Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Extracellular Vesicles as Innovative Tools for Assessing Adverse Effects of Immunosuppressant Drugs

Author(s): Marianna Lucafò, Serena De Biasi, Debora Curci, Alessia Norbedo, Gabriele Stocco* and Giuliana Decorti

Volume 29, Issue 20, 2022

Published on: 20 January, 2022

Page: [3586 - 3600] Pages: 15

DOI: 10.2174/0929867328666211208114022

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Background: Extracellular vesicles (EVs) are a heterogeneous family of small vesicles released by donor cells and absorbed by recipient cells, which represent important mediators with fundamental roles in both physiological and pathological conditions. EVs are present in a large variety of biological fluids and have a great diagnostic and prognostic value. They have gained the interest of the scientific community due to their extreme versatility. In fact, they allow us to hypothesize new therapeutic strategies since, in addition to being cell signal mediators, they play an important role as biomarkers, drug vehicles, and potential new therapeutic agents. They are also involved in immunoregulation, have the ability to transmit resistance to a drug from one cell to a more sensitive one, and can act as drug delivery systems.

Objective: The main reciprocal interactions between EVs and immunosuppressive drugs will be presented.

Results: The known interactions between EVs and immunosuppressive drugs, in particular cyclosporin, glucocorticoids, rapamycin, methotrexate, cyclophosphamide, eculizumab, infliximab, certolizumab, etanercept, glatiramer acetate, and fingolimod are presented.

Conclusion: This review provides relevant information on the links between EVs and immunosuppressive drugs with a focus on EVs' role as tools to assess the effects of immunosuppressants, suggesting innovative properties and new possible therapeutic uses.

Keywords: Extracellular vesicles, immunosuppressants, biomarkers, therapeutic efficacy, adverse effects, therapy personalization.

[1]
Raposo, G.; Stoorvogel, W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol., 2013, 200(4), 373-383.
[http://dx.doi.org/10.1083/jcb.201211138] [PMID: 23420871]
[2]
Camussi, G.; Deregibus, M.C.; Bruno, S.; Cantaluppi, V.; Biancone, L. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int., 2010, 78(9), 838-848.
[http://dx.doi.org/10.1038/ki.2010.278] [PMID: 20703216]
[3]
Cufaro, M.C.; Pieragostino, D.; Lanuti, P.; Rossi, C.; Cicalini, I.; Federici, L.; De Laurenzi, V.; Del Boccio, P. Extracellular vesicles and their potential use in monitoring cancer progression and therapy: the contribution of proteomics. J. Oncol., 2019, 2019, 1639854.
[http://dx.doi.org/10.1155/2019/1639854] [PMID: 31281356]
[4]
Abels, E.R.; Breakefield, X.O. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell. Mol. Neurobiol., 2016, 36(3), 301-312.
[http://dx.doi.org/10.1007/s10571-016-0366-z] [PMID: 27053351]
[5]
Tschuschke, M.; Kocherova, I.; Bryja, A.; Mozdziak, P.; Angelova Volponi, A.; Janowicz, K.; Sibiak, R.; Piotrowska-Kempisty, H.; Iżycki, D.; Bukowska, D.; Antosik, P.; Shibli, J.A.; Dyszkiewicz-Konwińska, M.; Kempisty, B. Inclusion biogenesis, methods of isolation and clinical application of human cellular exosomes. J. Clin. Med., 2020, 9(2), 436.
[http://dx.doi.org/10.3390/jcm9020436] [PMID: 32041096]
[6]
Yáñez-Mó, M.; Siljander, P.R-M.; Andreu, Z.; Zavec, A.B.; Borràs, F.E.; Buzas, E.I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J.; Colás, E.; Cordeiro-da Silva, A.; Fais, S.; Falcon-Perez, J.M.; Ghobrial, I.M.; Giebel, B.; Gimona, M.; Graner, M.; Gursel, I.; Gursel, M.; Heegaard, N.H.; Hendrix, A.; Kierulf, P.; Kokubun, K.; Kosanovic, M.; Kralj-Iglic, V.; Krämer-Albers, E.M.; Laitinen, S.; Lässer, C.; Lener, T.; Ligeti, E.; Linē, A.; Lipps, G.; Llorente, A.; Lötvall, J.; Manček-Keber, M.; Marcilla, A.; Mittelbrunn, M.; Nazarenko, I.; Nolte-’t Hoen, E.N.; Nyman, T.A.; O’Driscoll, L.; Olivan, M.; Oliveira, C.; Pállinger, É.; Del Portillo, H.A.; Reventós, J.; Rigau, M.; Rohde, E.; Sammar, M.; Sánchez-Madrid, F.; Santarém, N.; Schallmoser, K.; Ostenfeld, M.S.; Stoorvogel, W.; Stukelj, R.; Van der Grein, S.G.; Vasconcelos, M.H.; Wauben, M.H.; De Wever, O. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles, 2015, 4, 27066.
[http://dx.doi.org/10.3402/jev.v4.27066] [PMID: 25979354]
[7]
Gurunathan, S.; Kang, M-H.; Jeyaraj, M.; Qasim, M.; Kim, J-H. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells, 2019, 8(4), 307.
[http://dx.doi.org/10.3390/cells8040307] [PMID: 30987213]
[8]
Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[9]
Pollet, H.; Conrard, L.; Cloos, A-S.; Tyteca, D. Plasma membrane lipid domains as platforms for vesicle biogenesis and shedding? Biomolecules, 2018, 8(3), 94.
[http://dx.doi.org/10.3390/biom8030094] [PMID: 30223513]
[10]
György, B.; Szabó, T.G.; Pásztói, M.; Pál, Z.; Misják, P.; Aradi, B.; László, V.; Pállinger, E.; Pap, E.; Kittel, A.; Nagy, G.; Falus, A.; Buzás, E.I. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell. Mol. Life Sci., 2011, 68(16), 2667-2688.
[http://dx.doi.org/10.1007/s00018-011-0689-3] [PMID: 21560073]
[11]
Cocucci, E.; Meldolesi, J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol., 2015, 25(6), 364-372.
[http://dx.doi.org/10.1016/j.tcb.2015.01.004] [PMID: 25683921]
[12]
Yoon, Y.J.; Kim, O.Y.; Gho, Y.S. Extracellular vesicles as emerging intercellular communicasomes. BMB Rep., 2014, 47(10), 531-539.
[http://dx.doi.org/10.5483/BMBRep.2014.47.10.164] [PMID: 25104400]
[13]
Colombo, M.; Raposo, G.; Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol., 2014, 30, 255-289.
[http://dx.doi.org/10.1146/annurev-cellbio-101512-122326] [PMID: 25288114]
[14]
Devhare, P.B.; Ray, R.B. Extracellular vesicles: novel mediator for cell to cell communications in liver pathogenesis. Mol. Aspects Med., 2018, 60, 115-122.
[http://dx.doi.org/10.1016/j.mam.2017.11.001] [PMID: 29122679]
[15]
Hauser, P.; Wang, S.; Didenko, V.V. Apoptotic Bodies: Selective Detection in Extracellular Vesicles. In: Signal Transduction Immunohistochemistry; Springer: New York: New York, NY, 2017; 1554, pp. 193-200.
[http://dx.doi.org/10.1007/978-1-4939-6759-9_12]
[16]
Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol., 2007, 9(6), 654-659.
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]
[17]
Villarroya-Beltri, C.; Gutiérrez-Vázquez, C.; Sánchez-Cabo, F.; Pérez-Hernández, D.; Vázquez, J.; Martin-Cofreces, N.; Martinez-Herrera, D.J.; Pascual-Montano, A.; Mittelbrunn, M.; Sánchez-Madrid, F. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun., 2013, 4, 2980.
[http://dx.doi.org/10.1038/ncomms3980] [PMID: 24356509]
[18]
Console, L.; Scalise, M.; Indiveri, C. Exosomes in inflammation and role as biomarkers. Clin. Chim. Acta, 2019, 488, 165-171.
[http://dx.doi.org/10.1016/j.cca.2018.11.009] [PMID: 30419221]
[19]
Théry, C. Exosomes: secreted vesicles and intercellular communications. F1000 Biol. Rep., 2011, 3, 15.
[http://dx.doi.org/10.3410/B3-15] [PMID: 21876726]
[20]
Lu, J.; Wu, J.; Tian, J.; Wang, S. Role of T cell-derived exosomes in immunoregulation. Immunol. Res., 2018, 66(3), 313-322.
[http://dx.doi.org/10.1007/s12026-018-9000-0] [PMID: 29804198]
[21]
Clayton, A.; Al-Taei, S.; Webber, J.; Mason, M.D.; Tabi, Z. Cancer exosomes express CD39 and CD73, which suppress T cells through Adenosine production. JI, 2011, 187, 676-683.
[http://dx.doi.org/10.4049/jimmunol.1003884]
[22]
Tang, T-T.; Wang, B.; Lv, L-L.; Liu, B-C. Extracellular vesicle-based nanotherapeutics: emerging frontiers in anti-inflammatory therapy. Theranostics, 2020, 10(18), 8111-8129.
[http://dx.doi.org/10.7150/thno.47865] [PMID: 32724461]
[23]
Fireman, M.; DiMartini, A.F.; Armstrong, S.C.; Cozza, K.L. Immunosuppressants. Psychosomatics, 2004, 45(4), 354-360.
[http://dx.doi.org/10.1176/appi.psy.45.4.354] [PMID: 15232051]
[24]
Mohammadpour, N.; Elyasi, S.; Vahdati, N.; Mohammadpour, A.H.; Shamsara, J. A review on therapeutic drug monitoring of immunosuppressant drugs. Iran. J. Basic Med. Sci., 2011, 14(6), 485-498.
[PMID: 23493821]
[25]
Katzung, B.G.; Trevor, A.J. Farmacologia generale e clinica, 10th ed.; Piccin-Nuova Libraria: Padova, 2017.
[26]
Corrigan, J.J. Hemolytic-Uremic syndrome. Pediatr. Rev., 2001, 22(11), 365-369.
[27]
Noris, M.; Caprioli, J.; Bresin, E.; Mossali, C.; Pianetti, G.; Gamba, S.; Daina, E.; Fenili, C.; Castelletti, F.; Sorosina, A.; Piras, R.; Donadelli, R.; Maranta, R.; van der Meer, I.; Conway, E.M.; Zipfel, P.F.; Goodship, T.H.; Remuzzi, G. Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin. J. Am. Soc. Nephrol., 2010, 5(10), 1844-1859.
[http://dx.doi.org/10.2215/CJN.02210310] [PMID: 20595690]
[28]
Renner, B.; Klawitter, J.; Goldberg, R.; McCullough, J.W.; Ferreira, V.P.; Cooper, J.E.; Christians, U.; Thurman, J.M. Cyclosporine induces endothelial cell release of complement-activating microparticles. J. Am. Soc. Nephrol., 2013, 24(11), 1849-1862.
[http://dx.doi.org/10.1681/ASN.2012111064] [PMID: 24092930]
[29]
Zipfel, P.F.; Wiech, T.; Rudnick, R.; Afonso, S.; Person, F.; Skerka, C. Complement inhibitors in clinical trials for glomerular diseases. Front. Immunol., 2019, 10, 2166.
[http://dx.doi.org/10.3389/fimmu.2019.02166] [PMID: 31611870]
[30]
Schwenger, V.; Zeier, M.; Ritz, E. Hypertension after renal transplantation. Curr. Hypertens. Rep., 2001, 3(5), 434-439.
[http://dx.doi.org/10.1007/s11906-001-0063-1] [PMID: 11551380]
[31]
Hoorn, EJ; Walsh, SB; McCormick, JA; Zietse, R; Unwin, RJ; Ellison, DH Pathogenesis of calcineurin inhibitor–induced hypertension. J. Nephrol., 2012, 25, 269-275.
[http://dx.doi.org/10.5301/jn.5000174]
[32]
Pathare, G.; Tutakhel, O.A.Z.; van der Wel, M.C.; Shelton, L.M.; Deinum, J.; Lenders, J.W.M.; Hoenderop, J.G.J.; Bindels, R.J.M. Hydrochlorothiazide treatment increases the abundance of the NaCl cotransporter in urinary extracellular vesicles of essential hypertensive patients. Am. J. Physiol. Renal Physiol., 2017, 312(6), F1063-F1072.
[http://dx.doi.org/10.1152/ajprenal.00644.2016] [PMID: 28274929]
[33]
Esteva-Font, C.; Guillén-Gómez, E.; Diaz, J.M.; Guirado, L.; Facundo, C.; Ars, E.; Ballarin, J.A.; Fernández-Llama, P. Renal sodium transporters are increased in urinary exosomes of cyclosporine-treated kidney transplant patients. Am. J. Nephrol., 2014, 39(6), 528-535.
[http://dx.doi.org/10.1159/000362905] [PMID: 24942911]
[34]
Rojas-Vega, L.; Jiménez-Vega, A.R.; Bazúa-Valenti, S.; Arroyo-Garza, I.; Jiménez, J.V.; Gómez-Ocádiz, R.; Carrillo-Pérez, D.L.; Moreno, E.; Morales-Buenrostro, L.E.; Alberú, J.; Gamba, G. Increased phosphorylation of the renal Na+-Cl- cotransporter in male kidney transplant recipient patients with hypertension: a prospective cohort. Am. J. Physiol. Renal Physiol., 2015, 309(10), F836-F842.
[http://dx.doi.org/10.1152/ajprenal.00326.2015] [PMID: 26336164]
[35]
Tutakhel, O.A.Z.; Moes, A.D.; Valdez-Flores, M.A.; Kortenoeven, M.L.A.; Vrie, M.V.D.; Jeleń, S.; Fenton, R.A.; Zietse, R.; Hoenderop, J.G.J.; Hoorn, E.J.; Hilbrands, L.; Bindels, R.J.M. NaCl cotransporter abundance in urinary vesicles is increased by calcineurin inhibitors and predicts thiazide sensitivity. PLoS One, 2017, 12(4), e0176220.
[http://dx.doi.org/10.1371/journal.pone.0176220] [PMID: 28430812]
[36]
Pan, I.; Roitenberg, N.; Cohen, E. Vesicle-mediated secretion of misfolded prion protein molecules from cyclosporin A-treated cells. FASEB J., 2018, 32(3), 1479-1492.
[http://dx.doi.org/10.1096/fj.201700598RRR] [PMID: 29127190]
[37]
Trevor, J.L.; Deshane, J.S. Refractory asthma: mechanisms, targets, and therapy. Allergy, 2014, 69(7), 817-827.
[http://dx.doi.org/10.1111/all.12412] [PMID: 24773466]
[38]
Hoppstädter, J.; Dembek, A.; Linnenberger, R.; Dahlem, C.; Barghash, A.; Fecher-Trost, C.; Fuhrmann, G.; Koch, M.; Kraegeloh, A.; Huwer, H.; Kiemer, A.K. Toll-like receptor 2 release by macrophages: an anti-inflammatory program induced by glucocorticoids and lipopoly- saccharide. Front. Immunol., 2019, 10, 1634.
[http://dx.doi.org/10.3389/fimmu.2019.01634] [PMID: 31396208]
[39]
Nagai, Y.; Takatsu, K. Role of the Immune System in Obesity-Associated Inflammation and Insulin Resistance. Nutrition in the Prevention and Treatment of Abdominal Obesity; Elsevier, 2014, pp. 281-293.
[http://dx.doi.org/10.1016/B978-0-12-407869-7.00026-X]
[40]
Chen, C-Y.; Du, W.; Rao, S-S.; Tan, Y-J.; Hu, X-K.; Luo, M-J.; Ou, Q.F.; Wu, P.F.; Qing, L.M.; Cao, Z.M.; Yin, H.; Yue, T.; Zhan, C.H.; Huang, J.; Zhang, Y.; Liu, Y.W.; Wang, Z.X.; Liu, Z.Z.; Cao, J.; Liu, J.H.; Hong, C.G.; He, Z.H.; Yang, J.X.; Tang, S.Y.; Tang, J.Y.; Xie, H. Extracellular vesicles from human urine-derived stem cells inhibit glucocorticoid-induced osteonecrosis of the femoral head by transporting and releasing pro-angiogenic DMBT1 and anti-apoptotic TIMP1. Acta Biomater., 2020, 111, 208-220.
[http://dx.doi.org/10.1016/j.actbio.2020.05.020] [PMID: 32447063]
[41]
Reynolds, N.J.; Al-Daraji, W.I. Calcineurin inhibitors and sirolimus: mechanisms of action and applications in dermatology. Clin. Exp. Dermatol., 2002, 27(7), 555-561.
[http://dx.doi.org/10.1046/j.1365-2230.2002.01148.x] [PMID: 12464150]
[42]
Li, X.; Li, J-J.; Yang, J-Y.; Wang, D-S.; Zhao, W.; Song, W-J.; Li, W.M.; Wang, J.F.; Han, W.; Zhang, Z.C.; Yu, Y.; Cao, D.Y.; Dou, K.F. Tolerance induction by exosomes from immature dendritic cells and rapamycin in a mouse cardiac allograft model. PLoS One, 2012, 7(8), e44045.
[http://dx.doi.org/10.1371/journal.pone.0044045] [PMID: 22952868]
[43]
Fucikova, J.; Palova-Jelinkova, L.; Bartunkova, J.; Spisek, R. Induction of tolerance and immunity by dendritic cells: Mechanisms and clinical applications. Front. Immunol., 2019, 10, 2393.
[http://dx.doi.org/10.3389/fimmu.2019.02393] [PMID: 31736936]
[44]
Catassi, C.; Fabiani, E.; Corrao, G.; Barbato, M.; De Renzo, A.; Carella, A.M.; Gabrielli, A.; Leoni, P.; Carroccio, A.; Baldassarre, M.; Bertolani, P.; Caramaschi, P.; Sozzi, M.; Guariso, G.; Volta, U.; Corazza, G.R. Risk of non-Hodgkin lymphoma in celiac disease. JAMA, 2002, 287(11), 1413-1419.
[http://dx.doi.org/10.1001/jama.287.11.1413] [PMID: 11903028]
[45]
Gallagher, M.P.; Kelly, P.J.; Jardine, M.; Perkovic, V.; Cass, A.; Craig, J.C.; Eris, J.; Webster, A.C. Long-term cancer risk of immunosuppressive regimens after kidney transplantation. J. Am. Soc. Nephrol., 2010, 21(5), 852-858.
[http://dx.doi.org/10.1681/ASN.2009101043] [PMID: 20431040]
[46]
Tubita, V.; Segui-Barber, J.; Lozano, J.J.; Banon-Maneus, E.; Rovira, J.; Cucchiari, D.; Moya-Rull, D.; Oppenheimer, F.; Del Portillo, H.; Campistol, J.M.; Diekmann, F.; Ramirez-Bajo, M.J.; Revuelta, I. Effect of immunosuppression in miRNAs from extracellular vesicles of colorectal cancer and their influence on the pre-metastatic niche. Sci. Rep., 2019, 9(1), 11177.
[http://dx.doi.org/10.1038/s41598-019-47581-y] [PMID: 31371743]
[47]
Cronstein, B.N. The mechanism of action of methotrexate. Rheum. Dis. Clin. North Am., 1997, 23(4), 739-755.
[http://dx.doi.org/10.1016/S0889-857X(05)70358-6] [PMID: 9361153]
[48]
Kato, T.; Miyaki, S.; Ishitobi, H.; Nakamura, Y.; Nakasa, T.; Lotz, M.K.; Ochi, M. Exosomes from IL-1β stimulated synovial fibroblasts induce osteoarthritic changes in articular chondrocytes. Arthritis Res. Ther., 2014, 16(4), R163.
[http://dx.doi.org/10.1186/ar4679] [PMID: 25092378]
[49]
Tsuno, H.; Suematsu, N.; Sato, T.; Arito, M.; Matsui, T.; Iizuka, N.; Omoteyama, K.; Okamoto, K.; Tohma, S.; Kurokawa, M.S.; Kato, T. Effects of methotrexate and salazosulfapyridine on protein profiles of exosomes derived from a human synovial sarcoma cell line of SW982. Proteomics Clin. Appl., 2016, 10(2), 164-171.
[http://dx.doi.org/10.1002/prca.201500064] [PMID: 26172530]
[50]
Severin, M.J.; Campagno, R.V.; Brandoni, A.; Torres, A.M. Time evolution of methotrexate-induced kidney injury: A comparative study between different biomarkers of renal damage in rats. Clin. Exp. Pharmacol. Physiol., 2019, 46(9), 828-836.
[http://dx.doi.org/10.1111/1440-1681.13122] [PMID: 31187885]
[51]
Guo, F.; Chang, C.K.; Fan, H.H.; Nie, X.X.; Ren, Y.N.; Liu, Y.Y.; Zhao, L.H. Anti-tumour effects of exosomes in combination with cyclophosphamide and polyinosinic-polycytidylic acid. J. Int. Med. Res., 2008, 36(6), 1342-1353.
[http://dx.doi.org/10.1177/147323000803600623] [PMID: 19094445]
[52]
Otten, H-M.M.B.; Mathijssen, J.; ten Cate, H.; Soesan, M.; Inghels, M.; Richel, D.J.; Prins, M.H. Symptomatic venous thromboembolism in cancer patients treated with chemotherapy: An underestimated phenomenon. Arch. Intern. Med., 2004, 164(2), 190-194.
[http://dx.doi.org/10.1001/archinte.164.2.190] [PMID: 14744843]
[53]
Rickles, F.R.; Patierno, S.; Fernandez, P.M. Tissue factor, thrombin, and cancer. Chest, 2003, 124(3), 58S-68S.
[http://dx.doi.org/10.1378/chest.124.3_suppl.58S] [PMID: 12970125]
[54]
Alexander, E.T.; Minton, A.R.; Hayes, C.S.; Goss, A.; Van Ryn, J.; Gilmour, S.K. Thrombin inhibition and cyclophosphamide synergistically block tumor progression and metastasis. Cancer Biol. Ther., 2015, 16(12), 1802-1811.
[http://dx.doi.org/10.1080/15384047.2015.1078025] [PMID: 26383051]
[55]
Ibrahim, H.M.; Mohammed-Geba, K.; Tawfic, A.A.; El-Magd, M.A. Camel milk exosomes modulate cyclophosphamide-induced oxidative stress and immuno-toxicity in rats. Food Funct., 2019, 10(11), 7523-7532.
[http://dx.doi.org/10.1039/C9FO01914F] [PMID: 31674611]
[56]
McKeage, K. Eculizumab: A review of its use in paroxysmal nocturnal haemoglobinuria. Drugs, 2011, 71(17), 2327-2345.
[http://dx.doi.org/10.2165/11208300-000000000-00000] [PMID: 22085388]
[57]
Nester, C.M.; Barbour, T.; de Cordoba, S.R.; Dragon-Durey, M.A.; Fremeaux-Bacchi, V.; Goodship, T.H.J.; Kavanagh, D.; Noris, M.; Pickering, M.; Sanchez-Corral, P.; Skerka, C.; Zipfel, P.; Smith, R.J. Atypical aHUS: State of the art. Mol. Immunol., 2015, 67(1), 31-42.
[http://dx.doi.org/10.1016/j.molimm.2015.03.246] [PMID: 25843230]
[58]
Devalet, B.; Mullier, F.; Chatelain, B.; Dogné, J-M.; Chatelain, C. The central role of extracellular vesicles in the mechanisms of thrombosis in paroxysmal nocturnal haemoglobinuria: a review. J. Extracell. Vesicles, 2014, 3, 23304.
[http://dx.doi.org/10.3402/jev.v3.23304] [PMID: 24672668]
[59]
Wannez, A.; Devalet, B.; Bouvy, C.; Laloy, J.; Bihin, B.; Chatelain, B.; Chatelain, C.; Dogné, J.M.; Mullier, F. Eculizumab decreases the procoagulant activity of extracellular vesicles in paroxysmal nocturnal hemoglobinuria: A pilot prospective longitudinal clinical study. Thromb. Res., 2017, 156, 142-148.
[http://dx.doi.org/10.1016/j.thromres.2017.06.013] [PMID: 28646725]
[60]
Devalet, B.; Wannez, A.; Bailly, N.; Alpan, L.; Gheldof, D.; Douxfils, J.; Bihin, B.; Chatelain, B.; Dogné, J.M.; Chatelain, C.; Mullier, F. Prospective and comparative study of paroxysmal nocturnal hemoglobinuria patients treated or not by eculizumab: Focus on platelet extracellular vesicles. Medicine (Baltimore), 2019, 98(27), e16164.
[http://dx.doi.org/10.1097/MD.0000000000016164] [PMID: 31277120]
[61]
Weitz, I.C.; Razavi, P.; Rochanda, L.; Zwicker, J.; Furie, B.; Manly, D.; Mackman, N.; Green, R.; Liebman, H.A. Eculizumab therapy results in rapid and sustained decreases in markers of thrombin generation and inflammation in patients with PNH independent of its effects on hemolysis and microparticle formation. Thromb. Res., 2012, 130(3), 361-368.
[http://dx.doi.org/10.1016/j.thromres.2012.04.001] [PMID: 22542362]
[62]
Liebman, H.A.; Feinstein, D.I. Thrombosis in patients with paroxysmal noctural hemoglobinuria is associated with markedly elevated plasma levels of leukocyte-derived tissue factor. Thromb. Res., 2003, 111(4-5), 235-238.
[http://dx.doi.org/10.1016/j.thromres.2003.09.018] [PMID: 14693169]
[63]
Teruel-Montoya, R.; Luengo-Gil, G.; Vallejo, F.; Yuste, J.E.; Bohdan, N.; García-Barberá, N.; Espín, S.; Martínez, C.; Espín, J.C.; Vicente, V.; Martínez-Martínez, I. Differential miRNA expression profile and proteome in plasma exosomes from patients with paroxysmal nocturnal hemoglobinuria. Sci. Rep., 2019, 9(1), 3611.
[http://dx.doi.org/10.1038/s41598-019-40453-5] [PMID: 30837665]
[64]
Goodman, G.; Burton, L.L.; Hilal-Dandan, R.; Knollmann, B.C. Goodman and Gilman. Le basi farmacologiche della terapia. 13th ed. Zanichelli; 2019.
[65]
Markham, A.; Lamb, H.M. Infliximab: A review of its use in the management of rheumatoid arthritis. Drugs, 2000, 59(6), 1341-1359.
[http://dx.doi.org/10.2165/00003495-200059060-00010] [PMID: 10882166]
[66]
Keating, G.M.; Perry, C.M. Infliximab: an updated review of its use in Crohn’s disease and rheumatoid arthritis. BioDrugs, 2002, 16(2), 111-148.
[http://dx.doi.org/10.2165/00063030-200216020-00005] [PMID: 11985485]
[67]
Chamouard, P.; Desprez, D.; Hugel, B.; Kunzelmann, C.; Gidon-Jeangirard, C.; Lessard, M.; Baumann, R.; Freyssinet, J.M.; Grunebaum, L. Circulating cell-derived microparticles in Crohn’s disease. Dig. Dis. Sci., 2005, 50(3), 574-580.
[http://dx.doi.org/10.1007/s10620-005-2477-0] [PMID: 15810645]
[68]
Pelletier, F.; Garnache-Ottou, F.; Biichlé, S.; Vivot, A.; Humbert, P.; Saas, P.; Seillès, E.; Aubin, F. Effects of anti-TNF-α agents on circulating endothelial-derived and platelet-derived microparticles in psoriasis. Exp. Dermatol., 2014, 23(12), 924-925.
[http://dx.doi.org/10.1111/exd.12551] [PMID: 25255926]
[69]
Mansur, R.B.; Delgado-Peraza, F.; Subramaniapillai, M.; Lee, Y.; Iacobucci, M.; Rodrigues, N.; Rosenblat, J.D.; Brietzke, E.; Cosgrove, V.E.; Kramer, N.E.; Suppes, T.; Raison, C.L.; Chawla, S.; Nogueras-Ortiz, C.; McIntyre, R.S.; Kapogiannis, D. Extracellular vesicle biomarkers reveal inhibition of neuroinflammation by infliximab in association with antidepressant response in adults with bipolar depression. Cells, 2020, 9(4), 895.
[http://dx.doi.org/10.3390/cells9040895] [PMID: 32268604]
[70]
Sandborn, W.J.; Feagan, B.G.; Stoinov, S.; Honiball, P.J.; Rutgeerts, P.; Mason, D.; Bloomfield, R.; Schreiber, S. Certolizumab pegol for the treatment of Crohn’s disease. N. Engl. J. Med., 2007, 357(3), 228-238.
[http://dx.doi.org/10.1056/NEJMoa067594] [PMID: 17634458]
[71]
Keystone, E.C.; Ware, C.F. Tumor necrosis factor and anti-tumor necrosis factor therapies. J. Rheumatol. Suppl., 2010, 85, 27-39.
[http://dx.doi.org/10.3899/jrheum.091463] [PMID: 20436163]
[72]
Aviña-Zubieta, J.A.; Choi, H.K.; Sadatsafavi, M.; Etminan, M.; Esdaile, J.M.; Lacaille, D. Risk of cardiovascular mortality in patients with rheumatoid arthritis: a meta-analysis of observational studies. Arthritis Rheum., 2008, 59(12), 1690-1697.
[http://dx.doi.org/10.1002/art.24092] [PMID: 19035419]
[73]
Heathfield, S.K.; Parker, B.; Zeef, L.A.H.; Bruce, I.N.; Alexander, M.Y. Certolizumab pegol attenuates the pro-inflammatory state in endothelial cells in a manner that is atheroprotective. Clin. Exp. Rheumatol., 2013, 31(2), 225-233.
[PMID: 23295110]
[74]
Collins, T.; Williams, A.; Johnston, G.I.; Kim, J.; Eddy, R.; Shows, T.; Gimbrone, M.A.; Bevilacqua, M.P. Structure and chromosomal location of the gene for endothelial-leukocyte adhesion molecule 1. J. Biol. Chem., 1991, 266(4), 2466-2473.
[PMID: 1703529]
[75]
Van den Brande, J.M.H.; Braat, H.; van den Brink, G.R.; Versteeg, H.H.; Bauer, C.A.; Hoedemaeker, I.; van Montfrans, C.; Hommes, D.W.; Peppelenbosch, M.P.; van Deventer, S.J. Infliximab but not etanercept induces apoptosis in lamina propria T-lymphocytes from patients with Crohn’s disease. Gastroenterology, 2003, 124(7), 1774-1785.
[http://dx.doi.org/10.1016/S0016-5085(03)00382-2] [PMID: 12806611]
[76]
Barbati, C.; Vomero, M.; Colasanti, T.; Diociaiuti, M.; Ceccarelli, F.; Ferrigno, S.; Finucci, A.; Miranda, F.; Novelli, L.; Perricone, C.; Spinelli, F.R.; Truglia, S.; Conti, F.; Valesini, G.; Alessandri, C. TNFα expressed on the surface of microparticles modulates endothelial cell fate in rheumatoid arthritis. Arthritis Res. Ther., 2018, 20(1), 273.
[http://dx.doi.org/10.1186/s13075-018-1768-8] [PMID: 30526655]
[77]
Jarvis, B.; Faulds, D. Etanercept: a review of its use in rheumatoid arthritis. Drugs, 1999, 57(6), 945-966.
[http://dx.doi.org/10.2165/00003495-199957060-00014] [PMID: 10400407]
[78]
Arnon, R.; Sela, M. The chemistry of the Copaxone drug. Chem. Isr., 1999, 1, 12-17.
[79]
Andersen, H.H.; Duroux, M.; Gazerani, P. MicroRNAs as modulators and biomarkers of inflammatory and neuropathic pain conditions. Neurobiol. Dis., 2014, 71, 159-168.
[http://dx.doi.org/10.1016/j.nbd.2014.08.003] [PMID: 25119878]
[80]
Singh, J.; Deshpande, M.; Suhail, H.; Rattan, R.; Giri, S. Targeted stage-specific inflammatory microRNA profiling in urine during disease progression in experimental autoimmune encephalomyelitis: Markers of disease progression and drug response. J. Neuroimmune Pharmacol., 2016, 11(1), 84-97.
[http://dx.doi.org/10.1007/s11481-015-9630-0] [PMID: 26277791]
[81]
Kappos, L.; Antel, J.; Comi, G.; Montalban, X.; O’Connor, P.; Polman, C.H.; Haas, T.; Korn, A.A.; Karlsson, G.; Radue, E.W. Oral fingolimod (FTY720) for relapsing multiple sclerosis. N. Engl. J. Med., 2006, 355(11), 1124-1140.
[http://dx.doi.org/10.1056/NEJMoa052643] [PMID: 16971719]
[82]
Sáenz-Cuesta, M.; Alberro, A.; Muñoz-Culla, M.; Osorio-Querejeta, I.; Fernandez-Mercado, M.; Lopetegui, I.; Tainta, M.; Prada, Á.; Castillo-Triviño, T.; Falcón-Pérez, J.M.; Olascoaga, J.; Otaegui, D. The first dose of fingolimod affects circulating extracellular vesicles in multiple sclerosis patients. Int. J. Mol. Sci., 2018, 19(8), 2448.
[http://dx.doi.org/10.3390/ijms19082448] [PMID: 30126230]
[83]
Zinger, A.; Latham, S.L.; Combes, V.; Byrne, S.; Barnett, M.H.; Hawke, S.; Grau, G.E. Plasma levels of endothelial and B-cell-derived microparticles are restored by fingolimod treatment in multiple sclerosis patients. Mult. Scler., 2016, 22(14), 1883-1887.
[http://dx.doi.org/10.1177/1352458516636959] [PMID: 26931477]
[84]
Young, M.M.; Takahashi, Y.; Fox, T.E.; Yun, J.K.; Kester, M.; Wang, H-G. Sphingosine kinase 1 cooperates with autophagy to maintain endocytic membrane trafficking. Cell Rep., 2016, 17(6), 1532-1545.
[http://dx.doi.org/10.1016/j.celrep.2016.10.019] [PMID: 27806293]
[85]
Amoruso, A.; Blonda, M.; D’Arrigo, G.; Grasso, R.; Di Francescantonio, V.; Verderio, C.; Avolio, C. Effect of fingolimod action on the release of monocyte-derived microvesicles in multiple sclerosis patients. J. Neuroimmunol., 2018, 323, 43-48.
[http://dx.doi.org/10.1016/j.jneuroim.2018.07.008] [PMID: 30196832]
[86]
Bianco, F.; Perrotta, C.; Novellino, L.; Francolini, M.; Riganti, L.; Menna, E.; Saglietti, L.; Schuchman, E.H.; Furlan, R.; Clementi, E.; Matteoli, M.; Verderio, C. Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO J., 2009, 28(8), 1043-1054.
[http://dx.doi.org/10.1038/emboj.2009.45] [PMID: 19300439]
[87]
Bianco, F.; Pravettoni, E.; Colombo, A.; Schenk, U.; Möller, T.; Matteoli, M.; Verderio, C. Astrocyte-derived ATP induces vesicle shedding and IL-1 β release from microglia. J. Immunol., 2005, 174(11), 7268-7277.
[http://dx.doi.org/10.4049/jimmunol.174.11.7268] [PMID: 15905573]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy