Vymětalová, L.; Havlíček, L.; Šturc, A.; Skrášková, Z.; Jorda, R.; Pospíšil, T.; Strnad, M.; Kryštof, V. 5-Substituted 3-isopropyl-7-[4-(2-pyridyl)benzyl]amino-1(2)H-pyrazolo[4,3-d]pyrimidines with anti-proliferative activity as potent and selective inhibitors of cyclin-dependent kinases. Eur. J. Med. Chem., 2016, 110, 291-301.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.011] [PMID: 26851505]
[107]
Zhang, S.; Ulrich, M.; Gromnicka, A.; Havlíček, L.; Kryštof, V.; Jorda, R.; Strnad, M.; Vollmar, A.M.; Zahler, S. Anti-angiogenic effects of novel cyclin-dependent kinase inhibitors with a pyrazolo[4,3-d]pyrimidine scaffold. Br. J. Pharmacol., 2016, 173(17), 2645-2656.
[http://dx.doi.org/10.1111/bph.13546] [PMID: 27390037]
[108]
Jorda, R.; Havlíček, L.; Šturc, A.; Tušková, D.; Daumová, L.; Alam, M.; Škerlová, J.; Nekardová, M.; Peřina, M.; Pospíšil, T.; Široká, J.; Urbánek, L.; Pachl, P.; Řezáčová, P.; Strnad, M.; Klener, P.; Kryštof, V. 3,5,7-Substituted pyrazolo[4,3-d]pyrimidine inhibitors of cyclin -dependent kinases and their evaluation in lymphoma models. J. Med. Chem., 2019, 62(9), 4606-4623.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00189] [PMID: 30943029]
[109]
Squarcialupi, L.; Catarzi, D.; Varano, F.; Betti, M.; Falsini, M.; Vincenzi, F.; Ravani, A.; Ciancetta, A.; Varani, K.; Moro, S.; Colotta, V. Structural refinement of pyrazolo[4,3-d]pyrimidine derivatives to obtain highly potent and selective antagonists for the human A3 adenosine receptor. Eur. J. Med. Chem., 2016, 108, 117-133.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.015] [PMID: 26638043]
[110]
Ismail; Kuthati, B.; Thalari, G.; Bommarapu, V.; Mulakayala, C.; Chitta, S.K.; Mulakayala, N. Synthesis of novel spiro[pyrazolo] [4,3-d]pyrimidinones and spiro-[benzo [4,5]thieno[2,3-d]pyrimi-dine-2,3¢-indolin-e]-2¢,4(3H)-diones and their evaluation for anti-cancer activity. Bioorg. Med. Chem. Lett., 2017, 27(6), 1446-1450.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.088] [PMID: 28216402]
[111]
Mulakayala, N.; Kandagatla, B. Ismail.; Rapolu, R.K.; Rao, P.; Mulakayala, C.; Kumar, C.S.; Iqbal, J.; Oruganti, S. InCl3-catalysed synthesis of 2-aryl quinazolin-4(3H)-ones and 5-aryl pyrazolo[4,3-d]pyrimidin-7(6H)-ones and their evaluation as potential anticancer agents. Bioorg. Med. Chem. Lett., 2012, 22(15), 5063-5066.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.003] [PMID: 22749421]
[112]
Lim, F.P.; Dolzhenko, A.V. 1,3,5-Triazine-based analogues of purine: From isosteres to privileged scaffolds in medicinal chemistry. Eur. J. Med. Chem., 2014, 85, 371-390.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.112] [PMID: 25105925]
[113]
Nepali, K.; Chang, T.Y.; Lai, M.J.; Hsu, K.C.; Yen, Y.; Lin, T.E.; Lee, S.B.; Liou, J.P. Purine/purine isoster based scaffolds as new derivatives of benzamide class of HDAC inhibitors. Eur. J. Med. Chem., 2020, 196, 112291
[http://dx.doi.org/10.1016/j.ejmech.2020.112291] [PMID: 32325365]
[114]
He, F.; Shi, J.; Wang, Y.; Wang, S.; Chen, J.; Gan, X.; Song, B.; Hu, D. Synthesis, antiviral activity, and mechanisms of purine nucleoside derivatives containing a sulfonamide moiety. J. Agric. Food Chem., 2019, 67(31), 8459-8467.
[http://dx.doi.org/10.1021/acs.jafc.9b02681] [PMID: 31339701]
[115]
Wang, Y.N.; Bheemanaboina, R.R.Y.; Cai, G.X.; Zhou, C.H. Novel purine benzimidazoles as antimicrobial agents by regulating ROS generation and targeting clinically resistant Staphylococcus aureus DNA groove. Bioorg. Med. Chem. Lett., 2018, 28(9), 1621-1628.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.046] [PMID: 29598912]
[116]
Lee, A.D.; Ren, S.; Lien, E.J. Purine analogs as CDK enzyme inhibitory agents: A survey and QSAR analysis. Prog. Drug Res., 2001, 56, 155-193.
[http://dx.doi.org/10.1007/978-3-0348-8319-1_4] [PMID: 11417113]
[117]
Otyepka, M.; Krystof, V.; Havlícek, L.; Siglerová, V.; Strnad, M.; Koca, J. Docking-based development of purine-like inhibitors of cyclin-dependent kinase-2. J. Med. Chem., 2000, 43(13), 2506-2513.
[http://dx.doi.org/10.1021/jm990506w] [PMID: 10891109]
[118]
Meijer, L.; Borgne, A.; Mulner, O.; Chong, J.P.; Blow, J.J.; Inagaki, N.; Inagaki, M.; Delcros, J.G.; Moulinoux, J.P. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur. J. Biochem., 1997, 243(1-2), 527-536.
[http://dx.doi.org/10.1111/j.1432-1033.1997.t01-2-00527.x] [PMID: 9030781]
[119]
Liang, H.; Du, J.; Elhassan, R.M.; Hou, X.; Fang, H. Recent progress in development of cyclin-dependent kinase 7 inhibitors for cancer therapy. Expert Opin. Investig. Drugs, 2021, 30(1), 61-76.
[http://dx.doi.org/10.1080/13543784.2021.1850693] [PMID: 33183110]
[120]
Lannutti, B.J.; Meadows, S.A.; Herman, S.E.; Kashishian, A.; Steiner, B.; Johnson, A.J.; Byrd, J.C.; Tyner, J.W.; Loriaux, M.M.; Deininger, M.; Druker, B.J.; Puri, K.D.; Ulrich, R.G.; Giese, N.A. CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood, 2011, 117(2), 591-594.
[http://dx.doi.org/10.1182/blood-2010-03-275305] [PMID: 20959606]
[121]
Yang, J.; Wang, L.J.; Liu, J.J.; Zhong, L.; Zheng, R.L.; Xu, Y.; Ji, P.; Zhang, C.H.; Wang, W.J.; Lin, X.D.; Li, L.L.; Wei, Y.Q.; Yang, S.Y. Structural optimization and structure-activity relationships of N2-(4-(4-Methylpiperazin-1-yl)phenyl)-N8-phenyl-9H-purine-2,8-diamine derivatives, a new class of reversible kinase inhibitors targeting both EGFR-activating and resistance mutations. J. Med. Chem., 2012, 55(23), 10685-10699.
[http://dx.doi.org/10.1021/jm301365e] [PMID: 23116168]
[122]
Li, W.; Nelson, D.P.; Jensen, M.S.; Hoerrner, R.S.; Javadi, G.J.; Cai, D.; Larsen, R.D. Palladium-catalyzed regioselective arylation of imidazo[1,2-a]pyrimidine. Org. Lett., 2003, 5(25), 4835-4837.
[http://dx.doi.org/10.1021/ol035878k] [PMID: 14653686]
[123]
Rehan, T.A.; Al-Lami, N.; Alanee, R.S. Anti-cancer and antioxidant activities of some new synthesized 3-secondary amine derivatives bearing imidazo [1, 2-A] pyrimidine. Eurasian Chem. Commun., 2021, 3(5), 339-351.
[124]
Blumberg, L.C.; Munchhof, M.J.; Shavnya, A. Imidazopyrimidines as transforming growth factor (TGF) inhibitors. U.S. Patent 741,704,1B2 2008.
[125]
Kamal, A.; Reddy, J.S.; Ramaiah, M.J.; Dastagiri, D.; Bharathi, E.V.; Sagar, M.V.P.; Pushpavalli, S.; Ray, P.; Pal-Bhadra, M.J.M. Design, synthesis and biological evaluation of imidazopyridine/pyrimidine-chalcone derivatives as potential anticancer agents. MedChemComm, 2010, 1(5), 355-360.
[http://dx.doi.org/10.1039/C0MD00116C]
[126]
Garcia-Gil, M.; Camici, M.; Allegrini, S.; Pesi, R.; Petrotto, E.; Tozzi, M.G. Emerging role of purine metabolizing enzymes in brain function and tumors. Int. J. Mol. Sci., 2018, 19(11), 3598.
[http://dx.doi.org/10.3390/ijms19113598] [PMID: 30441833]
[127]
Sharma, S.; Mehndiratta, S.; Kumar, S.; Singh, J.; Bedi, P.M.; Nepali, K. Purine analogues as kinase inhibitors: A review. Recent Patents Anticancer Drug Discov., 2015, 10(3), 308-341.
[http://dx.doi.org/10.2174/1574892810666150617112230] [PMID: 26081925]
[128]
Harrop, S.; Polliack, A.; Tam, C.S. Chronic lymphoproliferative disorders and secondary cancers in the era of purine analogues and beyond. Leuk. Lymphoma, 2021, 62(4), 771-778.
[http://dx.doi.org/10.1080/10428194.2020.1849682] [PMID: 33222561]
[129]
Coxon, C.R.; Anscombe, E.; Harnor, S.J.; Martin, M.P.; Carbain, B.; Golding, B.T.; Hardcastle, I.R.; Harlow, L.K.; Korolchuk, S.; Matheson, C.J.; Newell, D.R.; Noble, M.E.; Sivaprakasam, M.; Tudhope, S.J.; Turner, D.M.; Wang, L.Z.; Wedge, S.R.; Wong, C.; Griffin, R.J.; Endicott, J.A.; Cano, C. Cyclin-dependent kinase (CDK) inhibitors: Structure-activity relationships and insights into the CDK-2 selectivity of 6-substituted 2-arylaminopurines. J. Med. Chem., 2017, 60(5), 1746-1767.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01254] [PMID: 28005359]
[130]
Johannes, J.W.; Denz, C.R.; Su, N.; Wu, A.; Impastato, A.C.; Mlynarski, S.; Varnes, J.G.; Prince, D.B.; Cidado, J.; Gao, N.; Haddrick, M.; Jones, N.H.; Li, S.; Li, X.; Liu, Y.; Nguyen, T.B.; O’Connell, N.; Rivers, E.; Robbins, D.W.; Tomlinson, R.; Yao, T.; Zhu, X.; Ferguson, A.D.; Lamb, M.L.; Manchester, J.I.; Guichard, S. Structure-based design of selective noncovalent CDK12 inhibitors. ChemMedChem, 2018, 13(3), 231-235.
[http://dx.doi.org/10.1002/cmdc.201700695] [PMID: 29266803]
[131]
Yu, Y.; Ran, D.; Jiang, J.; Pan, T.; Dan, Y.; Tang, Q.; Li, W.; Zhang, L.; Gan, L.; Gan, Z. Discovery of novel 9H-purin derivatives as dual inhibitors of HDAC1 and CDK2. Bioorg. Med. Chem. Lett., 2019, 29(16), 2136-2140.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.059] [PMID: 31272794]
[132]
Duan, Y.T.; Sangani, C.B.; Liu, W.; Soni, K.V.; Yao, Y. New promises to cure cancer and other genetic diseases/disorders: Epi-drugs through epigenetics. Curr. Top. Med. Chem., 2019, 19(12), 972-994.
[http://dx.doi.org/10.2174/1568026619666190603094439] [PMID: 31161992]
[133]
Duan, Y.; Liu, W.; Tian, L.; Mao, Y.; Song, C. Targeting tubulin-colchicine site for cancer therapy: Inhibitors, antibody-drug conjugates and degradation agents. Curr. Top. Med. Chem., 2019, 19(15), 1289-1304.
[http://dx.doi.org/10.2174/1568026619666190618130008] [PMID: 31210108]
[134]
Lopus, M. Editorial: Tubulin-targeted cancer chemotherapeutics: Advances and challenges. Curr. Top. Med. Chem., 2017, 17(22), 2522.
[http://dx.doi.org/10.2174/156802661722170726113614] [PMID: 28799508]
[135]
Li, W.; Yin, Y.; Shuai, W.; Xu, F.; Yao, H.; Liu, J.; Cheng, K.; Xu, J.; Zhu, Z.; Xu, S. Discovery of novel quinazolines as potential anti-tubulin agents occupying three zones of colchicine domain. Bioorg. Chem., 2019, 83, 380-390.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.027] [PMID: 30408650]
[136]
Gangjee, A.; Kurup, S.; Smith, C.D. Synthesis of 5,7-disubstituted-4-methyl-7H-pyrrolo[2,3-d]pyrimidin-2-amines as microtubule inhibitors. Bioorg. Med. Chem., 2013, 21(5), 1180-1189.
[http://dx.doi.org/10.1016/j.bmc.2012.12.029] [PMID: 23352482]
[137]
Romagnoli, R.; Prencipe, F.; Oliva, P.; Baraldi, S.; Baraldi, P.G.; Schiaffino Ortega, S.; Chayah, M.; Kimatrai Salvador, M.; Lopez-Cara, L.C.; Brancale, A.; Ferla, S.; Hamel, E.; Ronca, R.; Bortolozzi, R.; Mariotto, E.; Mattiuzzo, E.; Viola, G. Design, synthesis, and biological evaluation of 6-substituted thieno[3,2-d]pyrimidine analogues as dual epidermal growth factor receptor kinase and microtubule inhibitors. J. Med. Chem., 2019, 62(3), 1274-1290.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01391] [PMID: 30633509]
[138]
Shuai, W.; Wang, G.; Zhang, Y.; Bu, F.; Zhang, S.; Miller, D.D.; Li, W.; Ouyang, L.; Wang, Y. Recent progress on tubulin inhibitors with dual targeting capabilities for cancer therapy. J. Med. Chem., 2021, 64(12), 7963-7990.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00100] [PMID: 34101463]
[139]
Zhou, Z.Z.; Shi, X.D.; Feng, H.F.; Cheng, Y.F.; Wang, H.T.; Xu, J.P. Discovery of 9H-purins as potential tubulin polymerization inhibitors: Synthesis, biological evaluation and structure-activity relationships. Eur. J. Med. Chem., 2017, 138, 1126-1134.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.054] [PMID: 28763647]
[140]
Zhang, Q.; Hu, X.; Wan, G.; Wang, J.; Li, L.; Wu, X.; Liu, Z.; Yu, L. Discovery of 3-(((9H-purin-6-yl)amino)methyl)-4,6-dimethylpyridin-2(1H)-one derivatives as novel tubulin polymerization inhibitors for treatment of cancer. Eur. J. Med. Chem., 2019, 184, 111728
[http://dx.doi.org/10.1016/j.ejmech.2019.111728] [PMID: 31610375]
[141]
Hu, X.; Li, L.; Zhang, Q.; Wang, Q.; Feng, Z.; Xu, Y.; Xia, Y.; Yu, L. Design, synthesis and biological evaluation of a novel tubulin inhibitor SKLB0565 targeting the colchicine binding site. Bioorg. Chem., 2020, 97, 103695
[http://dx.doi.org/10.1016/j.bioorg.2020.103695] [PMID: 32120073]
[142]
Curigliano, G.; Shah, R.R. Safety and tolerability of phosphatidylinositol-3-kinase (PI3K) inhibitors in oncology. Drug Saf., 2019, 42(2), 247-262.
[http://dx.doi.org/10.1007/s40264-018-0778-4] [PMID: 30649751]
[143]
Winkler, D.G.; Faia, K.L.; DiNitto, J.P.; Ali, J.A.; White, K.F.; Brophy, E.E.; Pink, M.M.; Proctor, J.L.; Lussier, J.; Martin, C.M.; Hoyt, J.G.; Tillotson, B.; Murphy, E.L.; Lim, A.R.; Thomas, B.D.; Macdougall, J.R.; Ren, P.; Liu, Y.; Li, L.S.; Jessen, K.A.; Fritz, C.C.; Dunbar, J.L.; Porter, J.R.; Rommel, C.; Palombella, V.J.; Changelian, P.S.; Kutok, J.L. PI3K-δ and PI3K-γ inhibition by IPI-145 abrogates immune responses and suppresses activity in autoimmune and inflammatory disease models. Chem. Biol., 2013, 20(11), 1364-1374.
[http://dx.doi.org/10.1016/j.chembiol.2013.09.017] [PMID: 24211136]
[144]
Dong, S.; Guinn, D.; Dubovsky, J.A.; Zhong, Y.; Lehman, A.; Kutok, J.; Woyach, J.A.; Byrd, J.C.; Johnson, A.J. IPI-145 antagonizes intrinsic and extrinsic survival signals in chronic lymphocytic leukemia cells. Blood, 2014, 124(24), 3583-3586.
[http://dx.doi.org/10.1182/blood-2014-07-587279] [PMID: 25258342]
[145]
Pal Singh, S.; Dammeijer, F.; Hendriks, R.W. Role of Bruton’s tyrosine kinase in B cells and malignancies. Mol. Cancer, 2018, 17(1), 57.
[http://dx.doi.org/10.1186/s12943-018-0779-z] [PMID: 29455639]
[146]
Ge, Y.; Jin, Y.; Wang, C.; Zhang, J.; Tang, Z.; Peng, J.; Liu, K.; Li, Y.; Zhou, Y.; Ma, X. Discovery of novel Bruton’s tyrosine kinase (BTK) inhibitors bearing a N,9-Diphenyl-9H -purin-2-amine scaffold. ACS Med. Chem. Lett., 2016, 7(12), 1050-1055.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00235] [PMID: 27994736]
[147]
Zhou, W.; Liu, X.; Tu, Z.; Zhang, L.; Ku, X.; Bai, F.; Zhao, Z.; Xu, Y.; Ding, K.; Li, H. Discovery of pteridin-7(8H)-one-based irreversible inhibitors targeting the epidermal growth factor receptor (EGFR) kinase T790M/L858R mutant. J. Med. Chem., 2013, 56(20), 7821-7837.
[http://dx.doi.org/10.1021/jm401045n] [PMID: 24053674]
[148]
Cheng, H.; Nair, S.K.; Murray, B.W.; Almaden, C.; Bailey, S.; Baxi, S.; Behenna, D.; Cho-Schultz, S.; Dalvie, D.; Dinh, D.M.; Edwards, M.P.; Feng, J.L.; Ferre, R.A.; Gajiwala, K.S.; Hemkens, M.D.; Jackson-Fisher, A.; Jalaie, M.; Johnson, T.O.; Kania, R.S.; Kephart, S.; Lafontaine, J.; Lunney, B.; Liu, K.K.; Liu, Z.; Matthews, J.; Nagata, A.; Niessen, S.; Ornelas, M.A.; Orr, S.T.; Pairish, M.; Planken, S.; Ren, S.; Richter, D.; Ryan, K.; Sach, N.; Shen, H.; Smeal, T.; Solowiej, J.; Sutton, S.; Tran, K.; Tseng, E.; Vernier, W.; Walls, M.; Wang, S.; Weinrich, S.L.; Xin, S.; Xu, H.; Yin, M.J.; Zientek, M.; Zhou, R.; Kath, J.C. Discovery of 1-(3R,4R)-3-[(5-Chloro-2-[(1-methyl-1H-pyrazol-4-yl)amino]-7H-pyrrolo[2,3-d]pyrimidin-4-yloxy)methyl]-4-methoxypyrrolidin-1-ylprop-2-en-1-one (PF-06459988), a Potent, WT Sparing, irreversible inhibitor of T790M-containing EGFR mutants. J. Med. Chem., 2016, 59(5), 2005-2024.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01633] [PMID: 26756222]
[149]
Planken, S.; Behenna, D.C.; Nair, S.K.; Johnson, T.O.; Nagata, A.; Almaden, C.; Bailey, S.; Ballard, T.E.; Bernier, L.; Cheng, H.; Cho-Schultz, S.; Dalvie, D.; Deal, J.G.; Dinh, D.M.; Edwards, M.P.; Ferre, R.A.; Gajiwala, K.S.; Hemkens, M.; Kania, R.S.; Kath, J.C.; Matthews, J.; Murray, B.W.; Niessen, S.; Orr, S.T.; Pairish, M.; Sach, N.W.; Shen, H.; Shi, M.; Solowiej, J.; Tran, K.; Tseng, E.; Vicini, P.; Wang, Y.; Weinrich, S.L.; Zhou, R.; Zientek, M.; Liu, L.; Luo, Y.; Xin, S.; Zhang, C.; Lafontaine, J. Discovery of N-((3R,4R)-4-Fluoro-1-(6-((3 -methoxy-1-methyl-1H-pyrazol-4-yl)amino)-9-methyl-9H-purin-2-yl)pyrrolidine-3-yl)acrylamide (PF067 47775) through structure-based drug design: A high affinity irreversible inhibitor targeting oncogenic EGFR mutants with selectivity over wild-type EGFR. J. Med. Chem., 2017, 60(7), 3002-3019.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01894] [PMID: 28287730]
[150]
Hu, J.; Han, Y.; Wang, J.; Liu, Y.; Zhao, Y.; Liu, Y.; Gong, P. Discovery of selective EGFR modulator to inhibit L858R/T790M double mutants bearing a N-9-Diphenyl-9H-purin-2-amine scaffold. Bioorg. Med. Chem., 2018, 26(8), 1810-1822.
[http://dx.doi.org/10.1016/j.bmc.2018.02.029] [PMID: 29486953]
[151]
Lei, H.; Fan, S.; Zhang, H.; Liu, Y.J.; Hei, Y.Y.; Zhang, J.J.; Zheng, A.Q.; Xin, M.; Zhang, S.Q. Discovery of novel 9-heterocyclyl substituted 9H-purines as L858R/T790M/C797S mutant EGFR tyrosine kinase inhibitors. Eur. J. Med. Chem., 2020, 186, 111888
[http://dx.doi.org/10.1016/j.ejmech.2019.111888] [PMID: 31787359]
[152]
Fischer, E. Ueber das purin und seine methylderivate. Ber. Dtsch. Chem. Ges., 2010, 31(3), 2550-2574.
[http://dx.doi.org/10.1002/cber.18980310304]
[153]
Ostrowski, S.J.M. Synthesis of N-7-substituted purines from imidazole precursors. Molecules, 1999, 4(10), 287-309.
[http://dx.doi.org/10.3390/41000287]
[154]
Pratt, R.; Kraus, K.J.T.L. Ring opening and closing reactions of imidazoles and other 1,3-diazaheterocycles with vinyl chloroformate and phenyl chloroformate. Tetrahedron Lett., 1981, 22(26), 2431-2434.
[155]
Canela, M.D.; Liekens, S.; Camarasa, M.J.; Priego, E.M.; Pérez-Pérez, M.J. Synthesis and antiproliferative activity of 6-phenylaminopurines. Eur. J. Med. Chem., 2014, 87, 421-428.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.093] [PMID: 25282265]
[156]
Pineda de las Infantas, M.J.; Torres-Rusillo, S.; Unciti-Broceta, J.D.; Fernandez-Rubio, P.; Luque-Gonzalez, M.A.; Gallo, M.A.; Unciti-Broceta, A.; Molina, I.J.; Diaz-Mochon, J.J. Synthesis of 6,8,9 poly-substituted purine analogue libraries as pro-apoptotic inducers of human leukemic lymphocytes and DAPK-1 inhibitors. Org. Biomol. Chem., 2015, 13(18), 5224-5234.
[http://dx.doi.org/10.1039/C5OB00230C] [PMID: 25856731]
[157]
Bollier, M.; Klupsch, F.; Six, P.; Dubuquoy, L.; Azaroual, N.; Millet, R.; Leleu-Chavain, N. One- or two-step synthesis of C-8 and N-9 substituted purines. J. Org. Chem., 2018, 83(1), 422-430.
[http://dx.doi.org/10.1021/acs.joc.7b02269] [PMID: 29192784]
[158]
Aeluri, R.; Alla, M.; Polepalli, S.; Jain, N. Synthesis and antiproliferative activity of imidazo[1,2-a]pyrimidine Mannich bases. Eur. J. Med. Chem., 2015, 100, 18-23.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.037] [PMID: 26067381]
[159]
Mantipally, M.; Gangireddy, M.R.; Gundla, R.; Badavath, V.N.; Mandha, S.R.; Maddipati, V.C. Rational design, molecular docking and synthesis of novel homopiperazine linked imidazo[1,2-a]pyrimidine derivatives as potent cytotoxic and antimicrobial agents. Bioorg. Med. Chem. Lett., 2019, 29(16), 2248-2253.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.031] [PMID: 31239178]
[160]
Huo, C.; Tang, J.; Xie, H.; Wang, Y.; Dong, J. CBr4 mediated oxidative C-N bond formation: Applied in the synthesis of imidazo[1,2-α]pyridines and imidazo[1,2-α] pyrimidines. Org. Lett., 2016, 18(5), 1016-1019.
[http://dx.doi.org/10.1021/acs.orglett.6b00137] [PMID: 26882001]
[161]
Hariss, L.; Hadir, K.B.; El-Masri, M.; Roisnel, T.; Grée, R.; Hachem, A. Preparation of imidazo[1,2-a]-N-heterocyclic derivatives with gem-difluorinated side chains. Beilstein J. Org. Chem., 2017, 13, 2115-2121.
[http://dx.doi.org/10.3762/bjoc.13.208] [PMID: 29062431]
[162]
Rao, R.N.; Mm, B.; Maiti, B.; Thakuria, R.; Chanda, K. Efficient access to imidazo[1,2-a] pyridines/pyrazines/pyrimidines via catalyst -free annulation reaction under microwave irradiation in green solvent. ACS Comb. Sci., 2018, 20(3), 164-171.
[http://dx.doi.org/10.1021/acscombsci.7b00173] [PMID: 29373013]
[163]
Makra, Z.; Puskás, L.G.; Kanizsai, I. A convenient approach for the preparation of imidazo[1,2-a]-fused bicyclic frameworks via IBX/NIS promoted oxidative annulation. Org. Biomol. Chem., 2019, 17(40), 9001-9007.
[http://dx.doi.org/10.1039/C9OB01708A] [PMID: 31577318 ]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy