Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Mini-Review Article

The Role of Platelet in Severe and Fatal Forms of COVID-19

Author(s): Edgar L. Esparza-Ibarra, Jorge L. Ayala-Luján, Brenda Mendoza-Almanza, Irma González-Curiel, Susana Godina-González, Marisa Hernández-Barrales and Gretel Mendoza-Almanza *

Volume 22, Issue 7, 2022

Published on: 24 February, 2022

Page: [572 - 583] Pages: 12

DOI: 10.2174/1566524021666210910112404

Price: $65

conference banner
Abstract

On December 31, 2019, the World Health Organization received a report of several pneumonia cases in Wuhan, China. The causative agent was later confirmed as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Since then, the SARS-CoV-2 virus has spread throughout the world, giving rise in 2020 to the 2019 coronavirus (COVID-19) pandemic, which, according to the world map of the World Health Organization, has, until May 18, 2021, infected 163,312,429 people and caused 3,386,825 deaths throughout the world. Most critical patients progress rapidly to acute respiratory distress syndrome (ARDS) and, in underlying form, septic shock, irreversible metabolic acidosis, blood coagulation dysfunction, or hemostatic and thrombotic anomalies have been reported as the leading causes of death due to COVID-19. The main findings in severe and fatal COVID-19 patients make it clear that platelets play a crucial role in developing severe disease cases. Platelets are the enucleated cells responsible for hemostasis and thrombi formation; thus, platelet hyperreactivity induced by pro-inflammatory microenvironments contributes to the "cytokine storm" that characterizes the more aggressive course of COVID- 19.

Keywords: COVID-19, SARS-COV-2, platelets, cytokine storm, several COVID form, fatal COVID form.

[1]
Palacios-Cruz M, Santos E, Velazquez Cervantes MA. LeA3n Juarez M. COVID-19, a worldwide public health emergency. Rev Clin Esp 2020; 221: 2254-8874.
[2]
Forni D, Cagliani R, Clerici M, Sironi M. Molecular evolution of human coronavirus genomes. Trends Microbiol 2017; 25(1): 35-48.
[http://dx.doi.org/10.1016/j.tim.2016.09.001] [PMID: 27743750]
[3]
Rabaan AA, Al-Ahmed SH, Haque S, et al. SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview. Infez Med 2020; 28(2): 174-84.
[PMID: 32275259]
[4]
Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 2016; 24(6): 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003] [PMID: 27012512]
[5]
Ge XY, Li JL, Yang XL, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013; 503(7477): 535-8.
[http://dx.doi.org/10.1038/nature12711] [PMID: 24172901]
[6]
Fan Y, Zhao K, Shi ZL, Zhou P. Bat coronaviruses in China. Viruses 2019; 11(3): 210.
[http://dx.doi.org/10.3390/v11030210] [PMID: 30832341]
[7]
Ramadan N, Shaib H. Middle East respiratory syndrome coronavirus (MERS-CoV): A review. Germs 2019; 9(1): 35-42.
[http://dx.doi.org/10.18683/germs.2019.1155] [PMID: 31119115]
[8]
Peeri NC, Shrestha N, Rahman MS, et al. The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: What lessons have we learned? Int J Epidemiol 2020; 49(3): 717-26.
[http://dx.doi.org/10.1093/ije/dyaa033] [PMID: 32086938]
[9]
Lam TTY, Jia N, Zhang YW, et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 2020; 583(7815): 282-5.
[http://dx.doi.org/10.1038/s41586-020-2169-0] [PMID: 32218527]
[10]
Ashour HM, Elkhatib WF, Rahman MM, Elshabrawy HA. Insights into the recent 2019 novel coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks. Pathogens 2020; 9(3): 186.
[http://dx.doi.org/10.3390/pathogens9030186] [PMID: 32143502]
[11]
Platto S, Xue T, Carafoli E. COVID19: An announced pandemic. Cell Death Dis 2020; 11(9): 799.
[http://dx.doi.org/10.1038/s41419-020-02995-9] [PMID: 32973152]
[12]
Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents 2020; 55(3)105924
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105924] [PMID: 32081636]
[13]
Sanyaolu A, Okorie C, Marinkovic A, et al. Comorbidity and its impact on patients with COVID-19. SN Compr Clin Med (Lond) 2020; 2(8): 1069-76.
[14]
Wang H, Li X, Li T, et al. The genetic sequence, origin, and diagnosis of SARS-CoV-2. Eur J Clin Microbiol Infect Dis 2020; 39(9): 1629-35.
[http://dx.doi.org/10.1007/s10096-020-03899-4] [PMID: 32333222]
[15]
Vallamkondu J, John A, Wani WY, et al. SARS-CoV-2 pathophysiology and assessment of coronaviruses in CNS diseases with a focus on therapeutic targets. Biochim Biophys Acta Mol Basis Dis 2020; 1866(10)165889
[http://dx.doi.org/10.1016/j.bbadis.2020.165889] [PMID: 32603829]
[16]
Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res 2020; 24: 91-8.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[17]
Singh KK, Chaubey G, Chen JY, Suravajhala P. Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis. Am J Physiol Cell Physiol 2020; 319(2): C258-67.
[http://dx.doi.org/10.1152/ajpcell.00224.2020] [PMID: 32510973]
[18]
Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol 2020; 92(4): 418-23.
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[19]
Hou YJ, Okuda K, Edwards CE, et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 2020; 182(2): 429-446.e14.
[http://dx.doi.org/10.1016/j.cell.2020.05.042] [PMID: 32526206]
[20]
Yoshimoto FK. The proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the Cause of COVID-19. Protein J 2020; 39(3): 198-216.
[http://dx.doi.org/10.1007/s10930-020-09901-4] [PMID: 32447571]
[21]
Durante A, Peretto G, Laricchia A, et al. Role of the renin-angiotensin-aldosterone system in the pathogenesis of atherosclerosis. Curr Pharm Des 2012; 18(7): 981-1004.
[http://dx.doi.org/10.2174/138161212799436467] [PMID: 22283771]
[22]
Li Y, Zhou W, Yang L, You R. Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor. Pharmacol Res 2020; 157104833
[http://dx.doi.org/10.1016/j.phrs.2020.104833] [PMID: 32302706]
[23]
Perini MV, Dmello RS, Nero TL, Chand AL. Evaluating the benefits of renin-angiotensin system inhibitors as cancer treatments. Pharmacol Ther 2020; 211107527
[http://dx.doi.org/10.1016/j.pharmthera.2020.107527] [PMID: 32173557]
[24]
McRobbie H, Kwan B. Tobacco use disorder and the lungs. Addiction 2021; 116(9): 2559-71.
[http://dx.doi.org/10.1111/add.15309] [PMID: 33140508]
[25]
Young MJ, Clyne CD, Chapman KE. Endocrine aspects of ACE2 regulation: RAAS, steroid hormones and SARS-CoV-2. J Endocrinol 2020; 247(2): R45-62.
[http://dx.doi.org/10.1530/JOE-20-0260] [PMID: 32966970]
[26]
Zamorano Cuervo N, Grandvaux N. ACE2: Evidence of role as entry receptor for SARS-CoV-2 and implications in comorbidities. eLife 2020; 9e61390
[http://dx.doi.org/10.7554/eLife.61390] [PMID: 33164751]
[27]
Wang L, Xiang Y. Spike glycoprotein-mediated entry of SARS coronaviruses. Viruses 2020; 12(11): 1289.
[http://dx.doi.org/10.3390/v12111289] [PMID: 33187074]
[28]
Lukassen S, Chua RL, Trefzer T, et al. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J 2020; 39(10)e105114
[http://dx.doi.org/10.15252/embj.2020105114] [PMID: 32246845]
[29]
Kumar V. Emerging human coronavirus infections (SARS, MERS, and COVID-19): Where they are leading us. Int Rev Immunol 2020; 3: 1-49.
[http://dx.doi.org/10.1080/08830185.2019.1707479] [PMID: 32744465]
[30]
Bertram S, Dijkman R, Habjan M, et al. TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. J Virol 2013; 87(11): 6150-60.
[http://dx.doi.org/10.1128/JVI.03372-12] [PMID: 23536651]
[31]
Hou Y, Zhao J, Martin W, et al. New insights into genetic susceptibility of COVID-19: An ACE2 and TMPRSS2 polymorphism analysis. BMC Med 2020; 18(1): 216.
[http://dx.doi.org/10.1186/s12916-020-01673-z] [PMID: 32664879]
[32]
Lippi G, Lavie CJ, Henry BM, Sanchis-Gomar F. Do genetic polymorphisms in angiotensin converting enzyme 2 (ACE2) gene play a role in coronavirus disease 2019 (COVID-19)? Clin Chem Lab Med 2020; 58(9): 1415-22.
[http://dx.doi.org/10.1515/cclm-2020-0727] [PMID: 32598305]
[33]
Mohammad A, Marafie SK, Alshawaf E, Abu-Farha M, Abubaker J, Al-Mulla F. Structural analysis of ACE2 variant N720D demonstrates a higher binding affinity to TMPRSS2. Life Sci 2020; 259118219
[http://dx.doi.org/10.1016/j.lfs.2020.118219] [PMID: 32768580]
[34]
Darbani B. The expression and polymorphism of entry machinery for COVID-19 in human: Juxtaposing population groups, gender, and different tissues. Int J Environ Res Public Health 2020; 17(10): 3433.
[http://dx.doi.org/10.3390/ijerph17103433] [PMID: 32423095]
[35]
Cao Y, Li L, Feng Z, et al. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov 2020; 6: 11.
[http://dx.doi.org/10.1038/s41421-020-0147-1] [PMID: 32133153]
[36]
Gupta A, Madhavan MV, Sehgal K, et al. Extrapulmonary manifestations of COVID-19. Nat Med 2020; 26(7): 1017-32.
[http://dx.doi.org/10.1038/s41591-020-0968-3] [PMID: 32651579]
[37]
McGonagle D. O(tm)Donnell JS, Sharif K, Emery P, Bridgewood C. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol 2020; 2(7): e437-45.
[http://dx.doi.org/10.1016/S2665-9913(20)30121-1] [PMID: 32835247]
[38]
Sinha P, Matthay MA, Calfee CS. Is a ocytokine storm? relevant to COVID-19? JAMA Intern Med 2020; 180(9): 1152-4.
[http://dx.doi.org/10.1001/jamainternmed.2020.3313] [PMID: 32602883]
[39]
Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol 2017; 39(5): 517-28.
[http://dx.doi.org/10.1007/s00281-017-0639-8] [PMID: 28555385]
[40]
Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the eye of the cytokine storm. Microbiol Mol Biol Rev 2012; 76(1): 16-32.
[http://dx.doi.org/10.1128/MMBR.05015-11] [PMID: 22390970]
[41]
Tavakolpour S, Rakhshandehroo T, Wei EX, Rashidian M. Lymphopenia during the COVID-19 infection: What it shows and what can be learned. Immunol Lett 2020; 225: 31-2.
[http://dx.doi.org/10.1016/j.imlet.2020.06.013] [PMID: 32569607]
[42]
Akbari H, Tabrizi R, Lankarani KB, et al. The role of cytokine profile and lymphocyte subsets in the severity of coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. Life Sci 2020; 258118167
[http://dx.doi.org/10.1016/j.lfs.2020.118167] [PMID: 32735885]
[43]
Hosking MP, Lane TE. The role of chemokines during viral infection of the CNS. PLoS Pathog 2010; 6(7)e1000937
[http://dx.doi.org/10.1371/journal.ppat.1000937] [PMID: 20686655]
[44]
Oliviero A, de Castro F, Coperchini F, Chiovato L, Rotondi M. COVID-19 pulmonary and olfactory dysfunctions: Is the chemokine CXCL10 the common denominator? Neuroscientist 2020; 27(3)1073858420939033
[http://dx.doi.org/10.1177/1073858420939033] [PMID: 32659199]
[45]
Herrero R, Sanchez G, Lorente JA. New insights into the mechanisms of pulmonary edema in acute lung injury. Ann Transl Med 2018; 6(2): 32.
[http://dx.doi.org/10.21037/atm.2017.12.18] [PMID: 29430449]
[46]
Matthay MA, Zimmerman GA. Acute lung injury and the acute respiratory distress syndrome: Four decades of inquiry into pathogenesis and rational management. Am J Respir Cell Mol Biol 2005; 33(4): 319-27.
[http://dx.doi.org/10.1165/rcmb.F305] [PMID: 16172252]
[47]
Polak SB, Van Gool IC, Cohen D, von der Thusen JH, van Paassen J. A systematic review of pathological findings in COVID-19: A pathophysiological timeline and possible mechanisms of disease progression. Mod Pathol 2020; 33(11): 2128-38.
[http://dx.doi.org/10.1038/s41379-020-0603-3] [PMID: 32572155]
[48]
Wang C, Xie J, Zhao L, et al. Alveolar macrophage dysfunction and cytokine storm in the pathogenesis of two severe COVID-19 patients. EBioMedicine 2020; 57102833
[http://dx.doi.org/10.1016/j.ebiom.2020.102833] [PMID: 32574956]
[49]
Zhang H, Zhou P, Wei Y, et al. Histopathologic changes and SARS-CoV-2 immunostaining in the lung of a patient with COVID-19. Ann Intern Med 2020; 172(9): 629-32.
[http://dx.doi.org/10.7326/M20-0533] [PMID: 32163542]
[50]
Henry BM, de Oliveira MHS, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clin Chem Lab Med 2020; 58(7): 1021-8.
[http://dx.doi.org/10.1515/cclm-2020-0369] [PMID: 32286245]
[51]
Chung F. Anti-inflammatory cytokines in asthma and allergy: interleukin-10, interleukin-12, interferon-I3. Mediators Inflamm 2001; 10(2): 51-9.
[http://dx.doi.org/10.1080/09629350120054518] [PMID: 11405550]
[52]
Copaescu A, Smibert O, Gibson A, Phillips EJ, Trubiano JA. The role of IL-6 and other mediators in the cytokine storm associated with SARS-CoV-2 infection. J Allergy Clin Immunol 2020; 146(3): 518-34.
[http://dx.doi.org/10.1016/j.jaci.2020.07.001] [PMID: 32896310]
[53]
Jones SA, Jenkins BJ. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat Rev Immunol 2018; 18(12): 773-89.
[http://dx.doi.org/10.1038/s41577-018-0066-7] [PMID: 30254251]
[54]
Mahallawi WH, Khabour OF, Zhang Q, Makhdoum HM, Suliman BA. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine 2018; 104: 8-13.
[http://dx.doi.org/10.1016/j.cyto.2018.01.025] [PMID: 29414327]
[55]
Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodra-guez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev 2020; 54: 62-75.
[http://dx.doi.org/10.1016/j.cytogfr.2020.06.001] [PMID: 32513566]
[56]
Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev 2020; 53: 25-32.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.003] [PMID: 32446778]
[57]
Zhang N, Zhao YD, Wang XM. CXCL10 an important chemokine associated with cytokine storm in COVID-19 infected patients. Eur Rev Med Pharmacol Sci 2020; 24(13): 7497-505.
[PMID: 32706090]
[58]
Channappanavar R, Fehr AR, Vijay R, et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe 2016; 19(2): 181-93.
[http://dx.doi.org/10.1016/j.chom.2016.01.007] [PMID: 26867177]
[59]
Vargas G, Medeiros Geraldo LH, Gedeao Salomao N, Viana Paes M, Regina Souza Lima F, Carvalho Alcantara Gomes F. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and glial cells: Insights and perspectives. Brain Behav Immun Health 2020; 7100127
[http://dx.doi.org/10.1016/j.bbih.2020.100127] [PMID: 32838339]
[60]
Bektas A, Schurman SH, Franceschi C, Ferrucci L. A public health perspective of aging: do hyper-inflammatory syndromes such as COVID-19, SARS, ARDS, cytokine storm syndrome, and post-ICU syndrome accelerate short- and long-term inflammaging? Immun Ageing 2020; 17: 23.
[http://dx.doi.org/10.1186/s12979-020-00196-8] [PMID: 32849908]
[61]
Channappanavar R, Perlman S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 2017; 39(5): 529-39.
[http://dx.doi.org/10.1007/s00281-017-0629-x] [PMID: 28466096]
[62]
Menter T, Haslbauer JD, Nienhold R, et al. Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology 2020; 77(2): 198-209.
[http://dx.doi.org/10.1111/his.14134] [PMID: 32364264]
[63]
Wu T, Zuo Z, Kang S, et al. Multi-organ dysfunction in patients with COVID-19: A systematic review and meta-analysis. Aging Dis 2020; 11(4): 874-94.
[http://dx.doi.org/10.14336/AD.2020.0520] [PMID: 32765952]
[64]
Herter JM, Rossaint J, Zarbock A. Platelets in inflammation and immunity. J Thromb Haemost 2014; 12(11): 1764-75.
[http://dx.doi.org/10.1111/jth.12730] [PMID: 25224706]
[65]
Margraf A, Nussbaum C, Rohwedder I, et al. Maturation of platelet function during murine fetal development in vivo. Arterioscler Thromb Vasc Biol 2017; 37(6): 1076-86.
[http://dx.doi.org/10.1161/ATVBAHA.116.308464] [PMID: 28428216]
[66]
Rossaint J, Vestweber D, Zarbock A. GDF-15 prevents platelet integrin activation and thrombus formation. J Thromb Haemost 2013; 11(2): 335-44.
[http://dx.doi.org/10.1111/jth.12100] [PMID: 23231375]
[67]
Tang YQ, Yeaman MR, Selsted ME. Antimicrobial peptides from human platelets. Infect Immun 2002; 70(12): 6524-33.
[http://dx.doi.org/10.1128/IAI.70.12.6524-6533.2002] [PMID: 12438321]
[68]
van der Meijden PEJ, Heemskerk JWM. Platelet biology and functions: new concepts and clinical perspectives. Nat Rev Cardiol 2019; 16(3): 166-79.
[http://dx.doi.org/10.1038/s41569-018-0110-0] [PMID: 30429532]
[69]
Chen Y, Yuan Y, Li W. Sorting machineries: how platelet-dense granules differ from In-granules. Biosci Rep 2018; 38(5)BSR20180458
[http://dx.doi.org/10.1042/BSR20180458] [PMID: 30104399]
[70]
Metzelaar MJ, Clevers HC. Lysosomal membrane glycoproteins in platelets. Thromb Haemost 1992; 68(4): 378-82.
[http://dx.doi.org/10.1055/s-0038-1646280] [PMID: 1448767]
[71]
LefranAais E, Ortiz-MuAnoz G, Caudrillier A, et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature 2017; 544(7648): 105-9.
[http://dx.doi.org/10.1038/nature21706] [PMID: 28329764]
[72]
Rodvien R, Mielke CH Jr. Role of platelets in hemostasis and thrombosis. West J Med 1976; 125(3): 181-6.
[PMID: 969503]
[73]
Menter DG, Kopetz S, Hawk E, et al. Platelet ofirst responders? in wound response, cancer, and metastasis. Cancer Metastasis Rev 2017; 36(2): 199-213.
[http://dx.doi.org/10.1007/s10555-017-9682-0] [PMID: 28730545]
[74]
Faria AVS, Andrade SS, Peppelenbosch MP, Ferreira-Halder CV, Fuhler GM. Platelets in aging and cancer-odouble-edged sword? Cancer Metastasis Rev 2020; 39(4): 1205-21.
[http://dx.doi.org/10.1007/s10555-020-09926-2] [PMID: 32869161]
[75]
Krishnakumar V, Durairajan SSK, Alagarasu K, Li M, Dash AP. Recent updates on mouse models for human immunodeficiency, influenza, and dengue viral infections. Viruses 2019; 11(3): 252.
[http://dx.doi.org/10.3390/v11030252] [PMID: 30871179]
[76]
Jafarzadeh A, Chauhan P, Saha B, Jafarzadeh S, Nemati M. Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: Lessons from SARS and MERS, and potential therapeutic interventions. Life Sci 2020; 257118102
[http://dx.doi.org/10.1016/j.lfs.2020.118102] [PMID: 32687918]
[77]
Best MG, Vancura A, Wurdinger T. Platelet RNA as a circulating biomarker trove for cancer diagnostics. J Thromb Haemost 2017; 15(7): 1295-306.
[http://dx.doi.org/10.1111/jth.13720] [PMID: 28671345]
[78]
Lindemann S, Tolley ND, Dixon DA, et al. Activated platelets mediate inflammatory signaling by regulated interleukin 1Iy synthesis. J Cell Biol 2001; 154(3): 485-90.
[http://dx.doi.org/10.1083/jcb.200105058] [PMID: 11489912]
[79]
Pujol JP, Chadjichristos C, Legendre F, et al. Interleukin-1 and transforming growth factor-beta 1 as crucial factors in osteoarthritic cartilage metabolism. Connect Tissue Res 2008; 49(3): 293-7.
[http://dx.doi.org/10.1080/03008200802148355] [PMID: 18661363]
[80]
Vrijens P, Noppen S, Boogaerts T, et al. Influenza virus entry via the GM3 ganglioside-mediated platelet-derived growth factor receptor Iy signalling pathway. J Gen Virol 2019; 100(4): 583-601.
[http://dx.doi.org/10.1099/jgv.0.001235] [PMID: 30762518]
[81]
Manne BK, Denorme F, Middleton EA, et al. Platelet gene expression and function in patients with COVID-19. Blood 2020; 136(11): 1317-29.
[http://dx.doi.org/10.1182/blood.2020007214] [PMID: 32573711]
[82]
Wolf M, Moser B. Antimicrobial activities of chemokines: not just a side-effect? Front Immunol 2012; 3: 213.
[http://dx.doi.org/10.3389/fimmu.2012.00213] [PMID: 22837760]
[83]
Hally K, Fauteux-Daniel S, Hamzeh-Cognasse H, Larsen P, Cognasse F. Revisiting platelets and toll-like receptors (TLRs): At the interface of vascular immunity and thrombosis. Int J Mol Sci 2020; 21(17): 6150.
[http://dx.doi.org/10.3390/ijms21176150] [PMID: 32858930]
[84]
Jeisy-Scott V, Kim JH, Davis WG, Cao W, Katz JM, Sambhara S. TLR7 recognition is dispensable for influenza virus A infection but important for the induction of hemagglutinin-specific antibodies in response to the 2009 pandemic split vaccine in mice. J Virol 2012; 86(20): 10988-98.
[http://dx.doi.org/10.1128/JVI.01064-12] [PMID: 22837197]
[85]
Frantzeskaki F, Armaganidis A, Orfanos SE. Immunothrombosis in acute respiratory distress syndrome: cross talks between inflammation and coagulation. Respiration 2017; 93(3): 212-25.
[http://dx.doi.org/10.1159/000453002] [PMID: 27997925]
[86]
Zhang S, Liu Y, Wang X, et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol 2020; 13(1): 120.
[http://dx.doi.org/10.1186/s13045-020-00954-7] [PMID: 32887634]
[87]
Zaid Y, Puhm F, Allaeys I, et al. Platelets can contain SARS-CoV-2 RNA and are hyperactivated in COVID-19. Circ Res 2020; 127: 1404-18.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317703]
[88]
Campbell RA, Schwertz H, Hottz ED, et al. Human megakaryocytes possess intrinsic antiviral immunity through regulated induction of IFITM3. Blood 2019; 133(19): 2013-26.
[http://dx.doi.org/10.1182/blood-2018-09-873984] [PMID: 30723081]
[89]
Grobler C, Maphumulo SC, Grobbelaar LM, et al. Covid-19: The rollercoaster of fibrin(Ogen), D-dimer, von willebrand factor, p-selectin and their interactions with endothelial cells, platelets and erythrocytes. Int J Mol Sci 2020; 21(14): 5168.
[http://dx.doi.org/10.3390/ijms21145168] [PMID: 32708334]
[90]
Ranucci M, Ballotta A, Di Dedda U, et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost 2020; 18(7): 1747-51.
[http://dx.doi.org/10.1111/jth.14854] [PMID: 32302448]
[91]
Li C, Hu B, Zhang Z, et al. D-dimer Triage for COVID-19. Acad Emerg Med 2020; 27(7): 612-3.
[http://dx.doi.org/10.1111/acem.14037] [PMID: 32506683]
[92]
Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med 2020; 180(7): 934-43.
[http://dx.doi.org/10.1001/jamainternmed.2020.0994] [PMID: 32167524]
[93]
Yu B, Li X, Chen J, et al. Evaluation of variation in D-dimer levels among COVID-19 and bacterial pneumonia: A retrospective analysis. J Thromb Thrombolysis 2020; 50(3): 548-57.
[http://dx.doi.org/10.1007/s11239-020-02171-y] [PMID: 32524516]
[94]
Iba T, Levy JH, Levi M, Thachil J. Coagulopathy in COVID-19. J Thromb Haemost 2020; 18(9): 2103-9.
[http://dx.doi.org/10.1111/jth.14975] [PMID: 32558075]
[95]
Li X, Ma X. Acute respiratory failure in COVID-19: Is it otypical? ARDS? Crit Care 2020; 24(1): 198.
[http://dx.doi.org/10.1186/s13054-020-02911-9] [PMID: 32375845]
[96]
Shin EK, Park H, Noh JY, Lim KM, Chung JH. Platelet shape changes and cytoskeleton dynamics as novel therapeutic targets for anti-thrombotic drugs. Biomol Ther (Seoul) 2017; 25(3): 223-30.
[http://dx.doi.org/10.4062/biomolther.2016.138] [PMID: 27871158]
[97]
Costanzo L, Palumbo FP, Ardita G, Antignani PL, Arosio E, Failla G. Coagulopathy, thromboembolic complications, and the use of heparin in COVID-19 pneumonia. J Vasc Surg Venous Lymphat Disord 2020; 8(5): 711-6.
[http://dx.doi.org/10.1016/j.jvsv.2020.05.018] [PMID: 32561465]
[98]
Yamani LN, Syahrul F. Public health perspective of the COVID-19 pandemic: Host characteristics and prevention of COVID-19 in the community. World Acad Sci J 2020; 2: 21.
[99]
Iba T, Warkentin TE, Thachil J, Levi M, Levy JH. Proposal of the definition for COVID-19-associated coagulopathy. J Clin Med 2021; 10(2): 191.
[http://dx.doi.org/10.3390/jcm10020191] [PMID: 33430431]
[100]
Li Q, Cao Y, Chen L, et al. Hematological features of persons with COVID-19. Leukemia 2020; 34(8): 2163-72.
[http://dx.doi.org/10.1038/s41375-020-0910-1] [PMID: 32528042]
[101]
Bianconi V, Violi F, Fallarino F, Pignatelli P, Sahebkar A, Pirro M. Is acetylsalicylic acid a safe and potentially useful choice for adult patients with COVID-19? Drugs 2020; 80(14): 1383-96.
[http://dx.doi.org/10.1007/s40265-020-01365-1] [PMID: 32705604]
[102]
ClinicalTrialsgov identifier (NCTnumber): NCT04365309.
[103]
Amin AR, Attur MG, Pillinger M, Abramson SB. The pleiotropic functions of aspirin: Mechanisms of action. Cell Mol Life Sci 1999; 56(3-4): 305-12.
[http://dx.doi.org/10.1007/s000180050432] [PMID: 11212358]
[104]
Muller C, Karl N, Ziebuhr J, Pleschka S. D-Lysine acetyl- salicylate + glycine impairs coronavirus replication. J Antivir Antiretrovir 2016; 8: 142-50.
[105]
Nasrolahi A, Haghani K, Gheysarzadeh A, Bakhtiyari S. Do genetic factors predispose people to COVID-19: A review article. Curr Mol Med 2021; 21: 457-61.
[106]
Zhao J, Yang Y, Huang H, et al. Relationship between the ABO Blood Group and the COVID-19 Susceptibility. Cli Infect Dis 2020; 4: ciaa1150.
[http://dx.doi.org/10.1093/cid/ciaa1150]
[107]
Guillon P, Clement M, Sebille V, et al. Inhibition of the interaction between the SARS-CoV spike protein and its cellular receptor by anti-histo-blood group antibodies. Glycobiology 2008; 18(12): 1085-93.
[http://dx.doi.org/10.1093/glycob/cwn093] [PMID: 18818423]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy