Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Anti-inflammatory Effects of Mesenchymal Stem Cells and their Secretomes in Pneumonia

Author(s): Kamal Hezam, Rigen Mo, Chen Wang, Yue Liu and Zongjin Li*

Volume 23, Issue 9, 2022

Published on: 07 September, 2021

Page: [1153 - 1167] Pages: 15

DOI: 10.2174/1389201022666210907115126

Price: $65

conference banner
Abstract

Mesenchymal stem cells (MSCs) are multipotent progenitor cells that play crucial roles in the microenvironment of injured tissues. The potential therapeutics of MSCs have attracted extensive attention for several diseases such as acute respiratory distress syndrome (ARDS) and novel coronavirus disease 2019 (COVID-19) pneumonia. MSC-extracellular vesicles have been isolated from MSC-conditioned media (MSC-CM) with similar functional effects as parent MSCs. The therapeutic role of MSCs can be achieved through the balance between the inflammatory and regenerative microenvironments. Clinical settings of MSCs and their extracellular vesicles remain promising for many diseases, such as ARDS and pneumonia. However, their clinical applications remain limited due to the cost of growing and storage facilities of MSCs with a lack of standardized MSC-CM. This review highlights the proposed role of MSCs in pulmonary diseases and discusses the recent advances of MSC application for pneumonia and other lung disorders.

Keywords: Pneumonia, mesenchymal stem cells (MSCs), inflammation, extracellular vesicles (EVs), acute respiratory distress syndrome (ARDS), COVID-19.

Graphical Abstract
[1]
WHO Global action plan for prevention and control of pneumonia (GAPP) WHO, 2009.
[2]
Gupta, N.; Krasnodembskaya, A.; Kapetanaki, M.; Mouded, M.; Tan, X.; Serikov, V.; Matthay, M.A. Mesenchymal stem cells enhance survival and bacterial clearance in murine Escherichia coli pneumonia. Thorax, 2012, 67(6), 533-539. [http://dx.doi.org/10.1136/thoraxjnl-2011-201176]. [PMID: 22250097].
[3]
Matthay, M.A.; Zemans, R.L. The acute respiratory distress syndrome: Pathogenesis and treatment. Annu. Rev. Pathol., 2011, 6, 147-163. [http://dx.doi.org/10.1146/annurev-pathol-011110-130158]. [PMID: 20936936].
[4]
Ware, L.B.; Matthay, M.A. The acute respiratory distress syndrome. N. Engl. J. Med., 2000, 342(18), 1334-1349. [http://dx.doi.org/10.1056/NEJM200005043421806]. [PMID: 10793167].
[5]
Yadav, H.; Thompson, B.T.; Gajic, O. Fifty years of research in ARDS. Is acute respiratory distress syndrome a preventable disease? Am. J. Respir. Crit. Care Med., 2017, 195(6), 725-736. [http://dx.doi.org/10.1164/rccm.201609-1767CI]. [PMID: 28040987].
[6]
Tomczyk, S.; Bennett, N.M.; Stoecker, C.; Gierke, R.; Moore, M.R.; Whitney, C.G.; Hadler, S.; Pilishvili, T. Use of 13-valent pneumococcal conjugate vaccine and 23-valent pneumococcal polysaccharide vaccine among adults aged ≥65 years: Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Morb. Mortal. Wkly. Rep., 2014, 63(37), 822-825.
[7]
Sung, D.K.; Chang, Y.S.; Sung, S.I.; Yoo, H.S.; Ahn, S.Y.; Park, W.S. Antibacterial effect of mesenchymal stem cells against Escherichia coli is mediated by secretion of beta- defensin- 2 via toll- like receptor 4 signalling. Cell. Microbiol., 2016, 18(3), 424-436. [http://dx.doi.org/10.1111/cmi.12522]. [PMID: 26350435].
[8]
Fang, L.; Karakiulakis, G.; Roth, M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med., 2020, 8(4)e21 [http://dx.doi.org/10.1016/S2213-2600(20)30116-8]. [PMID: 32171062].
[9]
Yao, Y.; Yang, L.; Feng, L-F.; Yue, Z-W.; Zhao, N-H.; Li, Z.; He, Z-X. IGF-1C domain-modified hydrogel enhanced the efficacy of stem cells in the treatment of AMI. Stem Cell Res. Ther., 2020, 11(1), 136. [http://dx.doi.org/10.1186/s13287-020-01637-3]. [PMID: 32216819].
[10]
Monsel, A.; Zhu, Y-G.; Gennai, S.; Hao, Q.; Liu, J.; Lee, J.W. Cell-based therapy for acute organ injury: Preclinical evidence and ongoing clinical trials using mesenchymal stem cells. Anesthesiology, 2014, 121(5), 1099-1121. [http://dx.doi.org/10.1097/ALN.0000000000000446]. [PMID: 25211170].
[11]
Bruno, S.; Grange, C.; Deregibus, M.C.; Calogero, R.A.; Saviozzi, S.; Collino, F.; Morando, L.; Busca, A.; Falda, M.; Bussolati, B.; Tetta, C.; Camussi, G. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J. Am. Soc. Nephrol., 2009, 20(5), 1053-1067. [http://dx.doi.org/10.1681/ASN.2008070798]. [PMID: 19389847].
[12]
Eliopoulos, N.; Zhao, J.; Bouchentouf, M.; Forner, K.; Birman, E.; Yuan, S.; Boivin, M-N.; Martineau, D. Human marrow-derived mesenchymal stromal cells decrease cisplatin renotoxicity in vitro and in vivo and enhance survival of mice post-intraperitoneal injection. Am. J. Physiol. Renal Physiol., 2010, 299(6), F1288-F1298. [http://dx.doi.org/10.1152/ajprenal.00671.2009]. [PMID: 20844023].
[13]
Mahmood, A.; Lu, D.; Lu, M.; Chopp, M. Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery, 2003, 53(3), 697-702. [http://dx.doi.org/10.1227/01.NEU.0000079333.61863.AA]. [PMID: 12943585].
[14]
Whone, A.L.; Kemp, K.; Sun, M.; Wilkins, A.; Scolding, N.J. Human bone marrow mesenchymal stem cells protect catecholaminergic and serotonergic neuronal perikarya and transporter function from oxidative stress by the secretion of glial-derived neurotrophic factor. Brain Res., 2012, 1431, 86-96. [http://dx.doi.org/10.1016/j.brainres.2011.10.038]. [PMID: 22143094].
[15]
Burra, P.; Arcidiacono, D.; Bizzaro, D.; Chioato, T.; Di Liddo, R.; Banerjee, A.; Cappon, A.; Bo, P.; Conconi, M.T.; Parnigotto, P.P.; Mirandola, S.; Gringeri, E.; Carraro, A.; Cillo, U.; Russo, F.P. Systemic administration of a novel human umbilical cord mesenchymal stem cells population accelerates the resolution of acute liver injury. BMC Gastroenterol., 2012, 12, 88. [http://dx.doi.org/10.1186/1471-230X-12-88]. [PMID: 22788801].
[16]
Quintanilha, L.F.; Takami, T.; Hirose, Y.; Fujisawa, K.; Murata, Y.; Yamamoto, N.; Goldenberg, R.C.D.S.; Terai, S.; Sakaida, I. Canine mesenchymal stem cells show antioxidant properties against thioacetamide-induced liver injury in vitro and in vivo. Hepatol. Res., 2014, 44(10), E206-E217. [http://dx.doi.org/10.1111/hepr.12204]. [PMID: 23889977].
[17]
Shi, Y.; Wang, Y.; Li, Q.; Liu, K.; Hou, J.; Shao, C.; Wang, Y. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat. Rev. Nephrol., 2018, 14(8), 493-507. [http://dx.doi.org/10.1038/s41581-018-0023-5]. [PMID: 29895977].
[18]
Aggarwal, S.; Pittenger, M.F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 2005, 105(4), 1815-1822. [http://dx.doi.org/10.1182/blood-2004-04-1559]. [PMID: 15494428].
[19]
Jerkic, M.; Masterson, C.; Ormesher, L.; Gagnon, S.; Goyal, S.; Rabani, R.; Otulakowski, G.; Zhang, H.; Kavanagh, B.P.; Laffey, J.G. Overexpression of IL-10 enhances the efficacy of human umbilical-cord-derived mesenchymal stromal cells in E. coli pneumosepsis. J. Clin. Med., 2019, 8(6)E847 [http://dx.doi.org/10.3390/jcm8060847]. [PMID: 31200579].
[20]
Lindner, U.; Kramer, J.; Rohwedel, J.; Schlenke, P. Mesenchymal stem or stromal cells: Toward a better understanding of their biology? Transfus. Med. Hemother., 2010, 37(2), 75-83. [http://dx.doi.org/10.1159/000290897]. [PMID: 20737049].
[21]
Keating, A. Mesenchymal stromal cells: New directions. Cell Stem Cell, 2012, 10(6), 709-716. [http://dx.doi.org/10.1016/j.stem.2012.05.015]. [PMID: 22704511].
[22]
Park, J.; Kim, S.; Lim, H.; Liu, A.; Hu, S.; Lee, J.; Zhuo, H.; Hao, Q.; Matthay, M.A.; Lee, J-W. Therapeutic effects of human mesenchymal stem cell microvesicles in an ex vivo perfused human lung injured with severe E. coli pneumonia. Thorax, 2019, 74(1), 43-50. [http://dx.doi.org/10.1136/thoraxjnl-2018-211576]. [PMID: 30076187].
[23]
Liu, A.; Zhang, X.; He, H.; Zhou, L.; Naito, Y.; Sugita, S.; Lee, J-W. Therapeutic potential of mesenchymal stem/stromal cell-derived secretome and vesicles for lung injury and disease. Expert Opin. Biol. Ther., 2020, 20(2), 125-140. [http://dx.doi.org/10.1080/14712598.2020.1689954]. [PMID: 31701782].
[24]
Chaleshtori, S.S.; Dezfouli, M.M.R.; Fakhr, J.M. Mesenchymal stem/stromal cells: The therapeutic effects in animal models of acute pulmonary diseases. Respir. Res., 2020, 21(1), 110. [http://dx.doi.org/10.1186/s12931-020-01373-5]. [PMID: 32393278].
[25]
Driver, C. Pneumonia part 1: Pathology, presentation and prevention. Br. J. Nurs., 2012, 21(2), 103-106. [http://dx.doi.org/10.12968/bjon.2012.21.2.103]. [PMID: 22306639].
[26]
Mizgerd, J.P. Pathogenesis of severe pneumonia: Advances and knowledge gaps. Curr. Opin. Pulm. Med., 2017, 23(3), 193-197. [http://dx.doi.org/10.1097/MCP.0000000000000365]. [PMID: 28221171].
[27]
Abrahamian, F.M.; Deblieux, P.M.; Emerman, C.L.; Kollef, M.H.; Kupersmith, E.; Leeper, K.V., Jr; Paterson, D.L.; Shorr, A.F. Health care-associated pneumonia: Identification and initial management in the ED. Am. J. Emerg. Med., 2008, 26(6)(Suppl.), 1-11. [http://dx.doi.org/10.1016/j.ajem.2008.03.015]. [PMID: 18603170].
[28]
Nair, G.B.; Niederman, M.S. Community-acquired pneumonia: an unfinished battle. Med. Clin. North Am., 2011, 95(6), 1143-1161. [http://dx.doi.org/10.1016/j.mcna.2011.08.007]. [PMID: 22032432].
[29]
Brown, P.D.; Lerner, S.A. Community-acquired pneumonia. Lancet, 1998, 352(9136), 1295-1302. [http://dx.doi.org/10.1016/S0140-6736(98)02239-9]. [PMID: 9788476].
[30]
Alcón, A.; Fàbregas, N.; Torres, A. Pathophysiology of pneumonia. Clin. Chest Med., 2005, 26(1), 39-46. [http://dx.doi.org/10.1016/j.ccm.2004.10.013]. [PMID: 15802164].
[31]
Nelson, S.; Mason, C.M.; Kolls, J.; Summer, W.R. Pathophysiology of pneumonia. Clin. Chest Med., 1995, 16(1), 1-12. [http://dx.doi.org/10.1016/S0272-5231(21)00975-8]. [PMID: 7768083].
[32]
Koegelenberg, C.F.N.; Diacon, A.H.; Bolliger, C.T. Parapneumonic pleural effusion and empyema. Respiration, 2008, 75(3), 241-250. [http://dx.doi.org/10.1159/000117172]. [PMID: 18367849].
[33]
Liang, L.; Li, Z.; Ma, T.; Han, Z.; Du, W.; Geng, J.; Jia, H.; Zhao, M.; Wang, J.; Zhang, B.; Feng, J.; Zhao, L.; Rupin, A.; Wang, Y.; Han, Z.C. Transplantation of human placenta-derived mesenchymal stem cells alleviates critical limb ischemia in diabetic nude rats. Cell Transplant., 2017, 26(1), 45-61. [http://dx.doi.org/10.3727/096368916X692726]. [PMID: 27501782].
[34]
Li, Q.; Hou, H.; Li, M.; Yu, X.; Zuo, H.; Gao, J.; Zhang, M.; Li, Z.; Guo, Z. CD73+ mesenchymal stem cells ameliorate myocardial infarction by promoting angiogenesis. Front. Cell Dev. Biol., 2021, 9637239 [http://dx.doi.org/10.3389/fcell.2021.637239]. [PMID: 34055772].
[35]
Cao, X.; Duan, L.; Hou, H.; Liu, Y.; Chen, S.; Zhang, S.; Liu, Y.; Wang, C.; Qi, X.; Liu, N.; Han, Z.; Zhang, D.; Han, Z-C.; Guo, Z.; Zhao, Q.; Li, Z. IGF-1C hydrogel improves the therapeutic effects of MSCs on colitis in mice through PGE2-mediated M2 macrophage polarization. Theranostics, 2020, 10(17), 7697-7709. [http://dx.doi.org/10.7150/thno.45434]. [PMID: 32685014].
[36]
Zhao, X.; Liu, Y.; Jia, P.; Cheng, H.; Wang, C.; Chen, S.; Huang, H.; Han, Z.; Han, Z.C.; Marycz, K.; Chen, X.; Li, Z. Chitosan hydrogel-loaded MSC-derived extracellular vesicles promote skin rejuvenation by ameliorating the senescence of dermal fibroblasts. Stem Cell Res. Ther., 2021, 12(1), 196. [http://dx.doi.org/10.1186/s13287-021-02262-4]. [PMID: 33743829].
[37]
Li, H.; Huang, H.; Chen, X.; Chen, S.; Yu, L.; Wang, C.; Liu, Y.; Zhang, K.; Wu, L.; Han, Z.C.; Liu, N.; Wu, J.; Li, Z. The delivery of hsa-miR-11401 by extracellular vesicles can relieve doxorubicin-induced mesenchymal stem cell apoptosis. Stem Cell Res. Ther., 2021, 12(1), 77. [http://dx.doi.org/10.1186/s13287-021-02156-5]. [PMID: 33482923].
[38]
Zhang, K.; Chen, S.; Sun, H.; Wang, L.; Li, H.; Zhao, J.; Zhang, C.; Li, N.; Guo, Z.; Han, Z.; Han, Z.C.; Zheng, G.; Chen, X.; Li, Z. In vivo two-photon microscopy reveals the contribution of Sox9+ cell to kidney regeneration in a mouse model with extracellular vesicle treatment. J. Biol. Chem., 2020, 295(34), 12203-12213. [http://dx.doi.org/10.1074/jbc.RA120.012732]. [PMID: 32641493].
[39]
Zhang, C.; Shang, Y.; Chen, X.; Midgley, A.C.; Wang, Z.; Zhu, D.; Wu, J.; Chen, P.; Wu, L.; Wang, X.; Zhang, K.; Wang, H.; Kong, D.; Yang, Z.; Li, Z.; Chen, X. Supramolecular nanofibers containing arginine-glycine-aspartate (RGD) peptides boost therapeutic efficacy of extracellular vesicles in kidney repair. ACS Nano, 2020, 14(9), 12133-12147. [http://dx.doi.org/10.1021/acsnano.0c05681]. [PMID: 32790341].
[40]
Behnke, J.; Kremer, S.; Shahzad, T.; Chao, C-M.; Böttcher-Friebertshäuser, E.; Morty, R.E.; Bellusci, S.; Ehrhardt, H. MSC based therapies-new perspectives for the injured lung. J. Clin. Med., 2020, 9(3)E682 [http://dx.doi.org/10.3390/jcm9030682]. [PMID: 32138309].
[41]
Gao, P.; Zhou, Y.; Xian, L.; Li, C.; Xu, T.; Plunkett, B.; Huang, S.K.; Wan, M.; Cao, X. Functional effects of TGF-β1 on mesenchymal stem cell mobilization in cockroach allergen-induced asthma. J. Immunol., 2014, 192(10), 4560-4570. [http://dx.doi.org/10.4049/jimmunol.1303461]. [PMID: 24711618].
[42]
Xu, C.; Yu, P.; Han, X.; Du, L.; Gan, J.; Wang, Y.; Shi, Y. TGF-β promotes immune responses in the presence of mesenchymal stem cells. J. Immunol., 2014, 192(1), 103-109.
[43]
Volarevic, V.; Gazdic, M.; Simovic Markovic, B.; Jovicic, N.; Djonov, V.; Arsenijevic, N. Mesenchymal stem cell-derived factors: Immuno-modulatory effects and therapeutic potential. Biofactors, 2017, 43(5), 633-644. [http://dx.doi.org/10.1002/biof.1374]. [PMID: 28718997].
[44]
Uzunhan, Y.; Bernard, O.; Marchant, D.; Dard, N.; Vanneaux, V.; Larghero, J.; Gille, T.; Clerici, C.; Valeyre, D.; Nunes, H.; Boncoeur, E.; Planès, C. Mesenchymal stem cells protect from hypoxia-induced alveolar epithelial-mesenchymal transition. Am. J. Physiol. Lung Cell. Mol. Physiol., 2016, 310(5), L439-L451. [http://dx.doi.org/10.1152/ajplung.00117.2015]. [PMID: 26702148].
[45]
Zheng, Y.; Cai, W.; Zhou, S.; Xu, L.; Jiang, C. Protective effect of bone marrow derived mesenchymal stem cells in lipopolysaccharide-induced acute lung injury mediated by claudin-4 in a rat model. Am. J. Transl. Res., 2016, 8(9), 3769-3779.
[46]
Lee, S-H.; Jang, A-S.; Kim, Y-E.; Cha, J-Y.; Kim, T-H.; Jung, S.; Park, S-K.; Lee, Y-K.; Won, J-H.; Kim, Y-H.; Park, C-S. Modulation of cytokine and nitric oxide by mesenchymal stem cell transfer in lung injury/fibrosis. Respir. Res., 2010, 11, 16. [http://dx.doi.org/10.1186/1465-9921-11-16]. [PMID: 20137099].
[47]
Reddy, M.; Fonseca, L.; Gowda, S.; Chougule, B.; Hari, A.; Totey, S. Human adipose-derived mesenchymal stem cells attenuate early stage of bleomycin induced pulmonary fibrosis: Comparison with pirfenidone. Int. J. Stem Cells, 2016, 9(2), 192-206. [http://dx.doi.org/10.15283/ijsc16041]. [PMID: 27871152].
[48]
Ortiz, L.A.; Gambelli, F.; McBride, C.; Gaupp, D.; Baddoo, M.; Kaminski, N.; Phinney, D.G. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc. Natl. Acad. Sci. USA, 2003, 100(14), 8407-8411. [http://dx.doi.org/10.1073/pnas.1432929100]. [PMID: 12815096].
[49]
Monsel, A.; Zhu, Y.G.; Gennai, S.; Hao, Q.; Hu, S.; Rouby, J-J.; Rosenzwajg, M.; Matthay, M.A.; Lee, J.W. Therapeutic effects of human mesenchymal stem cell-derived microvesicles in severe pneumonia in mice. Am. J. Respir. Crit. Care Med., 2015, 192(3), 324-336. [http://dx.doi.org/10.1164/rccm.201410-1765OC]. [PMID: 26067592].
[50]
Mei, S.H.J.; Haitsma, J.J.; Dos Santos, C.C.; Deng, Y.; Lai, P.F.H.; Slutsky, A.S.; Liles, W.C.; Stewart, D.J. Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am. J. Respir. Crit. Care Med., 2010, 182(8), 1047-1057. [http://dx.doi.org/10.1164/rccm.201001-0010OC]. [PMID: 20558630].
[51]
Krasnodembskaya, A.; Song, Y.; Fang, X.; Gupta, N.; Serikov, V.; Lee, J-W.; Matthay, M.A. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells, 2010, 28(12), 2229-2238. [http://dx.doi.org/10.1002/stem.544]. [PMID: 20945332].
[52]
Zhu, Y-G.; Feng, X-M.; Abbott, J.; Fang, X-H.; Hao, Q.; Monsel, A.; Qu, J-M.; Matthay, M.A.; Lee, J.W. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells, 2014, 32(1), 116-125. [http://dx.doi.org/10.1002/stem.1504]. [PMID: 23939814].
[53]
Gupta, N.; Su, X.; Popov, B.; Lee, J.W.; Serikov, V.; Matthay, M.A. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J. Immunol., 2007, 179(3), 1855-1863. [http://dx.doi.org/10.4049/jimmunol.179.3.1855]. [PMID: 17641052].
[54]
Gennai, S.; Monsel, A.; Hao, Q.; Park, J.; Matthay, M.A.; Lee, J.W. Microvesicles derived from human mesenchymal stem cells restore alveolar fluid clearance in human lungs rejected for transplantation. Am. J. Transplant., 2015, 15(9), 2404-2412. [http://dx.doi.org/10.1111/ajt.13271]. [PMID: 25847030].
[55]
Zheng, G.; Huang, L.; Tong, H.; Shu, Q.; Hu, Y.; Ge, M.; Deng, K.; Zhang, L.; Zou, B.; Cheng, B.; Xu, J. Treatment of acute respiratory distress syndrome with allogeneic adipose-derived mesenchymal stem cells: a randomized, placebo-controlled pilot study. Respir. Res., 2014, 15, 39. [http://dx.doi.org/10.1186/1465-9921-15-39]. [PMID: 24708472].
[56]
Le Blanc, K.; Tammik, L.; Sundberg, B.; Haynesworth, S.E.; Ringdén, O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand. J. Immunol., 2003, 57(1), 11-20. [http://dx.doi.org/10.1046/j.1365-3083.2003.01176.x]. [PMID: 12542793].
[57]
Bartholomew, A.; Sturgeon, C.; Siatskas, M.; Ferrer, K.; McIntosh, K.; Patil, S.; Hardy, W.; Devine, S.; Ucker, D.; Deans, R.; Moseley, A.; Hoffman, R. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol., 2002, 30(1), 42-48. [http://dx.doi.org/10.1016/S0301-472X(01)00769-X]. [PMID: 11823036].
[58]
Di Nicola, M.; Carlo-Stella, C.; Magni, M.; Milanesi, M.; Longoni, P.D.; Matteucci, P.; Grisanti, S.; Gianni, A.M. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 2002, 99(10), 3838-3843. [http://dx.doi.org/10.1182/blood.V99.10.3838]. [PMID: 11986244].
[59]
Tse, W.T.; Pendleton, J.D.; Beyer, W.M.; Egalka, M.C.; Guinan, E.C. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: Implications in transplantation. Transplantation, 2003, 75(3), 389-397. [http://dx.doi.org/10.1097/01.TP.0000045055.63901.A9]. [PMID: 12589164].
[60]
Spees, J.L.; Lee, R.H.; Gregory, C.A. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res. Ther., 2016, 7(1), 125. [http://dx.doi.org/10.1186/s13287-016-0363-7]. [PMID: 27581859].
[61]
Ionescu, L.I.; Alphonse, R.S.; Arizmendi, N.; Morgan, B.; Abel, M.; Eaton, F.; Duszyk, M.; Vliagoftis, H.; Aprahamian, T.R.; Walsh, K.; Thébaud, B. Airway delivery of soluble factors from plastic-adherent bone marrow cells prevents murine asthma. Am. J. Respir. Cell Mol. Biol., 2012, 46(2), 207-216. [http://dx.doi.org/10.1165/rcmb.2010-0391OC]. [PMID: 21903873].
[62]
Sutton, M.T.; Fletcher, D.; Ghosh, S.K.; Weinberg, A.; van Heeckeren, R.; Kaur, S.; Sadeghi, Z.; Hijaz, A.; Reese, J.; Lazarus, H.M.; Lennon, D.P.; Caplan, A.I.; Bonfield, T.L. Antimicrobial properties of mesenchymal stem cells: Therapeutic potential for cystic fibrosis infection, and treatment. Stem Cells Int., 2016, 20165303048 [http://dx.doi.org/10.1155/2016/5303048]. [PMID: 26925108].
[63]
de Castro, L.L.; Xisto, D.G.; Kitoko, J.Z.; Cruz, F.F.; Olsen, P.C.; Redondo, P.A.G.; Ferreira, T.P.T.; Weiss, D.J.; Martins, M.A.; Morales, M.M.; Rocco, P.R.M. Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma. Stem Cell Res. Ther., 2017, 8(1), 151. [http://dx.doi.org/10.1186/s13287-017-0600-8]. [PMID: 28646903].
[64]
Robbins, P.D.; Morelli, A.E. Regulation of immune responses by extracellular vesicles. Nat. Rev. Immunol., 2014, 14(3), 195-208. [http://dx.doi.org/10.1038/nri3622]. [PMID: 24566916].
[65]
Gomzikova, M.O.; James, V.; Rizvanov, A.A. Therapeutic application of mesenchymal stem cells derived extracellular vesicles for immunomodulation. Front. Immunol., 2019, 10, 2663. [http://dx.doi.org/10.3389/fimmu.2019.02663]. [PMID: 31849929].
[66]
Burrello, J.; Monticone, S.; Gai, C.; Gomez, Y.; Kholia, S.; Camussi, G. Stem cell-derived extracellular vesicles and immune-modulation. Front. Cell Dev. Biol., 2016, 4, 83. [http://dx.doi.org/10.3389/fcell.2016.00083]. [PMID: 27597941].
[67]
Usunier, B.; Benderitter, M.; Tamarat, R.; Chapel, A. Management of fibrosis: The mesenchymal stromal cells breakthrough. Stem Cells Int., 2014, 2014340257 [http://dx.doi.org/10.1155/2014/340257]. [PMID: 25132856].
[68]
Strempel, N.; Neidig, A.; Nusser, M.; Geffers, R.; Vieillard, J.; Lesouhaitier, O.; Brenner-Weiss, G.; Overhage, J. Human host defense peptide LL-37 stimulates virulence factor production and adaptive resistance in Pseudomonas aeruginosa. PLoS One, 2013, 8(12)e82240 [http://dx.doi.org/10.1371/journal.pone.0082240]. [PMID: 24349231].
[69]
Loi, R.; Beckett, T.; Goncz, K.K.; Suratt, B.T.; Weiss, D.J. Limited restoration of cystic fibrosis lung epithelium in vivo with adult bone marrow-derived cells. Am. J. Respir. Crit. Care Med., 2006, 173(2), 171-179. [http://dx.doi.org/10.1164/rccm.200502-309OC]. [PMID: 16179642].
[70]
Hostettler, K.E.; Gazdhar, A.; Khan, P.; Savic, S.; Tamo, L.; Lardinois, D.; Roth, M.; Tamm, M.; Geiser, T. Multipotent mesenchymal stem cells in lung fibrosis. PLoS One, 2017, 12(8)e0181946 [http://dx.doi.org/10.1371/journal.pone.0181946]. [PMID: 28827799].
[71]
Harrell, C.R.; Sadikot, R.; Pascual, J.; Fellabaum, C.; Jankovic, M.G.; Jovicic, N.; Djonov, V.; Arsenijevic, N.; Volarevic, V. Mesenchymal stem cell-based therapy of inflammatory lung diseases: Current understanding and future perspectives. Stem Cells Int., 2019, 20194236973 [http://dx.doi.org/10.1155/2019/4236973]. [PMID: 31191672].
[72]
Zhang, Z.; Huang, S.; Wu, S.; Qi, J.; Li, W.; Liu, S.; Cong, Y.; Chen, H.; Lu, L.; Shi, S.; Wang, D.; Chen, W.; Sun, L. Clearance of apoptotic cells by mesenchymal stem cells contributes to immunosuppression via PGE2. EBioMedicine, 2019, 45, 341-350. [http://dx.doi.org/10.1016/j.ebiom.2019.06.016]. [PMID: 31248835].
[73]
Ghannam, S.; Bouffi, C.; Djouad, F.; Jorgensen, C.; Noël, D. Immunosuppression by mesenchymal stem cells: Mechanisms and clinical applications. Stem Cell Res. Ther., 2010, 1(1), 2. [http://dx.doi.org/10.1186/scrt2]. [PMID: 20504283].
[74]
Walter, J.; Ware, L.B.; Matthay, M.A. Mesenchymal stem cells: mechanisms of potential therapeutic benefit in ARDS and sepsis. Lancet Respir. Med., 2014, 2(12), 1016-1026. [http://dx.doi.org/10.1016/S2213-2600(14)70217-6]. [PMID: 25465643].
[75]
Haddad, R.; Saldanha-Araujo, F. Mechanisms of T-cell immunosuppression by mesenchymal stromal cells: What do we know so far? BioMed Res. Int., 2014, 2014216806 [http://dx.doi.org/10.1155/2014/216806]. [PMID: 25025040].
[76]
Budoni, M.; Fierabracci, A.; Luciano, R.; Petrini, S.; Di Ciommo, V.; Muraca, M. The immunosuppressive effect of mesenchymal stromal cells on B lymphocytes is mediated by membrane vesicles. Cell Transplant., 2013, 22(2), 369-379. [http://dx.doi.org/10.3727/096368911X582769b]. [PMID: 23433427].
[77]
Di Trapani, M.; Bassi, G.; Midolo, M.; Gatti, A.; Kamga, P.T.; Cassaro, A.; Carusone, R.; Adamo, A.; Krampera, M. Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions. Sci. Rep., 2016, 6, 24120. [http://dx.doi.org/10.1038/srep24120]. [PMID: 27071676].
[78]
Galleu, A.; Riffo-Vasquez, Y.; Trento, C.; Lomas, C.; Dolcetti, L.; Cheung, T.S.; von Bonin, M.; Barbieri, L.; Halai, K.; Ward, S.; Weng, L.; Chakraverty, R.; Lombardi, G.; Watt, F.M.; Orchard, K.; Marks, D.I.; Apperley, J.; Bornhauser, M.; Walczak, H.; Bennett, C.; Dazzi, F. Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Sci. Transl. Med., 2017, 9(416)eaam7828 [http://dx.doi.org/10.1126/scitranslmed.aam7828]. [PMID: 29141887].
[79]
Li, X.; Liu, L.; Yang, J.; Yu, Y.; Chai, J.; Wang, L.; Ma, L.; Yin, H. Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR-181c attenuating burn-induced excessive inflammation. EBioMedicine, 2016, 8, 72-82. [http://dx.doi.org/10.1016/j.ebiom.2016.04.030]. [PMID: 27428420].
[80]
Favaro, E.; Carpanetto, A.; Lamorte, S.; Fusco, A.; Caorsi, C.; Deregibus, M.C.; Bruno, S.; Amoroso, A.; Giovarelli, M.; Porta, M.; Perin, P.C.; Tetta, C.; Camussi, G.; Zanone, M.M. Human mesenchymal stem cell-derived microvesicles modulate T cell response to islet antigen glutamic acid decarboxylase in patients with type 1 diabetes. Diabetologia, 2014, 57(8), 1664-1673. [http://dx.doi.org/10.1007/s00125-014-3262-4]. [PMID: 24838680].
[81]
Lo Sicco, C.; Reverberi, D.; Balbi, C.; Ulivi, V.; Principi, E.; Pascucci, L.; Becherini, P.; Bosco, M.C.; Varesio, L.; Franzin, C.; Pozzobon, M.; Cancedda, R.; Tasso, R. Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: endorsement of macrophage polarization. Stem Cells Transl. Med., 2017, 6(3), 1018-1028. [http://dx.doi.org/10.1002/sctm.16-0363]. [PMID: 28186708].
[82]
Wang, Y.; Chen, X.; Cao, W.; Shi, Y. Plasticity of mesenchymal stem cells in immunomodulation: Pathological and therapeutic implications. Nat. Immunol., 2014, 15(11), 1009-1016. [http://dx.doi.org/10.1038/ni.3002]. [PMID: 25329189].
[83]
Zhang, Y.; Xu, J.; Liu, S.; Lim, M.; Zhao, S.; Cui, K.; Zhang, K.; Wang, L.; Ji, Q.; Han, Z.; Kong, D.; Li, Z.; Liu, N. Embryonic stem cell-derived extracellular vesicles enhance the therapeutic effect of mesenchymal stem cells. Theranostics, 2019, 9(23), 6976-6990. [http://dx.doi.org/10.7150/thno.35305]. [PMID: 31660081].
[84]
Wei, Y.; Wu, Y.; Zhao, R.; Zhang, K.; Midgley, A.C.; Kong, D.; Li, Z.; Zhao, Q. MSC-derived sEVs enhance patency and inhibit calcification of synthetic vascular grafts by immunomodulation in a rat model of hyperlipidemia. Biomaterials, 2019, 204, 13-24. [http://dx.doi.org/10.1016/j.biomaterials.2019.01.049]. [PMID: 30875515].
[85]
Yu, L.; Liu, S.; Wang, C.; Zhang, C.; Wen, Y.; Zhang, K.; Chen, S.; Huang, H.; Liu, Y.; Wu, L.; Han, Z.; Chen, X.; Li, Z.; Liu, N. Embryonic stem cell-derived extracellular vesicles promote the recovery of kidney injury. Stem Cell Res. Ther., 2021, 12(1), 379. [http://dx.doi.org/10.1186/s13287-021-02460-0]. [PMID: 34215331].
[86]
Ren, J.; Liu, Y.; Yao, Y.; Feng, L.; Zhao, X.; Li, Z.; Yang, L. Intranasal delivery of MSC-derived exosomes attenuates allergic asthma via expanding IL-10 producing lung interstitial macrophages in mice. Int. Immunopharmacol., 2021, 91107288 [http://dx.doi.org/10.1016/j.intimp.2020.107288]. [PMID: 33360827].
[87]
Noonin, C.; Thongboonkerd, V. Exosome-inflammasome crosstalk and their roles in inflammatory responses. Theranostics, 2021, 11(9), 4436-4451. [http://dx.doi.org/10.7150/thno.54004]. [PMID: 33754070].
[88]
Zhou, Y.; Li, P.; Goodwin, A.J.; Cook, J.A.; Halushka, P.V.; Chang, E.; Fan, H. Exosomes from endothelial progenitor cells improve the outcome of a murine model of sepsis. Mol. Ther., 2018, 26(5), 1375-1384. [http://dx.doi.org/10.1016/j.ymthe.2018.02.020]. [PMID: 29599080].
[89]
Liu, Y.; Cui, J.; Wang, H.; Hezam, K.; Zhao, X.; Huang, H.; Chen, S.; Han, Z.; Han, Z.C.; Guo, Z.; Li, Z. Enhanced therapeutic effects of MSC-derived extracellular vesicles with an injectable collagen matrix for experimental acute kidney injury treatment. Stem Cell Res. Ther., 2020, 11(1), 161. [http://dx.doi.org/10.1186/s13287-020-01668-w]. [PMID: 32321594].
[90]
Matthay, M.A.; Pati, S.; Lee, J-W. Concise review: Mesenchymal stem (stromal) cells: Biology and preclinical evidence for therapeutic potential for organ dysfunction following trauma or sepsis. Stem Cells, 2017, 35(2), 316-324. [http://dx.doi.org/10.1002/stem.2551]. [PMID: 27888550].
[91]
Chen, J.Y.; An, R.; Liu, Z.J.; Wang, J.J.; Chen, S.Z.; Hong, M.M.; Liu, J.H.; Xiao, M.Y.; Chen, Y.F. Therapeutic effects of mesenchymal stem cell-derived microvesicles on pulmonary arterial hypertension in rats. Acta Pharmacol. Sin., 2014, 35(9), 1121-1128. [http://dx.doi.org/10.1038/aps.2014.61]. [PMID: 25088001].
[92]
Lee, C.; Mitsialis, S.A.; Aslam, M.; Vitali, S.H.; Vergadi, E.; Konstantinou, G.; Sdrimas, K.; Fernandez-Gonzalez, A.; Kourembanas, S. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation, 2012, 126(22), 2601-2611. [http://dx.doi.org/10.1161/CIRCULATIONAHA.112.114173]. [PMID: 23114789].
[93]
Morrison, T.J.; Jackson, M.V.; Cunningham, E.K.; Kissenpfennig, A.; McAuley, D.F.; O’Kane, C.M.; Krasnodembskaya, A.D. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am. J. Respir. Crit. Care Med., 2017, 196(10), 1275-1286. [http://dx.doi.org/10.1164/rccm.201701-0170OC]. [PMID: 28598224].
[94]
Cruz, F.F.; Borg, Z.D.; Goodwin, M.; Sokocevic, D.; Wagner, D.E.; Coffey, A.; Antunes, M.; Robinson, K.L.; Mitsialis, S.A.; Kourembanas, S.; Thane, K.; Hoffman, A.M.; McKenna, D.H.; Rocco, P.R.; Weiss, D.J. Systemic administration of human bone marrow-derived mesenchymal stromal cell extracellular vesicles ameliorates aspergillus hyphal extract-induced allergic airway inflammation in immunocompetent mice. Stem Cells Transl. Med., 2015, 4(11), 1302-1316. [http://dx.doi.org/10.5966/sctm.2014-0280]. [PMID: 26378259].
[95]
Lei, X.; He, N.; Zhu, L.; Zhou, M.; Zhang, K.; Wang, C.; Huang, H.; Chen, S.; Li, Y.; Liu, Q.; Han, Z.; Guo, Z.; Han, Z.; Li, Z. Mesenchymal stem cell-derived extracellular vesicles attenuate radiation-induced lung injury via miRNA-214-3p. Antioxid. Redox Signal., 2020. [http://dx.doi.org/10.1089/ars.2019.7965]. [PMID: 32664737].
[96]
Johnson, E.R.; Matthay, M.A. Acute lung injury: Epidemiology, pathogenesis, and treatment. J. Aerosol Med. Pulm. Drug Deliv., 2010, 23(4), 243-252. [http://dx.doi.org/10.1089/jamp.2009.0775]. [PMID: 20073554].
[97]
Huh, J.W.; Kim, S.Y.; Lee, J.H.; Lee, J.S.; Van Ta, Q.; Kim, M.; Oh, Y.M.; Lee, Y.S.; Lee, S.D. Bone marrow cells repair cigarette smoke-induced emphysema in rats. Am. J. Physiol. Lung Cell. Mol. Physiol., 2011, 301(3), L255-L266. [http://dx.doi.org/10.1152/ajplung.00253.2010]. [PMID: 21622846].
[98]
Wilson, J.G.; Liu, K.D.; Zhuo, H.; Caballero, L.; McMillan, M.; Fang, X.; Cosgrove, K.; Vojnik, R.; Calfee, C.S.; Lee, J.W.; Rogers, A.J.; Levitt, J.; Wiener-Kronish, J.; Bajwa, E.K.; Leavitt, A.; McKenna, D.; Thompson, B.T.; Matthay, M.A. Mesenchymal stem (stromal) cells for treatment of ARDS: A phase 1 clinical trial. Lancet Respir. Med., 2015, 3(1), 24-32. [http://dx.doi.org/10.1016/S2213-2600(14)70291-7]. [PMID: 25529339].
[99]
Rojas, M.; Xu, J.; Woods, C.R.; Mora, A.L.; Spears, W.; Roman, J.; Brigham, K.L. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am. J. Respir. Cell Mol. Biol., 2005, 33(2), 145-152. [http://dx.doi.org/10.1165/rcmb.2004-0330OC]. [PMID: 15891110].
[100]
Shalaby, S.M.; El-Shal, A.S.; Abd-Allah, S.H.; Selim, A.O.; Selim, S.A.; Gouda, Z.A.; Abd El Motteleb, D.M.; Zanfaly, H.E.; El-Assar, H.M.; Abdelazim, S. Mesenchymal stromal cell injection protects against oxidative stress in Escherichia coli-induced acute lung injury in mice. Cytotherapy, 2014, 16(6), 764-775. [http://dx.doi.org/10.1016/j.jcyt.2013.12.006]. [PMID: 24525173].
[101]
Hayes, M.; Masterson, C.; Devaney, J.; Barry, F.; Elliman, S.; O’Brien, T.; O’Toole, D.; Curley, G.F.; Laffey, J.G. Therapeutic efficacy of human mesenchymal stromal cells in the repair of established ventilator-induced lung injury in the rat. Anesthesiology, 2015, 122(2), 363-373. [http://dx.doi.org/10.1097/ALN.0000000000000545]. [PMID: 25490744].
[102]
Shologu, N.; Scully, M.; Laffey, J.G.; O’Toole, D. Human mesenchymal stem cell secretome from bone marrow or adipose-derived tissue sources for treatment of hypoxia-induced pulmonary epithelial injury. Int. J. Mol. Sci., 2018, 19(10), 2996. [http://dx.doi.org/10.3390/ijms19102996]. [PMID: 30274394].
[103]
Zhou, P.; Yang, X-L.; Wang, X-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H-R.; Zhu, Y.; Li, B.; Huang, C-L.; Chen, H-D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R-D.; Liu, M-Q.; Chen, Y.; Shen, X-R.; Wang, X.; Zheng, X-S.; Zhao, K.; Chen, Q-J.; Deng, F.; Liu, L-L.; Yan, B.; Zhan, F-X.; Wang, Y-Y.; Xiao, G-F.; Shi, Z-L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273. [http://dx.doi.org/10.1038/s41586-020-2012-7]. [PMID: 32015507].
[104]
Cucinotta, D.; Vanelli, M.; Declares, W.H.O. COVID-19 a Pandemic. Acta Biomed., 2020, 91(1), 157-160. [PMID: 32191675].
[105]
Peeri, N.C.; Shrestha, N.; Rahman, M.S.; Zaki, R.; Tan, Z.; Bibi, S.; Baghbanzadeh, M.; Aghamohammadi, N.; Zhang, W.; Haque, U. The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: What lessons have we learned? Int. J. Epidemiol., 2020, 49(3), 717-726. [http://dx.doi.org/10.1093/ije/dyaa033]. [PMID: 32086938].
[106]
Zhai, P.; Ding, Y.; Wu, X.; Long, J.; Zhong, Y.; Li, Y. The epidemiology, diagnosis and treatment of COVID-19. Int. J. Antimicrob. Agents, 2020, 55(5)105955 [http://dx.doi.org/10.1016/j.ijantimicag.2020.105955]. [PMID: 32234468].
[107]
Yaqinuddin, A.; Kashir, J. Innate immunity in COVID-19 patients mediated by NKG2A receptors, and potential treatment using monalizumab, cholroquine, and antiviral agents. Med. Hypotheses, 2020, 140109777 [http://dx.doi.org/10.1016/j.mehy.2020.109777]. [PMID: 32344314].
[108]
Hezam, K.; Almansoub, H.A.; Saleh, F.A.; Almansob, Y.A.; Al-Mekhlafi, H.; Asma, A-Y.; Al-Gheethi, A.; Almezgagi, M.; Al-Shaebi, F.; Murshed, D. 2020.
[109]
Peng, H.; Gong, T.; Huang, X.; Sun, X.; Luo, H.; Wang, W.; Luo, J.; Luo, B.; Chen, Y.; Wang, X.; Long, H.; Mei, H.; Li, C.; Dai, Y.; Li, H. A synergistic role of convalescent plasma and mesenchymal stem cells in the treatment of severely ill COVID-19 patients: A clinical case report. Stem Cell Res. Ther., 2020, 11(1), 291. [http://dx.doi.org/10.1186/s13287-020-01802-8]. [PMID: 32678017].
[110]
Serafin, M.B.; Bottega, A.; Foletto, V.S.; da Rosa, T.F.; Hörner, A.; Hörner, R. Drug repositioning is an alternative for the treatment of coronavirus COVID-19. Int. J. Antimicrob. Agents, 2020, 55(6)105969 [http://dx.doi.org/10.1016/j.ijantimicag.2020.105969]. [PMID: 32278811].
[111]
Saldanha-Araujo, F.; Melgaço Garcez, E.; Silva-Carvalho, A.E.; Carvalho, J.L. Mesenchymal stem cells: A new piece in the puzzle of COVID-19 treatment. Front. Immunol., 2020, 11, 1563. [http://dx.doi.org/10.3389/fimmu.2020.01563]. [PMID: 32719683].
[112]
Tang, L.; Jiang, Y.; Zhu, M.; Chen, L.; Zhou, X.; Zhou, C.; Ye, P.; Chen, X.; Wang, B.; Xu, Z.; Zhang, Q.; Xu, X.; Gao, H.; Wu, X.; Li, D.; Jiang, W.; Qu, J.; Xiang, C.; Li, L. Clinical study using mesenchymal stem cells for the treatment of patients with severe COVID-19. Front. Med., 2020, 14(5), 664-673. [http://dx.doi.org/10.1007/s11684-020-0810-9]. [PMID: 32761491].
[113]
Leng, Z.; Zhu, R.; Hou, W.; Feng, Y.; Yang, Y.; Han, Q.; Shan, G.; Meng, F.; Du, D.; Wang, S.; Fan, J.; Wang, W.; Deng, L.; Shi, H.; Li, H.; Hu, Z.; Zhang, F.; Gao, J.; Liu, H.; Li, X.; Zhao, Y.; Yin, K.; He, X.; Gao, Z.; Wang, Y.; Yang, B.; Jin, R.; Stambler, I.; Lim, L.W.; Su, H.; Moskalev, A.; Cano, A.; Chakrabarti, S.; Min, K.J.; Ellison-Hughes, G.; Caruso, C.; Jin, K.; Zhao, R.C. Transplantation of ACE2- mesenchymal stem cells improves the outcome of patients with COVID-19 Pneumonia. Aging Dis., 2020, 11(2), 216-228. [http://dx.doi.org/10.14336/AD.2020.0228]. [PMID: 32257537].
[114]
Shu, L.; Niu, C.; Li, R.; Huang, T.; Wang, Y.; Huang, M.; Ji, N.; Zheng, Y.; Chen, X.; Shi, L.; Wu, M.; Deng, K.; Wei, J.; Wang, X.; Cao, Y.; Yan, J.; Feng, G. Treatment of severe COVID-19 with human umbilical cord mesenchymal stem cells. Stem Cell Res. Ther., 2020, 11(1), 361. [http://dx.doi.org/10.1186/s13287-020-01875-5]. [PMID: 32811531].
[115]
Herrmann, I.K.; Wood, M.J.A.; Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol., 2021, 16(7), 748-759. [http://dx.doi.org/10.1038/s41565-021-00931-2]. [PMID: 34211166].
[116]
Sherman, C.D.; Lodha, S.; Sahoo, S. ev cargo sorting in therapeutic development for cardiovascular disease. Cells, 2021, 10(6), 1500. [http://dx.doi.org/10.3390/cells10061500]. [PMID: 34203713].
[117]
Lukomska, B.; Stanaszek, L.; Zuba-Surma, E.; Legosz, P.; Sarzynska, S.; Drela, K. Challenges and controversies in human mesenchymal stem cell therapy. Stem Cells Int., 2019, 20199628536 [http://dx.doi.org/10.1155/2019/9628536]. [PMID: 31093291].
[118]
Liu, S.; Ginestier, C.; Ou, S.J.; Clouthier, S.G.; Patel, S.H.; Monville, F.; Korkaya, H.; Heath, A.; Dutcher, J.; Kleer, C.G.; Jung, Y.; Dontu, G.; Taichman, R.; Wicha, M.S. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res., 2011, 71(2), 614-624. [http://dx.doi.org/10.1158/0008-5472.CAN-10-0538]. [PMID: 21224357].
[119]
Karnoub, A.E.; Dash, A.B.; Vo, A.P.; Sullivan, A.; Brooks, M.W.; Bell, G.W.; Richardson, A.L.; Polyak, K.; Tubo, R.; Weinberg, R.A. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 2007, 449(7162), 557-563. [http://dx.doi.org/10.1038/nature06188]. [PMID: 17914389].
[120]
Haynesworth, S.E.; Baber, M.A.; Caplan, A.I. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J. Cell. Physiol., 1996, 166(3), 585-592. [http://dx.doi.org/10.1002/(SICI)1097-4652(199603)166:3<585:AID-JCP13>3.0.CO;2-6]. [PMID: 8600162].
[121]
Kadereit, S.; Deeds, L.S.; Haynesworth, S.E.; Koc, O.N.; Kozik, M.M.; Szekely, E.; Daum-Woods, K.; Goetchius, G.W.; Fu, P.; Welniak, L.A.; Murphy, W.J.; Laughlin, M.J. Expansion of LTC-ICs and maintenance of p21 and BCL-2 expression in cord blood CD34(+)/CD38(-) early progenitors cultured over human MSCs as a feeder layer. Stem Cells, 2002, 20(6), 573-582. [http://dx.doi.org/10.1634/stemcells.20-6-573]. [PMID: 12456965].
[122]
Lee, J.W.; Fang, X.; Gupta, N.; Serikov, V.; Matthay, M.A. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc. Natl. Acad. Sci. USA, 2009, 106(38), 16357-16362. [http://dx.doi.org/10.1073/pnas.0907996106]. [PMID: 19721001].
[123]
Tsoyi, K.; Hall, S.R.; Dalli, J.; Colas, R.A.; Ghanta, S.; Ith, B.; Coronata, A.; Fredenburgh, L.E.; Baron, R.M.; Choi, A.M.; Serhan, C.N.; Liu, X.; Perrella, M.A. Carbon monoxide improves efficacy of mesenchymal stromal cells during sepsis by production of specialized proresolving lipid mediators. Crit. Care Med., 2016, 44(12), e1236-e1245. [http://dx.doi.org/10.1097/CCM.0000000000001999]. [PMID: 27513357].
[124]
Kim, E.S.; Chang, Y.S.; Choi, S.J.; Kim, J.K.; Yoo, H.S.; Ahn, S.Y.; Sung, D.K.; Kim, S.Y.; Park, Y.R.; Park, W.S. Intratracheal transplantation of human umbilical cord blood-derived mesenchymal stem cells attenuates Escherichia coli-induced acute lung injury in mice. Respir. Res., 2011, 12, 108. [http://dx.doi.org/10.1186/1465-9921-12-108]. [PMID: 21843339].
[125]
Li, W.; Chen, W.; Huang, S.; Tang, X.; Yao, G.; Sun, L. Mesenchymal stem cells enhance pulmonary antimicrobial immunity and prevent following bacterial infection. Stem Cells Int., 2020, 20203169469 [http://dx.doi.org/10.1155/2020/3169469]. [PMID: 32300367].
[126]
Chen, X.; Wu, S.; Tang, L.; Ma, L.; Wang, F.; Feng, H.; Meng, J.; Han, Z. Mesenchymal stem cells overexpressing heme oxygenase-1 ameliorate lipopolysaccharide-induced acute lung injury in rats. J. Cell. Physiol., 2019, 234(5), 7301-7319. [http://dx.doi.org/10.1002/jcp.27488]. [PMID: 30362554].
[127]
Fang, X.; Abbott, J.; Cheng, L.; Colby, J.K.; Lee, J.W.; Levy, B.D.; Matthay, M.A. Human mesenchymal stem (stromal) cells promote the resolution of acute lung injury in part through lipoxin A4. J. Immunol., 2015, 195(3), 875-881. [http://dx.doi.org/10.4049/jimmunol.1500244]. [PMID: 26116507].
[128]
Li, X.; Zhang, Y.; Liang, Y.; Cui, Y.; Yeung, S.C.; Ip, M.S.; Tse, H.F.; Lian, Q.; Mak, J.C. iPSC-derived mesenchymal stem cells exert SCF-dependent recovery of cigarette smoke-induced apoptosis/proliferation imbalance in airway cells. J. Cell. Mol. Med., 2017, 21(2), 265-277. [http://dx.doi.org/10.1111/jcmm.12962]. [PMID: 27641240].
[129]
Curley, G.F.; Jerkic, M.; Dixon, S.; Hogan, G.; Masterson, C.; O’Toole, D.; Devaney, J.; Laffey, J.G. Cryopreserved, xeno-free human umbilical cord mesenchymal stromal cells reduce lung injury severity and bacterial burden in rodent Escherichia coli-induced acute respiratory distress syndrome. Crit. Care Med., 2017, 45(2), e202-e212. [http://dx.doi.org/10.1097/CCM.0000000000002073]. [PMID: 27861182].
[130]
Devaney, J.; Horie, S.; Masterson, C.; Elliman, S.; Barry, F.; O’Brien, T.; Curley, G.F.; O’Toole, D.; Laffey, J.G. Human mesenchymal stromal cells decrease the severity of acute lung injury induced by E. coli in the rat. Thorax, 2015, 70(7), 625-635. [http://dx.doi.org/10.1136/thoraxjnl-2015-206813]. [PMID: 25986435].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy