Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Recent Developments of Coumarin-based Hybrids in Drug Discovery

Author(s): Dongguo Xia, Hao Liu, Xiang Cheng, Manikantha Maraswami, Yiting Chen* and Xianhai Lv*

Volume 22, Issue 4, 2022

Published on: 01 February, 2022

Page: [269 - 283] Pages: 15

DOI: 10.2174/1568026622666220105105450

Price: $65

conference banner
Abstract

Coumarin scaffold is a highly significant O-heterocycle, namely benzopyran-2-ones, which form an elite class of naturally occurring compounds with promising therapeutic perspectives. Based on its broad spectrum of biological activities, the privileged coumarin scaffold is applied to medicinal and pharmacological treatments by several rational design strategies and approaches. Structure-activity relationships of the coumarin-based hybrids with various bioactivity fragments revealed significant information toward the further development of highly potent and selective disorder therapeutic agents. The molecular docking studies between coumarins and critical therapeutic enzymes demonstrated a mode of action by forming noncovalent interactions with more than one receptor, further rationally confirming information about structure-activity relationships. This review summarizes recent developments related to coumarin-based hybrids with other pharmacophores aiming at numerous feasible therapeutic enzymatic targets in order to combat various therapeutic fields, including anticancer, antimicrobic, anti-Alzheimer, anti-inflammatory activities.

Keywords: Coumarin, Anticancer, Antimicrobial, Anti-Alzheimer, Anti-inflammatory, Inhibitors.

Graphical Abstract
[1]
Hoult, J.R.S.; Payá, M. Pharmacological and biochemical actions of simple coumarins: natural products with therapeutic potential. Gen. Pharmacol., 1996, 27(4), 713-722.
[http://dx.doi.org/10.1016/0306-3623(95)02112-4] [PMID: 8853310]
[2]
Havsteen, B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther., 2002, 96(2-3), 67-202.
[http://dx.doi.org/10.1016/S0163-7258(02)00298-X] [PMID: 12453566]
[3]
Sardari, S.; Nishibe, S.; Daneshtalab, M. Coumarins, the bioactive structures with antifungal property. Stud. Nat. Prod. Chem., 2000, 23, 335-393.
[http://dx.doi.org/10.1016/S1572-5995(00)80133-7]
[4]
Vogel, A. Representation of benzoic acid from the tonka bean and from the meliloten - or stone clover - flowers. Ann. Phys., 1820, 64(2), 161-166.
[http://dx.doi.org/10.1002/andp.18200640205]
[5]
Harborne, J.B.J.P.C. Environment, the natural coumarins: occurrence. Chem. Biochem., 1982, 5(6), 435-436.
[6]
Chen, Y.; Liu, H-R.; Liu, H-S.; Cheng, M.; Xia, P.; Qian, K.; Wu, P-C.; Lai, C-Y.; Xia, Y.; Yang, Z-Y.; Morris-Natschke, S.L.; Lee, K-H. Antitumor agents 292. Design, synthesis and pharmacological study of S- and O-substituted 7-mercapto- or hydroxy-coumarins and chromones as potent cytotoxic agents. Eur. J. Med. Chem., 2012, 49, 74-85.
[http://dx.doi.org/10.1016/j.ejmech.2011.12.025] [PMID: 22265685]
[7]
Davis, R.A.; Vullo, D.; Maresca, A.; Supuran, C.T.; Poulsen, S-A. Natural product coumarins that inhibit human carbonic anhydrases. Bioorg. Med. Chem., 2013, 21(6), 1539-1543.
[http://dx.doi.org/10.1016/j.bmc.2012.07.021] [PMID: 22892213]
[8]
Borges Bubols, G.; da Rocha Vianna, D.; Medina-Remon, A.; von Poser, G.; Maria Lamuela-Raventos, R.; Lucia Eifler-Lima, V.; Cristina Garcia, S. The antioxidant activity of coumarins and flavonoids. Mini Rev. Med. Chem., 2013, 13(3), 318-334.
[PMID: 22876957]
[9]
Starcević, S.; Brozic, P.; Turk, S.; Cesar, J.; Rizner, T.L.; Gobec, S. Synthesis and biological evaluation of (6- and 7-phenyl) coumarin derivatives as selective nonsteroidal inhibitors of 17β-hydroxysteroid dehydrogenase type 1. J. Med. Chem., 2011, 54(1), 248-261.
[http://dx.doi.org/10.1021/jm101104z] [PMID: 21138273]
[10]
Nolan, K.A.; Doncaster, J.R.; Dunstan, M.S.; Scott, K.A.; Frenkel, A.D.; Siegel, D.; Ross, D.; Barnes, J.; Levy, C.; Leys, D.; Whitehead, R.C.; Stratford, I.J.; Bryce, R.A. Synthesis and biological evaluation of coumarin-based inhibitors of NAD(P)H: quinone oxidoreductase-1 (NQO1). J. Med. Chem., 2009, 52(22), 7142-7156.
[http://dx.doi.org/10.1021/jm9011609] [PMID: 19877692]
[11]
Nolan, K.A.; Zhao, H.; Faulder, P.F.; Frenkel, A.D.; Timson, D.J.; Siegel, D.; Ross, D.; Burke, T.R., Jr; Stratford, I.J.; Bryce, R.A. Coumarin-based inhibitors of human NAD(P)H:quinone oxidoreductase-1. Identification, structure-activity, off-target effects and in vitro human pancreatic cancer toxicity. J. Med. Chem., 2007, 50(25), 6316-6325.
[http://dx.doi.org/10.1021/jm070472p] [PMID: 17999461]
[12]
Xu, X-T.; Deng, X-Y.; Chen, J.; Liang, Q-M.; Zhang, K.; Li, D-L.; Wu, P-P.; Zheng, X.; Zhou, R-P.; Jiang, Z-Y.; Ma, A-J.; Chen, W-H.; Wang, S-H. Synthesis and biological evaluation of coumarin derivatives as a-glucosidase inhibitors. Eur. J. Med. Chem., 2020, 189, 112013.
[http://dx.doi.org/10.1016/j.ejmech.2019.112013]
[13]
Sharma, R.K.; Singh, V.; Tiwari, N.; Butcher, R.J.; Katiyar, D. Synthesis, antimicrobial and chitinase inhibitory activities of 3-amidocoumarins. Bioorg. Chem., 2020, 98, 103700.
[http://dx.doi.org/10.1016/j.bioorg.2020.103700] [PMID: 32151967]
[14]
Metwally, N.H.; Abdallah, S.O.; Mohsen, M.M.A. Design, green one-pot synthesis and molecular docking study of novel N,N-bis(cyanoacetyl)hydrazines and bis-coumarins as effective inhibitors of DNA gyrase and topoisomerase IV. Bioorg. Chem., 2020, 97, 103672.
[http://dx.doi.org/10.1016/j.bioorg.2020.103672] [PMID: 32145481]
[15]
Stanchev, S.; Hadjimitova, V.; Traykov, T.; Boyanov, T.; Manolov, I. Investigation of the antioxidant properties of some new 4-hydroxycoumarin derivatives. Eur. J. Med. Chem., 2009, 44(7), 3077-3082.
[http://dx.doi.org/10.1016/j.ejmech.2008.07.007] [PMID: 18725173]
[16]
Kontogiorgis, C.A.; Hadjipavlou-Litina, D.J. Synthesis and antiinflammatory activity of coumarin derivatives. J. Med. Chem., 2005, 48(20), 6400-6408.
[http://dx.doi.org/10.1021/jm0580149] [PMID: 16190766]
[17]
Fender, A.C.; Wakili, R.; Dobrev, D. Straight to the heart: pleiotropic antiarrhythmic actions of oral anticoagulants. Pharmacol. Res., 2019, 145, 104257.
[http://dx.doi.org/10.1016/j.phrs.2019.104257] [PMID: 31054953]
[18]
Chen, Y.; Wang, S.; Xu, X.; Liu, X.; Yu, M.; Zhao, S.; Liu, S.; Qiu, Y.; Zhang, T.; Liu, B.F.; Zhang, G. Synthesis and biological investigation of coumarin piperazine (piperidine) derivatives as potential multireceptor atypical antipsychotics. J. Med. Chem., 2013, 56(11), 4671-4690.
[http://dx.doi.org/10.1021/jm400408r] [PMID: 23675993]
[19]
Fonseca, A.; Reis, J.; Silva, T.; Matos, M.J.; Bagetta, D.; Ortuso, F.; Alcaro, S.; Uriarte, E.; Borges, F. Coumarin versus chromone monoamine oxidase B inhibitors: Quo vadis? J. Med. Chem., 2017, 60(16), 7206-7212.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00918] [PMID: 28753307]
[20]
Zhang, C.; Yang, K.; Yu, S.; Su, J.; Yuan, S.; Han, J.; Chen, Y.; Gu, J.; Zhou, T.; Bai, R.; Xie, Y. Design, synthesis and biological evaluation of hydroxypyridinone-coumarin hybrids as multimodal monoamine oxidase B inhibitors and iron chelates against Alzheimer’s disease. Eur. J. Med. Chem., 2019, 180, 367-382.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.031] [PMID: 31325784]
[21]
Yang, H.L.; Cai, P.; Liu, Q.H.; Yang, X.L.; Li, F.; Wang, J.; Wu, J.J.; Wang, X.B.; Kong, L.Y. Design, synthesis and evaluation of coumarin-pargyline hybrids as novel dual inhibitors of monoamine oxidases and amyloid-β aggregation for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 138, 715-728.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.008] [PMID: 28728104]
[22]
Kostova, I.; Manolov, I.; Nicolova, I.; Konstantinov, S.; Karaivanova, M. New lanthanide complexes of 4-methyl-7-hydroxycoumarin and their pharmacological activity. Eur. J. Med. Chem., 2001, 36(4), 339-347.
[http://dx.doi.org/10.1016/S0223-5234(01)01221-1] [PMID: 11461759]
[23]
Hu, Y.; Chen, W.; Shen, Y.; Zhu, B.; Wang, G-X. Synthesis and antiviral activity of coumarin derivatives against infectious hematopoietic necrosis virus. Bioorg. Med. Chem. Lett., 2019, 29(14), 1749-1755.
[http://dx.doi.org/10.1016/j.bmcl.2019.05.019] [PMID: 31104994]
[24]
Ren, Q.C.; Gao, C.; Xu, Z.; Feng, L.S.; Liu, M.L.; Wu, X.; Zhao, F. Bis-coumarin derivatives and their biological activities. Curr. Top. Med. Chem., 2018, 18(2), 101-113.
[http://dx.doi.org/10.2174/1568026618666180221114515] [PMID: 29473509]
[25]
Zhang, L.; Xu, Z. Coumarin-containing hybrids and their anticancer activities. Eur. J. Med. Chem., 2019, 181, 111587.
[http://dx.doi.org/10.1016/j.ejmech.2019.111587] [PMID: 31404864]
[26]
Wu, L.; Wang, X.; Xu, W.; Farzaneh, F.; Xu, R. The structure and pharmacological functions of coumarins and their derivatives. Curr. Med. Chem., 2009, 16(32), 4236-4260.
[http://dx.doi.org/10.2174/092986709789578187] [PMID: 19754420]
[27]
Kulkarni, M.V.; Kulkarni, G.M.; Lin, C.H.; Sun, C.M. Recent advances in coumarins and 1-azacoumarins as versatile biodynamic agents. Curr. Med. Chem., 2006, 13(23), 2795-2818.
[http://dx.doi.org/10.2174/092986706778521968] [PMID: 17073630]
[28]
Heide, L. The aminocoumarins: biosynthesis and biology. Nat. Prod. Rep., 2009, 26(10), 1241-1250.
[http://dx.doi.org/10.1039/b808333a] [PMID: 19779639]
[29]
Sandhu, S.; Bansal, Y.; Silakari, O.; Bansal, G. Coumarin hybrids as novel therapeutic agents. Bioorg. Med. Chem., 2014, 22(15), 3806-3814.
[http://dx.doi.org/10.1016/j.bmc.2014.05.032] [PMID: 24934993]
[30]
Liu, H.; Xia, D-G.; Chu, Z-W.; Hu, R.; Cheng, X.; Lv, X-H. Novel coumarin-thiazolyl ester derivatives as potential DNA gyrase inhibitors: design, synthesis, and antibacterial activity. Bioorg. Chem., 2020, 100, 103907.
[http://dx.doi.org/10.1016/j.bioorg.2020.103907] [PMID: 32413631]
[31]
Nasr, T.; Bondock, S.; Youns, M. Anticancer activity of new coumarin substituted hydrazide-hydrazone derivatives. Eur. J. Med. Chem., 2014, 76, 539-548.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.026] [PMID: 24607878]
[32]
Srivastava, P.; Vyas, V.K.; Variya, B.; Patel, P.; Qureshi, G.; Ghate, M. Synthesis, anti-inflammatory, analgesic, 5-lipoxygenase (5-LOX) inhibition activities, and molecular docking study of 7-substituted coumarin derivatives. Bioorg. Chem., 2016, 67, 130-138.
[http://dx.doi.org/10.1016/j.bioorg.2016.06.004] [PMID: 27376460]
[33]
Ostrowska, K. Coumarin-piperazine derivatives as biologically active compounds. Saudi Pharm. J., 2020, 28(2), 220-232.
[http://dx.doi.org/10.1016/j.jsps.2019.11.025] [PMID: 32042262]
[34]
Hu, C-F.; Zhang, P-L.; Sui, Y-F.; Lv, J-S.; Ansari, M.F.; Battini, N.; Li, S.; Zhou, C-H.; Geng, R-X. Ethylenic conjugated coumarin thiazolidinediones as new efficient antimicrobial modulators against clinical methicillin-resistant Staphylococcus aureus. Bioorg. Chem., 2020, 94, 103434.
[http://dx.doi.org/10.1016/j.bioorg.2019.103434] [PMID: 31812263]
[35]
Penta, S. Introduction to Coumarin and Sar. In: Advances in Structure and Activity Relationship of Coumarin Derivatives; Penta, S., Ed.; Academic Press: Boston, 2016; pp. 1-8.
[http://dx.doi.org/10.1016/B978-0-12-803797-3.00001-1]
[36]
Duan, Y.; Liu, W.; Tian, L.; Mao, Y.; Song, C. Targeting tubulin- colchicine site for cancer therapy: inhibitors, antibody- drug conjugates and degradation agents. Curr. Top. Med. Chem., 2019, 19(15), 1289-1304.
[http://dx.doi.org/10.2174/1568026619666190618130008] [PMID: 31210108]
[37]
Levine, A.J.; Jenkins, N.A.; Copeland, N.G. The roles of initiating truncal mutations in human cancers: the order of mutations and tumor cell type matters. Cancer Cell, 2019, 35(1), 10-15.
[http://dx.doi.org/10.1016/j.ccell.2018.11.009] [PMID: 30645969]
[38]
Sun, Z.G.; Liu, J.H.; Zhang, J.M.; Qian, Y. Research progress of axl inhibitors. Curr. Top. Med. Chem., 2019, 19(15), 1338-1349.
[http://dx.doi.org/10.2174/1568026619666190620155613] [PMID: 31218961]
[39]
Lv, P-C.; Yang, Y-S.; Wang, Z-C. Recent progress in the development of small molecule c-met inhibitors. Curr. Top. Med. Chem., 2019, 19(15), 1276-1288.
[http://dx.doi.org/10.2174/1568026619666190712205353] [PMID: 31526339]
[40]
Liu, W.; Wang, X.; Zhu, H.; Duan, Y. Precision tumor medicine and drug targets. Curr. Top. Med. Chem., 2019, 19(17), 1488-1489.
[http://dx.doi.org/10.2174/156802661917190828111130] [PMID: 31592750]
[41]
Hu, Y.S.; Han, X.; Liu, X.H. STAT3: a potential drug target for tumor and inflammation. Curr. Top. Med. Chem., 2019, 19(15), 1305-1317.
[http://dx.doi.org/10.2174/1568026619666190620145052] [PMID: 31218960]
[42]
Dong, P.; Rakesh, K.P.; Manukumar, H.M.; Mohammed, Y.H.E.; Karthik, C.S.; Sumathi, S.; Mallu, P.; Qin, H-L. Innovative nano- carriers in anticancer drug delivery-a comprehensive review. Bioorg. Chem., 2019, 85, 325-336.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.019] [PMID: 30658232]
[43]
Moku, B.; Ravindar, L.; Rakesh, K.P.; Qin, H-L. The significance of N-methylpicolinamides in the development of anticancer therapeutics: synthesis and structure-activity relationship (SAR) studies. Bioorg. Chem., 2019, 86, 513-537.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.030] [PMID: 30782571]
[44]
Zhang, X.; Rakesh, K.P.; Shantharam, C.S.; Manukumar, H.M.; Asiri, A.M.; Marwani, H.M.; Qin, H-L. Podophyllotoxin derivatives as an excellent anticancer aspirant for future chemotherapy: a key current imminent needs. Bioorg. Med. Chem., 2018, 26(2), 340-355.
[http://dx.doi.org/10.1016/j.bmc.2017.11.026] [PMID: 29269253]
[45]
Zha, G-F.; Qin, H-L.; Youssif, B.G.M.; Amjad, M.W.; Raja, M.A.G.; Abdelazeem, A.H.; Bukhari, S.N.A. Discovery of potential anticancer multi-targeted ligustrazine based cyclohexanone and oxime analogs overcoming the cancer multidrug resistance. Eur. J. Med. Chem., 2017, 135, 34-48.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.025] [PMID: 28431353]
[46]
Qin, H-L.; Leng, J.; Youssif, B.G.M.; Amjad, M.W.; Raja, M.A.G.; Hussain, M.A.; Hussain, Z.; Kazmi, S.N.; Bukhari, S.N.A. Synthesis and mechanistic studies of curcumin analog-based oximes as potential anticancer agents. Chem. Biol. Drug Des., 2017, 90(3), 443-449.
[http://dx.doi.org/10.1111/cbdd.12964] [PMID: 28186369]
[47]
Qin, H-L.; Leng, J.; Zhang, C-P.; Jantan, I.; Amjad, M.W.; Sher, M.; Naeem-ul-Hassan, M.; Hussain, M.A.; Bukhari, S.N.A Synthesis of A,B-Unsaturated carbonyl-based compounds, oxime and oxime ether analogs as potential anticancer agents for overcoming cancer multidrug resistance by modulation of efflux pumps in tumor cells. J. Med. Chem., 2016, 59(7), 3549-3561.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00276] [PMID: 27010345]
[48]
Hueso-Falcón, I.; Amesty, Á.; Anaissi-Afonso, L.; Lorenzo-Castrillejo, I.; Machín, F.; Estévez-Braun, A. Synthesis and biological evaluation of naphthoquinone-coumarin conjugates as topoisomerase II inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(3), 484-489.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.040] [PMID: 28040393]
[49]
Narella, S.G.; Shaik, M.G.; Mohammed, A.; Alvala, M.; Angeli, A.; Supuran, C.T. Synthesis and biological evaluation of coumarin-1,3,4-oxadiazole hybrids as selective carbonic anhydrase IX and XII inhibitors. Bioorg. Chem., 2019, 87, 765-772.
[http://dx.doi.org/10.1016/j.bioorg.2019.04.004] [PMID: 30974299]
[50]
Liang, D.; Fan, Y.; Yang, Z.; Zhang, Z.; Liu, M.; Liu, L.; Jiang, C. Discovery of coumarin-based selective aldehyde dehydrogenase 1A1 inhibitors with glucose metabolism improving activity. Eur. J. Med. Chem., 2020, 187, 111923.
[http://dx.doi.org/10.1016/j.ejmech.2019.111923] [PMID: 31816557]
[51]
Duan, Y-T.; Sangani, C.B.; Liu, W.; Soni, K.V.; Yao, Y. New promises to cure cancer and other genetic diseases/disorders: epi- drugs through epigenetics. Curr. Top. Med. Chem., 2019, 19(12), 972-994.
[http://dx.doi.org/10.2174/1568026619666190603094439] [PMID: 31161992]
[52]
Sun, P.; Zhang, S.J.; Maksim, S.; Yao, Y.F.; Liu, H.M.; Du, J. Epigenetic modification in macrophages: a promising target for tumor and inflammation-associated disease therapy. Curr. Top. Med. Chem., 2019, 19(15), 1350-1362.
[http://dx.doi.org/10.2174/1568026619666190619143706] [PMID: 31215380]
[53]
Guo, W.Y.; Zeng, S.M.Z.; Deora, G.S.; Li, Q.S.; Ruan, B.F. Estrogen receptor α (ERα)-targeting compounds and derivatives: recent advances in structural modification and bioactivity. Curr. Top. Med. Chem., 2019, 19(15), 1318-1337.
[http://dx.doi.org/10.2174/1568026619666190619142504] [PMID: 31215379]
[54]
Sebolt-Leopold, J.S.; Herrera, R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat. Rev. Cancer, 2004, 4(12), 937-947.
[http://dx.doi.org/10.1038/nrc1503] [PMID: 15573115]
[55]
Downward; Julian. Targeting ras signalling pathways in cancer therapy. Nat. Rev. Cancer, 2003, 3(1), 11-22.
[56]
Friday, B.B.; Adjei, A.A. K-ras as a target for cancer therapy. Biochim. Biophys. Acta, 2005, 1756(2), 127-144.
[PMID: 16139957]
[57]
Li, Q-S.; Lv, X-H.; Zhang, Y-B.; Dong, J-J.; Zhou, W-P.; Yang, Y.; Zhu, H-L. Identification of novel 3,5-diarylpyrazoline derivatives containing salicylamide moiety as potential anti-melanoma agents. Bioorg. Med. Chem. Lett., 2012, 22(21), 6596-6601.
[http://dx.doi.org/10.1016/j.bmcl.2012.09.004] [PMID: 23025996]
[58]
Lv, X-H.; Ren, Z-L.; Zhou, B-G.; Li, Q-S.; Chu, M-J.; Liu, D-H.; Mo, K.; Zhang, L-S.; Yao, X-K.; Cao, H-Q. Discovery of N-(benzyloxy)-1,3-diphenyl-1H-pyrazole-4-carboxamide derivatives as potential antiproliferative agents by inhibiting MEK. Bioorg. Med. Chem., 2016, 24(19), 4652-4659.
[http://dx.doi.org/10.1016/j.bmc.2016.08.002] [PMID: 27515719]
[59]
Shaul, Y.D.; Seger, R. The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim. Biophys. Acta, 2007, 1773(8), 1213-1226.
[http://dx.doi.org/10.1016/j.bbamcr.2006.10.005] [PMID: 17112607]
[60]
Bonavida, B.; Baritaki, S.; Huerta-Yepez, S.; Vega, M.I.; Chatterjee, D.; Yeung, K. Novel therapeutic applications of nitric oxide donors in cancer: roles in chemo- and immunosensitization to apoptosis and inhibition of metastases. Nitric Oxide, 2008, 19(2), 152-157.
[http://dx.doi.org/10.1016/j.niox.2008.04.018] [PMID: 18477483]
[61]
Riganti, C.; Miraglia, E.; Viarisio, D.; Costamagna, C.; Pescarmona, G.; Ghigo, D.; Bosia, A. Nitric oxide reverts the resistance to doxorubicin in human colon cancer cells by inhibiting the drug efflux. Cancer Res., 2005, 65(2), 516-525.
[PMID: 15695394]
[62]
Furuhashi, S.; Sugita, H.; Takamori, H.; Horino, K.; Nakahara, O.; Okabe, H.; Miyake, K.; Tanaka, H.; Beppu, T.; Baba, H. NO donor and MEK inhibitor synergistically inhibit proliferation and invasion of cancer cells. Int. J. Oncol., 2012, 40(3), 807-815.
[PMID: 22025280]
[63]
Liu, M.M.; Chen, X.Y.; Huang, Y.Q.; Feng, P.; Guo, Y.L.; Yang, G.; Chen, Y. Hybrids of phenylsulfonylfuroxan and coumarin as potent antitumor agents. J. Med. Chem., 2014, 57(22), 9343-9356.
[http://dx.doi.org/10.1021/jm500613m] [PMID: 25350923]
[64]
Wang, C.; Xi, D.; Wang, H.; Niu, Y.; Liang, L.; Xu, F.; Peng, Y.; Xu, P. Hybrids of MEK inhibitor and NO donor as multitarget antitumor drugs. Eur. J. Med. Chem., 2020, 196, 112271.
[http://dx.doi.org/10.1016/j.ejmech.2020.112271] [PMID: 32305784]
[65]
Adeva-Andany, M.M.; Fernández-Fernández, C.; Sánchez-Bello, R.; Donapetry-García, C.; Martínez-Rodríguez, J. The role of carbonic anhydrase in the pathogenesis of vascular calcification in humans. Atherosclerosis, 2015, 241(1), 183-191.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.05.012] [PMID: 26005791]
[66]
Combs, J.E.; Andring, J.T.; McKenna, R. Chapter Thirteen - neutron crystallographic studies of carbonic anhydrase. Methods Enzymol; Moody, 2020, 634, pp. 281-309.
[67]
Imtaiyaz Hassan, M.; Shajee, B.; Waheed, A.; Ahmad, F.; Sly, W.S. Structure, function and applications of carbonic anhydrase isozymes. Bioorg. Med. Chem., 2013, 21(6), 1570-1582.
[http://dx.doi.org/10.1016/j.bmc.2012.04.044] [PMID: 22607884]
[68]
Supuran, C.T.; Alterio, V.; Di Fiore, A.; D’ Ambrosio, K.; Carta, F.; Monti, S.M.; De Simone, G. Inhibition of carbonic anhydrase IX targets primary tumors, metastases, and cancer stem cells: three for the price of one. Med. Res. Rev., 2018, 38(6), 1799-1836.
[http://dx.doi.org/10.1002/med.21497] [PMID: 29635752]
[69]
Supuran, C.T. How many carbonic anhydrase inhibition mechanisms exist? J. Enzyme Inhib. Med. Chem., 2016, 31(3), 345-360.
[http://dx.doi.org/10.3109/14756366.2015.1122001] [PMID: 26619898]
[70]
Nocentini, A.; Supuran, C.T. Advances in the structural annotation of human carbonic anhydrases and impact on future drug discovery. Expert Opin. Drug Discov., 2019, 14(11), 1175-1197.
[http://dx.doi.org/10.1080/17460441.2019.1651289] [PMID: 31436118]
[71]
Wang, Z-C.; Qin, Y-J.; Wang, P-F.; Yang, Y-A.; Wen, Q.; Zhang, X.; Qiu, H-Y.; Duan, Y-T.; Wang, Y-T.; Sang, Y-L.; Zhu, H-L. Sulfonamides containing coumarin moieties selectively and potently inhibit carbonic anhydrases II and IX: design, synthesis, inhibitory activity and 3D-QSAR analysis. Eur. J. Med. Chem., 2013, 66, 1-11.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.035] [PMID: 23777898]
[72]
Maresca, A.; Temperini, C.; Vu, H.; Pham, N.B.; Poulsen, S-A.; Scozzafava, A.; Quinn, R.J.; Supuran, C.T. Non-zinc mediated inhibition of carbonic anhydrases: coumarins are a new class of suicide inhibitors. J. Am. Chem. Soc., 2009, 131(8), 3057-3062.
[http://dx.doi.org/10.1021/ja809683v] [PMID: 19206230]
[73]
Maresca, A.; Temperini, C.; Pochet, L.; Masereel, B.; Scozzafava, A.; Supuran, C.T. Deciphering the mechanism of carbonic anhydrase inhibition with coumarins and thiocoumarins. J. Med. Chem., 2010, 53(1), 335-344.
[http://dx.doi.org/10.1021/jm901287j] [PMID: 19911821]
[74]
Thacker, P.S.; Alvala, M.; Arifuddin, M.; Angeli, A.; Supuran, C.T. Design, synthesis and biological evaluation of coumarin-3-carboxamides as selective carbonic anhydrase IX and XII inhibitors. Bioorg. Chem., 2019, 86, 386-392.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.004] [PMID: 30763885]
[75]
Zengin Kurt, B.; Sonmez, F.; Ozturk, D.; Akdemir, A.; Angeli, A.; Supuran, C.T. Synthesis of coumarin-sulfonamide derivatives and determination of their cytotoxicity, carbonic anhydrase inhibitory and molecular docking studies. Eur. J. Med. Chem., 2019, 183, 111702.
[http://dx.doi.org/10.1016/j.ejmech.2019.111702] [PMID: 31542715]
[76]
Petreni, A.; Bonardi, A.; Lomelino, C.; Osman, S.M.; Al Ottiman, Z.A.; Eldehna, W.M.; El-Haggar, R.; McKenna, R.; Nocentini, A.; Supuran, C.T. Inclusion of a 5-fluorouracil moiety in nitrogenous bases derivatives as human carbonic anhydrase ix and xii inhibitors produced a targeted action against mda-mb-231 and t47d breast cancer cells. Eur. J. Med. Chem., 2020, 190, 112112.
[http://dx.doi.org/10.1016/j.ejmech.2020.112112] [PMID: 32044580]
[77]
Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338.
[http://dx.doi.org/10.1038/nrc1074] [PMID: 12724731]
[78]
O’Brien, P.J.; Siraki, A.G.; Shangari, N. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit. Rev. Toxicol., 2005, 35(7), 609-662.
[http://dx.doi.org/10.1080/10408440591002183] [PMID: 16417045]
[79]
Jiménez, R.; Pequerul, R.; Amor, A.; Lorenzo, J.; Metwally, K.; Avilés, F.X.; Parés, X.; Farrés, J. Inhibitors of aldehyde dehydrogenases of the 1A subfamily as putative anticancer agents: kinetic characterization and effect on human cancer cells. Chem. Biol. Interact., 2019, 306, 123-130.
[http://dx.doi.org/10.1016/j.cbi.2019.04.004] [PMID: 30958995]
[80]
Calleja, L.F.; Belmont-Díaz, J.A.; Medina-Contreras, O.; Quezada, H.; Yoval-Sánchez, B.; Campos-García, J.; Rodríguez-Zavala, J.S. Omeprazole as a potent activator of human cytosolic aldehyde dehydrogenase ALDH1A1. Biochim. Biophys. Acta, Gen. Subj., 2020, 1864(1), 129451.
[http://dx.doi.org/10.1016/j.bbagen.2019.129451] [PMID: 31678145]
[81]
Vasiliou, V.; Thompson, D.C.; Petersen, D.R. Aldehyde Dehydrogenases. In Comprehensive Toxicology, 3rd ed; McQueen, C. A., Elsevier: Oxford, 2018, pp. 146-163.
[82]
Yang, S-M.; Yasgar, A.; Miller, B.; Lal-Nag, M.; Brimacombe, K.; Hu, X.; Sun, H.; Wang, A.; Xu, X.; Nguyen, K.; Oppermann, U.; Ferrer, M.; Vasiliou, V.; Simeonov, A.; Jadhav, A.; Maloney, D.J. Discovery of NCT-501, a potent and selective theophylline-based inhibitor of aldehyde dehydrogenase 1A1 (ALDH1A1). J. Med. Chem., 2015, 58(15), 5967-5978.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00577] [PMID: 26207746]
[83]
Xu, X.; Chai, S.; Wang, P.; Zhang, C.; Yang, Y.; Yang, Y.; Wang, K. Aldehyde dehydrogenases and cancer stem cells. Cancer Lett., 2015, 369(1), 50-57.
[http://dx.doi.org/10.1016/j.canlet.2015.08.018] [PMID: 26319899]
[84]
Buchman, C.D.; Hurley, T.D. Inhibition of the aldehyde dehydrogenase 1/2 family by psoralen and coumarin derivatives. J. Med. Chem., 2017, 60(6), 2439-2455.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01825] [PMID: 28219011]
[85]
Morgan, C.A.; Hurley, T.D. Characterization of two distinct structural classes of selective aldehyde dehydrogenase 1A1 inhibitors. J. Med. Chem., 2015, 58(4), 1964-1975.
[http://dx.doi.org/10.1021/jm501900s] [PMID: 25634381]
[86]
Arnér, E.S.J. Chapter Five - Targeting the Selenoprotein Thioredoxin Reductase 1 for Anticancer Therapy. Adv. Cancer Res., Tew, K.D.; Galli, F., Eds.; Academic Press, 2017, 136, pp. 139-151.
[87]
Zhang, X.; Selvaraju, K.; Saei, A.A.; D’Arcy, P.; Zubarev, R.A.; Arnér, E.S.J.; Linder, S. Repurposing of auranofin: thioredoxin reductase remains a primary target of the drug. Biochimie, 2019, 162, 46-54.
[http://dx.doi.org/10.1016/j.biochi.2019.03.015] [PMID: 30946948]
[88]
Brown, A.; Shi, Q.; Moore, T.W.; Yoon, Y.; Prussia, A.; Maddox, C.; Liotta, D.C.; Shim, H.; Snyder, J.P. Monocarbonyl curcumin analogues: heterocyclic pleiotropic kinase inhibitors that mediate anticancer properties. J. Med. Chem., 2013, 56(9), 3456-3466.
[http://dx.doi.org/10.1021/jm4002692] [PMID: 23550937]
[89]
Zhang, B.; Zhang, J.; Peng, S.; Liu, R.; Li, X.; Hou, Y.; Han, X.; Fang, J. Thioredoxin reductase inhibitors: a patent review. Expert Opin. Ther. Pat., 2017, 27(5), 547-556.
[http://dx.doi.org/10.1080/13543776.2017.1272576] [PMID: 27977313]
[90]
Wu, S.; Cao, Q.; Wang, X.; Cheng, K.; Cheng, Z. Design, synthesis and biological evaluation of mitochondria targeting theranostic agents. Chem. Commun. (Camb.), 2014, 50(64), 8919-8922.
[http://dx.doi.org/10.1039/C4CC03296A] [PMID: 24976119]
[91]
Ng, H-L.; Chen, S.; Chew, E-H.; Chui, W-K. Applying the designed multiple ligands approach to inhibit dihydrofolate reductase and thioredoxin reductase for anti-proliferative activity. Eur. J. Med. Chem., 2016, 115, 63-74.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.002] [PMID: 26994844]
[92]
Xie, L.; Luo, Z.; Zhao, Z.; Chen, T. Anticancer and antiangiogenic iron(II) complexes that target thioredoxin reductase to trigger cancer cell apoptosis. J. Med. Chem., 2017, 60(1), 202-214.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00917] [PMID: 28001402]
[93]
Wang, Y.; Zhang, W.; Dong, J.; Gao, J. Design, synthesis and bioactivity evaluation of coumarin-chalcone hybrids as potential anticancer agents. Bioorg. Chem., 2020, 95, 103530.
[http://dx.doi.org/10.1016/j.bioorg.2019.103530] [PMID: 31887477]
[94]
O’Brien, P.J. Molecular mechanisms of quinone cytotoxicity. Chem. Biol. Interact., 1991, 80(1), 1-41.
[http://dx.doi.org/10.1016/0009-2797(91)90029-7] [PMID: 1913977]
[95]
Powis, G. Metabolism and reactions of quinoid anticancer agents. Pharmacol. Ther., 1987, 35(1-2), 57-162.
[http://dx.doi.org/10.1016/0163-7258(87)90105-7] [PMID: 3321102]
[96]
Jiménez-Alonso, S.; Orellana, H.C.; Estévez-Braun, A.; Ravelo, A.G.; Pérez-Sacau, E.; Machín, F. Design and synthesis of a novel series of pyranonaphthoquinones as topoisomerase II catalytic inhibitors. J. Med. Chem., 2008, 51(21), 6761-6772.
[http://dx.doi.org/10.1021/jm800499x] [PMID: 18816045]
[97]
Sperry, J.; Lorenzo-Castrillejo, I.; Brimble, M.A.; Machín, F. Pyranonaphthoquinone derivatives of eleutherin, ventiloquinone L, thysanone and nanaomycin a possessing a diverse topoisomerase II inhibition and cytotoxicity spectrum. Bioorg. Med. Chem., 2009, 17(20), 7131-7137.
[http://dx.doi.org/10.1016/j.bmc.2009.08.064] [PMID: 19783445]
[98]
Brinkworth, R.I.; Fairlie, D.P. Hydroxyquinones are competitive non-peptide inhibitors of HIV-1 proteinase. Biochim. Biophys. Acta, 1995, 1253(1), 5-8.
[http://dx.doi.org/10.1016/0167-4838(95)00183-U] [PMID: 7492599]
[99]
Gurbani, D.; Kukshal, V.; Laubenthal, J.; Kumar, A.; Pandey, A.; Tripathi, S.; Arora, A.; Jain, S.K.; Ramachandran, R.; Anderson, D.; Dhawan, A. Mechanism of inhibition of the ATPase domain of human topoisomerase IIα by 1,4-benzoquinone, 1,2-naphthoquinone, 1,4-naphthoquinone, and 9,10-phenanthroquinone. Toxicol. Sci., 2012, 126(2), 372-390.
[http://dx.doi.org/10.1093/toxsci/kfr345] [PMID: 22218491]
[100]
Li, B.; Pai, R.; Di, M.; Aiello, D.; Barnes, M.H.; Butler, M.M.; Tashjian, T.F.; Peet, N.P.; Bowlin, T.L.; Moir, D.T. Coumarin-based inhibitors of Bacillus anthracis and Staphylococcus aureus replicative DNA helicase: chemical optimization, biological evaluation, and antibacterial activities. J. Med. Chem., 2012, 55(24), 10896-10908.
[http://dx.doi.org/10.1021/jm300922h] [PMID: 23231076]
[101]
Khan, T.; Sankhe, K.; Suvarna, V.; Sherje, A.; Patel, K.; Dravyakar, B. DNA gyrase inhibitors: progress and synthesis of potent compounds as antibacterial agents. Biomed. Pharmacother., 2018, 103, 923-938.
[http://dx.doi.org/10.1016/j.biopha.2018.04.021] [PMID: 29710509]
[102]
Nitiss, J.L. DNA topoisomerase II and its growing repertoire of biological functions. Nat. Rev. Cancer, 2009, 9(5), 327-337.
[http://dx.doi.org/10.1038/nrc2608] [PMID: 19377505]
[103]
Wang, J.C. Cellular roles of DNA topoisomerases: a molecular perspective. Nat. Rev. Mol. Cell Biol., 2002, 3(6), 430-440.
[http://dx.doi.org/10.1038/nrm831] [PMID: 12042765]
[104]
Liu, H.; Xia, D.G.; Hu, R.; Wang, W.; Cheng, X.; Wang, A.L.; Zhang, Q.; Lv, X.H. A bioactivity-oriented modification strategy for SDH inhibitors with superior activity against fungal strains. Pestic. Biochem. Physiol., 2020, 163, 271-279.
[http://dx.doi.org/10.1016/j.pestbp.2019.11.024] [PMID: 31973867]
[105]
Liu, H.; Ren, Z.L.; Wang, W.; Gong, J.X.; Chu, M.J.; Ma, Q.W.; Wang, J.C.; Lv, X.H. Novel coumarin-pyrazole carboxamide derivatives as potential topoisomerase II inhibitors: design, synthesis and antibacterial activity. Eur. J. Med. Chem., 2018, 157, 81-87.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.059] [PMID: 30075404]
[106]
Nes, W.D. Biosynthesis of cholesterol and other sterols. Chem. Rev., 2011, 111(10), 6423-6451.
[http://dx.doi.org/10.1021/cr200021m] [PMID: 21902244]
[107]
Lepesheva, G.I.; Waterman, M.R. Sterol 14α-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochim. Biophys. Acta, 2007, 1770(3), 467-477.
[http://dx.doi.org/10.1016/j.bbagen.2006.07.018] [PMID: 16963187]
[108]
Friggeri, L.; Hargrove, T.Y.; Wawrzak, Z.; Blobaum, A.L.; Rachakonda, G.; Lindsley, C.W.; Villalta, F.; Nes, W.D.; Botta, M.; Guengerich, F.P.; Lepesheva, G.I. Sterol 14α-demethylase structure-based design of VNI ((R)- N-(1-(2,4-dichlorophenyl)-2-(1 h-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadiazol-2-yl)benzamide)) derivatives to target fungal infections: synthesis, biological evaluation, and crystallographic analysis. J. Med. Chem., 2018, 61(13), 5679-5691.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00641] [PMID: 29894182]
[109]
Elias, R.; Benhamou, R.I.; Jaber, Q.Z.; Dorot, O.; Zada, S.L.; Oved, K.; Pichinuk, E.; Fridman, M. Antifungal activity, mode of action variability, and subcellular distribution of coumarin-based antifungal azoles. Eur. J. Med. Chem., 2019, 179, 779-790.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.003] [PMID: 31288127]
[110]
Suh, Y.H.; Checler, F. Amyloid precursor protein, presenilins, and alpha-synuclein: molecular pathogenesis and pharmacological applications in Alzheimer’s disease. Pharmacol. Rev., 2002, 54(3), 469-525.
[http://dx.doi.org/10.1124/pr.54.3.469] [PMID: 12223532]
[111]
Tumiatti, V.M.; Bolognesi, M.L.; Milelli, A.; Rosini, M.; Melchiorre, C. Tacrine derivatives and Alzheimer’s disease. Curr. Med. Chem., 2010, 17(17), 1825-1838.
[http://dx.doi.org/10.2174/092986710791111206] [PMID: 20345341]
[112]
Contestabile, A. The history of the cholinergic hypothesis. Behav. Brain Res., 2011, 221(2), 334-340.
[http://dx.doi.org/10.1016/j.bbr.2009.12.044] [PMID: 20060018]
[113]
Racchi, M.; Mazzucchelli, M.; Porrello, E.; Lanni, C.; Govoni, S. Acetylcholinesterase inhibitors: novel activities of old molecules. Pharmacol. Res., 2004, 50(4), 441-451.
[http://dx.doi.org/10.1016/j.phrs.2003.12.027] [PMID: 15304241]
[114]
Muñoz-Torrero, D. Acetylcholinesterase inhibitors as disease-modifying therapies for Alzheimer’s disease. Curr. Med. Chem., 2008, 15(24), 2433-2455.
[http://dx.doi.org/10.2174/092986708785909067] [PMID: 18855672]
[115]
Francis, P.T.; Palmer, A.M.; Snape, M.; Wilcock, G.K. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J. Neurol. Neurosurg. Psychiatry, 1999, 66(2), 137-147.
[http://dx.doi.org/10.1136/jnnp.66.2.137] [PMID: 10071091]
[116]
Hamulakova, S.; Janovec, L.; Hrabinova, M.; Spilovska, K.; Korabecny, J.; Kristian, P.; Kuca, K.; Imrich, J. Synthesis and biological evaluation of novel tacrine derivatives and tacrine-coumarin hybrids as cholinesterase inhibitors. J. Med. Chem., 2014, 57(16), 7073-7084.
[http://dx.doi.org/10.1021/jm5008648] [PMID: 25089370]
[117]
Tseng, H-J.; Lin, M-H.; Shiao, Y-J.; Yang, Y-C.; Chu, J-C.; Chen, C-Y.; Chen, Y-Y.; Lin, T.E.; Su, C-J.; Pan, S-L.; Chen, L-C.; Wang, C-Y.; Hsu, K-C.; Huang, W-J. Synthesis and biological evaluation of acridine-based histone deacetylase inhibitors as multitarget agents against Alzheimer’s disease. Eur. J. Med. Chem., 2020, 192, 112193.
[http://dx.doi.org/10.1016/j.ejmech.2020.112193] [PMID: 32151835]
[118]
Mesiti, F.; Chavarria, D.; Gaspar, A.; Alcaro, S.; Borges, F. The chemistry toolbox of multitarget-directed ligands for Alzheimer’s disease. Eur. J. Med. Chem., 2019, 181, 111572.
[http://dx.doi.org/10.1016/j.ejmech.2019.111572] [PMID: 31404859]
[119]
Pérez-Areales, F.J.; Turcu, A.L.; Barniol-Xicota, M.; Pont, C.; Pivetta, D.; Espargaró, A.; Bartolini, M.; De Simone, A.; Andrisano, V.; Pérez, B.; Sabate, R.; Sureda, F.X.; Vázquez, S.; Muñoz-Torrero, D. A novel class of multitarget anti-Alzheimer benzohomoadamantane‒chlorotacrine hybrids modulating cholinesterases and glutamate NMDA receptors. Eur. J. Med. Chem., 2019, 180, 613-626.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.051] [PMID: 31351393]
[120]
Xie, S.S.; Wang, X.; Jiang, N.; Yu, W.; Wang, K.D.; Lan, J.S.; Li, Z.R.; Kong, L.Y. Multi-target tacrine-coumarin hybrids: cholinesterase and monoamine oxidase B inhibition properties against Alzheimer’s disease. Eur. J. Med. Chem., 2015, 95, 153-165.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.040] [PMID: 25812965]
[121]
Pisani, L.; Farina, R.; Catto, M.; Iacobazzi, R.M.; Nicolotti, O.; Cellamare, S.; Mangiatordi, G.F.; Denora, N.; Soto-Otero, R.; Siragusa, L.; Altomare, C.D.; Carotti, A. Exploring basic tail modifications of coumarin-based dual acetylcholinesterase-monoamine oxidase b inhibitors: identification of water-soluble, brain-permeant neuroprotective multitarget agents. J. Med. Chem., 2016, 59(14), 6791-6806.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00562] [PMID: 27347731]
[122]
Joubert, J.; Foka, G.B.; Repsold, B.P.; Oliver, D.W.; Kapp, E.; Malan, S.F. Synthesis and evaluation of 7-substituted coumarin derivatives as multimodal monoamine oxidase-B and cholinesterase inhibitors for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 125, 853-864.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.041] [PMID: 27744252]
[123]
Chen, L.Z.; Sun, W.W.; Bo, L.; Wang, J.Q.; Xiu, C.; Tang, W.J.; Shi, J.B.; Zhou, H.P.; Liu, X.H. New arylpyrazoline-coumarins: synthesis and anti-inflammatory activity. Eur. J. Med. Chem., 2017, 138, 170-181.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.044] [PMID: 28667873]
[124]
Borges, R.S.; Lima, E.S.; Keita, H.; Ferreira, I.M.; Fernandes, C.P.; Cruz, R.A.S.; Duarte, J.L.; Velázquez-Moyado, J.; Ortiz, B.L.S.; Castro, A.N.; Ferreira, J.V.; da Silva Hage-Melim, L.I.; Carvalho, J.C.T. Anti-inflammatory and antialgic actions of a nanoemulsion of Rosmarinus officinalis L. essential oil and a molecular docking study of its major chemical constituents. Inflammopharmacology, 2018, 26(1), 183-195.
[http://dx.doi.org/10.1007/s10787-017-0374-8] [PMID: 28707182]
[125]
Chougala, B.M.; Samundeeswari, S.; Holiyachi, M.; Naik, N.S.; Shastri, L.A.; Dodamani, S.; Jalalpure, S.; Dixit, S.R.; Joshi, S.D.; Sunagar, V.A. Green, unexpected synthesis of bis-coumarin derivatives as potent anti-bacterial and anti-inflammatory agents. Eur. J. Med. Chem., 2018, 143, 1744-1756.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.072] [PMID: 29133055]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy