Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Beta-glucans is a Potential Inhibitor of Ovarian Cancer: Based on Molecular and Biological Aspects

Author(s): Fatemeh Sadoughi, Zatollah Asemi, Jamal Hallajzadeh*, Mohammad Ali Mansournia and Bahman Yousefi

Volume 23, Issue 9, 2022

Published on: 10 August, 2021

Page: [1142 - 1152] Pages: 11

DOI: 10.2174/1389201022666210810090728

Price: $65

conference banner
Abstract

Ovarian cancer is a lethal type of cancer which is initiated to the ovaries and affects 1 out of every 75 women. Due to the high number of deaths (almost 152,000) related to this cancer, it seems that novel efficient therapeutic methods are required in this field. Beta-glucans are a type of glucose linear polymers which have been proven to have a lot of advantageous activities. Recently, investigations have declared that these polysaccharides have the potential to be used as anti-cancer drugs. These agents are able to affect several mechanisms such as inflammation and apoptosis, and that is how cancers are prone to be affected by them. In this review, we attempt to investigate the role of beta-glucans on ovarian cancer. We hope that this paper would give some novel insights into the field of ovarian cancer treatment.

Keywords: Beta-glucans, ovarian cancer, apoptosis, signaling, anti-cancer, ovaries.

[1]
Webb, P.M.; Jordan, S.J. Epidemiology of epithelial ovarian cancer. Best Pract. Res. Clin. Obstet. Gynaecol., 2017, 41, 3-14.
[http://dx.doi.org/10.1016/j.bpobgyn.2016.08.006] [PMID: 27743768]
[2]
Reid, B.M.; Permuth, J.B.; Sellers, T.A. Epidemiology of ovarian cancer: A review. Cancer Biol. Med., 2017, 14(1), 9-32.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2016.0084] [PMID: 28443200]
[3]
Kossaï, M.; Leary, A.; Scoazec, J-Y.; Genestie, C. Ovarian cancer: A heterogeneous disease. Pathobiology, 2018, 85(1-2), 41-49.
[http://dx.doi.org/10.1159/000479006] [PMID: 29020678]
[4]
McCluggage, W.G. Morphological subtypes of ovarian carcinoma: A review with emphasis on new developments and pathogenesis. Pathology, 2011, 43(5), 420-432.
[http://dx.doi.org/10.1097/PAT.0b013e328348a6e7] [PMID: 21716157]
[5]
Prat, J. Ovarian carcinomas: Five distinct diseases with different origins, genetic alterations, and clinicopathological features. Virchows Arch., 2012, 460(3), 237-249.
[http://dx.doi.org/10.1007/s00428-012-1203-5] [PMID: 22322322]
[6]
Permuth-Wey, J.; Sellers, T.A. Epidemiology of ovarian cancer. Methods Mol. Biol., 2009, 472, 413-437.
[http://dx.doi.org/10.1007/978-1-60327-492-0_20] [PMID: 19107446]
[7]
Weiderpass, E.; Botteri, E. Ovarian cancer mortality trends: Which factors are involved? Ann. Oncol., 2016, 27(11), 1977-1978.
[http://dx.doi.org/10.1093/annonc/mdw411] [PMID: 27793848]
[8]
Rooth, C. Ovarian cancer: Risk factors, treatment and management. Br. J. Nurs., 2013, 22(17), S23-S30.
[http://dx.doi.org/10.12968/bjon.2013.22.Sup17.S23] [PMID: 24067270]
[9]
Narod, S. Can advanced-stage ovarian cancer be cured? Nat. Rev. Clin. Oncol., 2016, 13(4), 255-261.
[http://dx.doi.org/10.1038/nrclinonc.2015.224] [PMID: 26787282]
[10]
Orr, B.; Edwards, R.P. Diagnosis and treatment of ovarian cancer. Hematol. Oncol. Clin. North Am., 2018, 32(6), 943-964.
[http://dx.doi.org/10.1016/j.hoc.2018.07.010]] [PMID: 30390767]
[11]
Eisenhauer, E. Real-world evidence in the treatment of ovarian cancer. Anns of Oncol.,, 2017, 28, viii61-viii65.
[http://dx.doi.org/10.1093/annonc/mdx443]
[12]
Mueller, J.J.; Zhou, Q.C.; Iasonos, A.; O’Cearbhaill, R.E.; Alvi, F.A.; El Haraki, A.; Eriksson, A.G.; Gardner, G.J.; Sonoda, Y.; Levine, D.A.; Aghajanian, C.; Chi, D.S.; Abu-Rustum, N.R.; Zivanovic, O. Neoadjuvant chemotherapy and primary debulking surgery utilization for advanced-stage ovarian cancer at a comprehensive cancer center. Gynecol. Oncol., 2016, 140(3), 436-442.
[http://dx.doi.org/10.1016/j.ygyno.2016.01.008] [PMID: 26777991]
[13]
Melamed, A.; Hinchcliff, E.M.; Clemmer, J.T.; Bregar, A.J.; Uppal, S.; Bostock, I.; Schorge, J.O.; Del Carmen, M.G.; Rauh-Hain, J.A. Trends in the use of neoadjuvant chemotherapy for advanced ovarian cancer in the United States. Gynecol. Oncol., 2016, 143(2), 236-240.
[http://dx.doi.org/10.1016/j.ygyno.2016.09.002] [PMID: 27612977]
[14]
Iorio, G.C.; Martini, S.; Arcadipane, F.; Ricardi, U.; Franco, P. The role of radiotherapy in epithelial ovarian cancer: A literature overview. Med. Oncol., 2019, 36(7), 64.
[http://dx.doi.org/10.1007/s12032-019-1287-8] [PMID: 31165334]
[15]
Grunewald, T.; Ledermann, J.A. Targeted therapies for ovarian cancer. Best Pract. Res. Clin. Obstet. Gynaecol., 2017, 41, 139-152.
[http://dx.doi.org/10.1016/j.bpobgyn.2016.12.001] [PMID: 28111228]
[16]
Odunsi, K. Immunotherapy in ovarian cancer. Ann Oncol.,, 2017, 28, viii1-viii7.
[http://dx.doi.org/10.1093/annonc/mdx444r]
[17]
Mittica, G.; Ghisoni, E.; Giannone, G.; Genta, S.; Aglietta, M.; Sapino, A.; Valabrega, G. PARP inhibitors in ovarian cancer. Recent Patents Anticancer Drug Discov., 2018, 13(4), 392-410.
[http://dx.doi.org/10.2174/1574892813666180305165256] [PMID: 29512470]
[18]
Mabuchi, S.; Kuroda, H.; Takahashi, R.; Sasano, T. The PI3K/AKT/mTOR pathway as a therapeutic target in ovarian cancer. Gynecol. Oncol., 2015, 137(1), 173-179.
[http://dx.doi.org/10.1016/j.ygyno.2015.02.003] [PMID: 25677064]
[19]
Arend, R.C.; Jackson-Fisher, A.; Jacobs, I.A.; Chou, J.; Monk, B.J. Ovarian cancer: New strategies and emerging targets for the treatment of patients with advanced disease. Cancer Biol. Ther., 2021, 22(2), 89-105.
[http://dx.doi.org/10.1080/15384047.2020.1868937] [PMID: 33427569]
[20]
Allemani, C.; Weir, H.K.; Carreira, H.; Harewood, R.; Spika, D.; Wang, X-S. Global surveillance of cancer survival 1995–2009: Analysis of individual data for 25 676 887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet, 2015, 385, 977-1010.
[http://dx.doi.org/10.1016/S0140-6736(14)62038-9] [PMID: 25467588]
[21]
Du, B.; Meenu, M.; Liu, H.; Xu, B. A Concise Review on the Molecular structure and function relationship of β-glucan. Int. J. Mol. Sci., 2019, 20(16), 4032.
[http://dx.doi.org/10.3390/ijms20164032] [PMID: 31426608]
[22]
Chan, G.C-F.; Chan, W.K.; Sze, D.M-Y. The effects of β-glucan on human immune and cancer cells. J. Hematol. Oncol., 2009, 2, 25.
[http://dx.doi.org/10.1186/1756-8722-2-25] [PMID: 19515245]
[23]
Choromanska, A.; Kulbacka, J.; Harasym, J.; Oledzki, R.; Szewczyk, A.; Saczko, J. High- and low-molecular weight oat beta-glucan reveals antitumor activity in human epithelial lung cancer. Pathol. Oncol. Res., 2018, 24(3), 583-592.
[http://dx.doi.org/10.1007/s12253-017-0278-3] [PMID: 28756506]
[24]
Wang, Y.; Harding, S.V.; Thandapilly, S.J.; Tosh, S.M.; Jones, P.J.H.; Ames, N.P. Barley β-glucan reduces blood cholesterol levels via interrupting bile acid metabolism. Br. J. Nutr., 2017, 118(10), 822-829.
[http://dx.doi.org/10.1017/S0007114517002835] [PMID: 29115200]
[25]
Geller, A.; Shrestha, R.; Yan, J. Yeast-Derived β-Glucan in Cancer: Novel uses of a traditional therapeutic. Int. J. Mol. Sci., 2019, 20(15), 3618.
[http://dx.doi.org/10.3390/ijms20153618] [PMID: 31344853]
[26]
Zhang, Y.; Zhang, M.; Jiang, Y.; Li, X.; He, Y.; Zeng, P.; Guo, Z.; Chang, Y.; Luo, H.; Liu, Y.; Hao, C.; Wang, H.; Zhang, G.; Zhang, L. Lentinan as an immunotherapeutic for treating lung cancer: A review of 12 years clinical studies in China. J. Cancer Res. Clin. Oncol., 2018, 144(11), 2177-2186.
[http://dx.doi.org/10.1007/s00432-018-2718-1] [PMID: 30043277]
[27]
McIntosh, M.; Stone, B.A.; Stanisich, V.A. Curdlan and other bacterial (1-->3)-beta-D-glucans. Appl. Microbiol. Biotechnol., 2005, 68(2), 163-173.
[http://dx.doi.org/10.1007/s00253-005-1959-5] [PMID: 15818477]
[28]
Vetvicka, V.; Vannucci, L.; Sima, P.; Richter, J. Beta Glucan: Supplement or drug? from laboratory to clinical trials. Molecules, 2019, 24(7), 1251.
[http://dx.doi.org/10.3390/molecules24071251] [PMID: 30935016]
[29]
Goodridge, H.S.; Wolf, A.J.; Underhill, D.M. Beta-glucan recognition by the innate immune system. Immunol. Rev., 2009, 230(1), 38-50.
[http://dx.doi.org/10.1111/j.1600-065X.2009.00793.x] [PMID: 19594628]
[30]
Lukácsi, S.; Nagy-Baló, Z.; Erdei, A.; Sándor, N.; Bajtay, Z. The role of CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in complement-mediated phagocytosis and podosome formation by human phagocytes. Immunol. Lett., 2017, 189, 64-72.
[http://dx.doi.org/10.1016/j.imlet.2017.05.014]] [PMID: 28554712]
[31]
Xia, Y.; Vetvicka, V.; Yan, J.; Hanikýrová, M.; Mayadas, T.; Ross, G.D. The beta-glucan-binding lectin site of mouse CR3 (CD11b/CD18) and its function in generating a primed state of the receptor that mediates cytotoxic activation in response to iC3b-opsonized target cells. J. Immunol., 1999, 162(4), 2281-2290.
[PMID: 9973505]
[32]
Xue, W.; Kindzelskii, A.L.; Todd, R.F., III; Petty, H.R. Physical association of complement receptor type 3 and urokinase-type plasminogen activator receptor in neutrophil membranes. J. Immunol., 1994, 152(9), 4630-4640.
[PMID: 8157977]
[33]
Chan, G.C.; Chan, W.K.; Sze, D.M. The effects of beta-glucan on human immune and cancer cells. J. Hematol. Oncol., 2009, 2, 25.
[http://dx.doi.org/10.1186/1756-8722-2-25] [PMID: 19515245]
[34]
Sahasrabudhe, N.M.; Schols, H.A.; Faas, M.M.; de Vos, P. Arabinoxylan activates Dectin-1 and modulates particulate β-glucan-induced Dectin-1 activation. Mol. Nutr. Food Res., 2016, 60(2), 458-467.
[http://dx.doi.org/10.1002/mnfr.201500582] [PMID: 26394716]
[35]
Ariizumi, K.; Shen, G.L.; Shikano, S.; Xu, S.; Ritter, R., III; Kumamoto, T.; Edelbaum, D.; Morita, A.; Bergstresser, P.R.; Takashima, A. Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning. J. Biol. Chem., 2000, 275(26), 20157-20167.
[http://dx.doi.org/10.1074/jbc.M909512199] [PMID: 10779524]
[36]
Barton, C.; Vigor, K.; Scott, R.; Jones, P.; Lentfer, H.; Bax, H.J.; Josephs, D.H.; Karagiannis, S.N.; Spicer, J.F. Beta-glucan contamination of pharmaceutical products: How much should we accept? Cancer Immunol. Immunother., 2016, 65(11), 1289-1301.
[http://dx.doi.org/10.1007/s00262-016-1875-9] [PMID: 27473075]
[37]
Willment, J.A.; Marshall, A.S.; Reid, D.M.; Williams, D.L.; Wong, S.Y.; Gordon, S.; Brown, G.D. The human beta-glucan receptor is widely expressed and functionally equivalent to murine Dectin-1 on primary cells. Eur. J. Immunol., 2005, 35(5), 1539-1547.
[http://dx.doi.org/10.1002/eji.200425725] [PMID: 15816015]
[38]
Brown, G.D. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat. Rev. Immunol., 2006, 6(1), 33-43.
[http://dx.doi.org/10.1038/nri1745] [PMID: 16341139]
[39]
Saijo, S.; Iwakura, Y. Dectin-1 and Dectin-2 in innate immunity against fungi. Int. Immunol., 2011, 23(8), 467-472.
[http://dx.doi.org/10.1093/intimm/dxr046] [PMID: 21677049]
[40]
Wakshull, E.; Brunke-Reese, D.; Lindermuth, J.; Fisette, L.; Nathans, R.S.; Crowley, J.J.; Tufts, J.C.; Zimmerman, J.; Mackin, W.; Adams, D.S. PGG-glucan, a soluble beta-(1,3)-glucan, enhances the oxidative burst response, microbicidal activity, and activates an NF-kappa B-like factor in human PMN: evidence for a glycosphingolipid beta-(1,3)-glucan receptor. Immunopharmacology, 1999, 41(2), 89-107.
[http://dx.doi.org/10.1016/S0162-3109(98)00059-9] [PMID: 10102791]
[41]
Won, J.S.; Singh, A.K.; Singh, I. Lactosylceramide: a lipid second messenger in neuroinflammatory disease. J. Neurochem., 2007, 103(Suppl. 1), 180-191.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04822.x] [PMID: 17986153]
[42]
Vera, J.; Fenutría, R.; Cañadas, O.; Figueras, M.; Mota, R.; Sarrias, M.R.; Williams, D.L.; Casals, C.; Yelamos, J.; Lozano, F. The CD5 ectodomain interacts with conserved fungal cell wall components and protects from zymosan-induced septic shock-like syndrome. Proc. Natl. Acad. Sci. USA, 2009, 106(5), 1506-1511.
[http://dx.doi.org/10.1073/pnas.0805846106] [PMID: 19141631]
[43]
Sen, G.; Bikah, G.; Venkataraman, C.; Bondada, S. Negative regulation of antigen receptor-mediated signaling by constitutive association of CD5 with the SHP-1 protein tyrosine phosphatase in B-1 B cells. Eur. J. Immunol., 1999, 29(10), 3319-3328.
[http://dx.doi.org/10.1002/(SICI)1521-4141(199910)29:10<3319:AID-IMMU3319>3.0.CO;2-9] [PMID: 10540344]
[44]
Walsh, T.; Casadei, S.; Lee, M.K.; Pennil, C.C.; Nord, A.S.; Thornton, A.M.; Roeb, W.; Agnew, K.J.; Stray, S.M.; Wickramanayake, A.; Norquist, B.; Pennington, K.P.; Garcia, R.L.; King, M.C.; Swisher, E.M. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc. Natl. Acad. Sci. USA, 2011, 108(44), 18032-18037.
[http://dx.doi.org/10.1073/pnas.1115052108] [PMID: 22006311]
[45]
Moschetta, M.; George, A.; Kaye, S.B.; Banerjee, S. BRCA somatic mutations and epigenetic BRCA modifications in serous ovarian cancer. Ann. Oncol., 2016, 27, 1449-1455.
[http://dx.doi.org/10.1093/annonc/mdw142]
[46]
Toss, A.; Tomasello, C.; Razzaboni, E.; Contu, G.; Grandi, G.; Cagnacci, A.; Schilder, R.J.; Cortesi, L. Hereditary ovarian cancer: not only BRCA 1 and 2 genes. BioMed Res. Int., 2015, 2015, 341723.
[http://dx.doi.org/10.1155/2015/341723] [PMID: 26075229]
[47]
Sadoughi, F.; Hallajzadeh, J.; Asemi, Z.; Mansournia, M.A.; Alemi, F.; Yousefi, B. Signaling pathways involved in cell cycle arrest during the DNA breaks. DNA Repair (Amst.), 2021, 98, 103047.
[http://dx.doi.org/10.1016/j.dnarep.2021.103047] [PMID: 33454524]
[48]
Sadoughi, F.; Mirsafaei, L.; Dana, P.M.; Hallajzadeh, J.; Asemi, Z.; Mansournia, M.A.; Montazer, M.; Hosseinpour, M.; Yousefi, B. The role of DNA damage response in chemo- and radio-resistance of cancer cells: Can DDR inhibitors sole the problem? DNA Repair (Amst.), 2021, 101, 103074.
[http://dx.doi.org/10.1016/j.dnarep.2021.103074] [PMID: 33640757]
[49]
Chatterjee, N.; Walker, G.C. Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen., 2017, 58(5), 235-263.
[http://dx.doi.org/10.1002/em.22087] [PMID: 28485537]
[50]
Jackson, S.P.; Bartek, J. The DNA-damage response in human biology and disease. Nature, 2009, 461(7267), 1071-1078.
[http://dx.doi.org/10.1038/nature08467] [PMID: 19847258]
[51]
Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature, 2002, 420(6917), 860-867.
[http://dx.doi.org/10.1038/nature01322] [PMID: 12490959]
[52]
Kuper, H.; Adami, H.O.; Trichopoulos, D. Infections as a major preventable cause of human cancer. J. Intern. Med., 2000, 248(3), 171-183.
[http://dx.doi.org/10.1046/j.1365-2796.2000.00742.x] [PMID: 10971784]
[53]
Dhillon, A.S.; Hagan, S.; Rath, O.; Kolch, W. MAP kinase signalling pathways in cancer. Oncogene, 2007, 26(22), 3279-3290.
[http://dx.doi.org/10.1038/sj.onc.1210421] [PMID: 17496922]
[54]
Schulze-Osthoff, K.; Ferrari, D.; Riehemann, K.; Wesselborg, S. Regulation of NF-κ B activation by MAP kinase cascades. Immunobiology, 1997, 198(1-3), 35-49.
[http://dx.doi.org/10.1016/S0171-2985(97)80025-3] [PMID: 9442376]
[55]
Chou, C.H.; Wei, L.H.; Kuo, M.L.; Huang, Y.J.; Lai, K.P.; Chen, C.A.; Hsieh, C.Y. Up-regulation of interleukin-6 in human ovarian cancer cell via a Gi/PI3K-Akt/NF-kappaB pathway by lysophosphatidic acid, an ovarian cancer-activating factor. Carcinogenesis, 2005, 26(1), 45-52.
[http://dx.doi.org/10.1093/carcin/bgh301] [PMID: 15471896]
[56]
Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell, 2010, 140(6), 883-899.
[http://dx.doi.org/10.1016/j.cell.2010.01.025] [PMID: 20303878]
[57]
Savant, S.S.; Sriramkumar, S.; O’Hagan, H.M. The role of inflammation and inflammatory mediators in the development, progression, metastasis, and chemoresistance of epithelial ovarian cancer. Cancers (Basel), 2018, 10(8), 251.
[http://dx.doi.org/10.3390/cancers10080251] [PMID: 30061485]
[58]
Kroeger, P.T., Jr; Drapkin, R. Pathogenesis and heterogeneity of ovarian cancer. Curr. Opin. Obstet. Gynecol., 2017, 29(1), 26-34.
[http://dx.doi.org/10.1097/GCO.0000000000000340] [PMID: 27898521]
[59]
Petrovská, M.; Dimitrov, D.G.; Michael, S.D. Quantitative changes in macrophage distribution in normal mouse ovary over the course of the estrous cycle examined with an image analysis system. Am. J. Reprod. Immunol., 1996, 36(3), 175-183.
[http://dx.doi.org/10.1111/j.1600-0897.1996.tb00159.x] [PMID: 8874714]
[60]
Gupta, V.; Yull, F.; Khabele, D. Bipolar tumor-associated macrophages in ovarian cancer as targets for therapy. Cancers (Basel), 2018, 10(10), 366.
[http://dx.doi.org/10.3390/cancers10100366] [PMID: 30274280]
[61]
Chumduri, C.; Gurumurthy, R.K.; Zadora, P.K.; Mi, Y.; Meyer, T.F. Chlamydia infection promotes host DNA damage and proliferation but impairs the DNA damage response. Cell Host Microbe, 2013, 13(6), 746-758.
[http://dx.doi.org/10.1016/j.chom.2013.05.010] [PMID: 23768498]
[62]
Ingerslev, K.; Hogdall, E.; Schnack, T.H.; Skovrider-Ruminski, W.; Hogdall, C.; Blaakaer, J. The potential role of infectious agents and pelvic inflammatory disease in ovarian carcinogenesis. Infect. Agent. Cancer, 2017, 12, 25.
[http://dx.doi.org/10.1186/s13027-017-0134-9] [PMID: 28529540]
[63]
Gunderson, C.C.; Ding, K.; Dvorak, J.; Moore, K.N.; McMeekin, D.S.; Benbrook, D.M. The pro-inflammatory effect of obesity on high grade serous ovarian cancer. Gynecol. Oncol., 2016, 143(1), 40-45.
[http://dx.doi.org/10.1016/j.ygyno.2016.07.103] [PMID: 27423378]
[64]
Sayasneh, A.; Tsivos, D.; Crawford, R. Endometriosis and ovarian cancer: a systematic review. ISRN Obstet. Gynecol., 2011, 2011, 140310.
[http://dx.doi.org/10.5402/2011/140310] [PMID: 21789283]
[65]
Harris, H.R.; Terry, K.L. Polycystic ovary syndrome and risk of endometrial, ovarian, and breast cancer: a systematic review. Fertil. Res. Pract., 2016, 2, 14.
[http://dx.doi.org/10.1186/s40738-016-0029-2] [PMID: 28620541]
[66]
Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY), 2016, 8(4), 603-619.
[http://dx.doi.org/10.18632/aging.100934] [PMID: 27019364]
[67]
Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[68]
D’Arcy, M.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int., 2019, 43(6), 582-592.
[http://dx.doi.org/10.1002/cbin.11137] [PMID: 30958602]
[69]
Avontuur, J.A.; Tutein Nolthenius, R.P.; Buijk, S.L.; Kanhai, K.J.; Bruining, H.A. Effect of L-NAME, an inhibitor of nitric oxide synthesis, on cardiopulmonary function in human septic shock. Chest, 1998, 113(6), 1640-1646.
[http://dx.doi.org/10.1378/chest.113.6.1640] [PMID: 9631805]
[70]
Browning, L.; Patel, M.R.; Horvath, E.B.; Tawara, K.; Jorcyk, C.L. IL-6 and ovarian cancer: inflammatory cytokines in promotion of metastasis. Cancer Manag. Res., 2018, 10, 6685-6693.
[http://dx.doi.org/10.2147/CMAR.S179189] [PMID: 30584363]
[71]
Malone, J.M.; Saed, G.M.; Diamond, M.P.; Sokol, R.J.; Munkarah, A.R. The effects of the inhibition of inducible nitric oxide synthase on angiogenesis of epithelial ovarian cancer. Am. J. Obstet. Gynecol., 2006, 194(4), 1110-1116.
[http://dx.doi.org/10.1016/j.ajog.2005.12.019] [PMID: 16580304]
[72]
Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance.Ediriweera, M.K.; Tennekoon, K.H.; Samarakoon, S.R., Eds.; Seminars in cancerbiology; Elsevier,, 2019.
[73]
Meng, Q.; Xia, C.; Fang, J.; Rojanasakul, Y.; Jiang, B-H. Role of PI3K and AKT specific isoforms in ovarian cancer cell migration, invasion and proliferation through the p70S6K1 pathway. Cell. Signal., 2006, 18(12), 2262-2271.
[http://dx.doi.org/10.1016/j.cellsig.2006.05.019] [PMID: 16839745]
[74]
Montero, J.C.; Chen, X.; Ocaña, A.; Pandiella, A. Predominance of mTORC1 over mTORC2 in the regulation of proliferation of ovarian cancer cells: therapeutic implications. Mol. Cancer Ther., 2012, 11(6), 1342-1352.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0723] [PMID: 22496482]
[75]
Li, S.; Lv, M.; Qiu, S.; Meng, J.; Liu, W.; Zuo, J.; Yang, L. NF-κB p65 promotes ovarian cancer cell proliferation and migration via regulating mortalin. J. Cell. Mol. Med., 2019, 23(6), 4338-4348.
[http://dx.doi.org/10.1111/jcmm.14325] [PMID: 30983127]
[76]
Xiao, X.; Yang, G.; Bai, P.; Gui, S.; Nyuyen, T.M.; Mercado-Uribe, I.; Yang, M.; Zou, J.; Li, Q.; Xiao, J.; Chang, B.; Liu, G.; Wang, H.; Liu, J. Inhibition of nuclear factor-kappa B enhances the tumor growth of ovarian cancer cell line derived from a low-grade papillary serous carcinoma in p53-independent pathway. BMC Cancer, 2016, 16, 582.
[http://dx.doi.org/10.1186/s12885-016-2617-2] [PMID: 27484466]
[77]
Yang, G; Xiao, X; Rosen, DG; Cheng, X; Wu, X; Chang, B The biphasic role of NF-kappaB in progression and chemoresistance of ovarian cancer. Clin Cancer Res : an official journal of the American Association for Cancer Research, 2011, 17, 2181-2194.
[78]
Guan, X.; Chen, S.; Liu, Y.; Wang, L.L.; Zhao, Y.; Zong, Z.H. PUM1 promotes ovarian cancer proliferation, migration and invasion. Biochem. Biophys. Res. Commun., 2018, 497(1), 313-318.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.078] [PMID: 29428722]
[79]
Hou, X.S.; Han, C.Q.; Zhang, W. MiR-1182 inhibited metastasis and proliferation of ovarian cancer by targeting hTERT. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(6), 1622-1628.
[PMID: 29630105]
[80]
Jiang, J.H.; Lv, Q.Y.; Yi, Y.X.; Liao, J.; Wang, X.W.; Zhang, W. MicroRNA-200a promotes proliferation and invasion of ovarian cancer cells by targeting PTEN. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(19), 6260-6267.
[PMID: 30338796]
[81]
Wang, L.; Yan, W.; Li, X.; Liu, Z.; Tian, T.; Chen, T.; Zou, L.; Cui, Z. S100A10 silencing suppresses proliferation, migration and invasion of ovarian cancer cells and enhances sensitivity to carboplatin. J. Ovarian Res., 2019, 12(1), 113.
[http://dx.doi.org/10.1186/s13048-019-0592-3] [PMID: 31739800]
[82]
Xiang, G.; Cheng, Y. MiR-126-3p inhibits ovarian cancer proliferation and invasion via targeting PLXNB2. Reprod. Biol., 2018, 18(3), 218-224.
[http://dx.doi.org/10.1016/j.repbio.2018.07.005] [PMID: 30054097]
[83]
Yang, B.; Sun, L.; Liang, L. MiRNA-802 suppresses proliferation and migration of epithelial ovarian cancer cells by targeting YWHAZ. J. Ovarian Res., 2019, 12(1), 100.
[http://dx.doi.org/10.1186/s13048-019-0576-3] [PMID: 31640760]
[84]
Zhan, F.L.; Chen, C.F.; Yao, M.Z. LncRNA TUG1 facilitates proliferation, invasion and stemness of ovarian cancer cell via miR-186-5p/ZEB1 axis. Cell Biochem. Funct., 2020, 38(8), 1069-1078.
[http://dx.doi.org/10.1002/cbf.3544] [PMID: 32390141]
[85]
Zheng, F.; Xiao, X.; Wang, C. the effect of ptch1 on ovarian cancer cell proliferation and apoptosis. Cancer Biother. Radiopharm., 2019, 34(2), 103-109.
[http://dx.doi.org/10.1089/cbr.2018.2626] [PMID: 30523702]
[86]
Zheng, Z.J.; Liu, Y.; Wang, H.J.; Pang, W.W.; Wang, Y. LncRNA SNHG17 promotes proliferation and invasion of ovarian cancer cells through up-regulating FOXA1. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(18), 9282-9289.
[PMID: 33015769]
[87]
Vetvicka, V.; Teplyakova, T.V.; Shintyapina, A.B.; Korolenko, T.A. effects of medicinal fungi-derived β-glucan on tumor progression. J. Fungi (Basel), 2021, 7(4), 250.
[http://dx.doi.org/10.3390/jof7040250] [PMID: 33806255]
[88]
Fang, J.; Wang, Y.; Lv, X.; Shen, X.; Ni, X.; Ding, K. Structure of a β-glucan from Grifola frondosa and its antitumor effect by activating Dectin-1/Syk/NF-κB signaling. Glycoconj. J., 2012, 29(5-6), 365-377.
[http://dx.doi.org/10.1007/s10719-012-9416-z] [PMID: 22744837]
[89]
Chaichian, S.; Moazzami, B.; Sadoughi, F.; Haddad Kashani, H.; Zaroudi, M.; Asemi, Z. Functional activities of beta-glucans in the prevention or treatment of cervical cancer. J. Ovarian Res., 2020, 13(1), 24.
[http://dx.doi.org/10.1186/s13048-020-00626-7] [PMID: 32138756]
[90]
Legentil, L.; Paris, F.; Ballet, C.; Trouvelot, S.; Daire, X.; Vetvicka, V.; Ferrières, V. Molecular interactions of β-(1® 3)-glucans with their receptors. Molecules, 2015, 20(6), 9745-9766.
[http://dx.doi.org/10.3390/molecules20069745] [PMID: 26023937]
[91]
Baldassano, S.; Accardi, G.; Vasto, S. Beta-glucans and cancer: The influence of inflammation and gut peptide. Eur. J. Med. Chem., 2017, 142, 486-492.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.013] [PMID: 28964548]
[92]
Olson, E.J.; Standing, J.E.; Griego-Harper, N.; Hoffman, O.A.; Limper, A.H. Fungal beta-glucan interacts with vitronectin and stimulates tumor necrosis factor alpha release from macrophages. Infect. Immun., 1996, 64(9), 3548-3554.
[http://dx.doi.org/10.1128/iai.64.9.3548-3554.1996] [PMID: 8751898]
[93]
Brown, G.D.; Herre, J.; Williams, D.L.; Willment, J.A.; Marshall, A.S.; Gordon, S. Dectin-1 mediates the biological effects of β-glucans. J. Exp. Med., 2003, 197(9), 1119-1124.
[http://dx.doi.org/10.1084/jem.20021890] [PMID: 12719478]
[94]
Engstad, C.S.; Engstad, R.E.; Olsen, J-O.; Østerud, B. The effect of soluble β-1,3-glucan and lipopolysaccharide on cytokine production and coagulation activation in whole blood. Int. Immunopharmacol., 2002, 2(11), 1585-1597.
[http://dx.doi.org/10.1016/S1567-5769(02)00134-0] [PMID: 12433059]
[95]
Estrada, A.; Yun, C-H.; Van Kessel, A.; Li, B.; Hauta, S.; Laarveld, B. Immunomodulatory activities of oat β-glucan in vitro and in vivo. Microbiol. Immunol., 1997, 41(12), 991-998.
[http://dx.doi.org/10.1111/j.1348-0421.1997.tb01959.x] [PMID: 9492185]
[96]
Hahn, P.Y.; Evans, S.E.; Kottom, T.J.; Standing, J.E.; Pagano, R.E.; Limper, A.H. Pneumocystis carinii cell wall β-glucan induces release of macrophage inflammatory protein-2 from alveolar epithelial cells via a lactosylceramide-mediated mechanism. J. Biol. Chem., 2003, 278(3), 2043-2050.
[http://dx.doi.org/10.1074/jbc.M209715200] [PMID: 12419803]
[97]
Lin, Y-L.; Lee, S-S.; Hou, S-M.; Chiang, B-L. Polysaccharide purified from Ganoderma lucidum induces gene expression changes in human dendritic cells and promotes T helper 1 immune response in BALB/c mice. Mol. Pharmacol., 2006, 70(2), 637-644.
[http://dx.doi.org/10.1124/mol.106.022327] [PMID: 16670374]
[98]
Steimbach, L.; Borgmann, A.V.; Gomar, G.G.; Hoffmann, L.V.; Rutckeviski, R.; de Andrade, D.P. Fungal beta-glucans as adjuvants for treating cancer patients-A Systematic Review of Clinical Trials; Clin Nut, 2020.
[99]
Suram, S.; Brown, G.D.; Ghosh, M.; Gordon, S.; Loper, R.; Taylor, P.R.; Akira, S.; Uematsu, S.; Williams, D.L.; Leslie, C.C. Regulation of cytosolic phospholipase A2 activation and cyclooxygenase 2 expression in macrophages by the β-glucan receptor. J. Biol. Chem., 2006, 281(9), 5506-5514.
[http://dx.doi.org/10.1074/jbc.M509824200] [PMID: 16407295]
[100]
Akramiene, D.; Kondrotas, A.; Didziapetriene, J.; Kevelaitis, E. Effects of beta-glucans on the immune system. Medicina (Kaunas), 2007, 43(8), 597-606.
[http://dx.doi.org/10.3390/medicina43080076] [PMID: 17895634]
[101]
de Graaff, P.; Govers, C.; Wichers, H.J.; Debets, R. Consumption of β-glucans to spice up T cell treatment of tumors: a review. Expert Opin. Biol. Ther., 2018, 18(10), 1023-1040.
[http://dx.doi.org/10.1080/14712598.2018.1523392] [PMID: 30221551]
[102]
Goyal, S.; Castrillón-Betancur, J.C.; Klaile, E.; Slevogt, H. The interaction of human pathogenic fungi With C-Type Lectin Receptors. Front. Immunol., 2018, 9, 1261.
[http://dx.doi.org/10.3389/fimmu.2018.01261] [PMID: 29915598]
[103]
Sun, W-K.; Lu, X.; Li, X.; Sun, Q-Y.; Su, X.; Song, Y.; Sun, H.M.; Shi, Y. Dectin-1 is inducible and plays a crucial role in Aspergillus-induced innate immune responses in human bronchial epithelial cells. Eur. J. Clin. Microbiol. Infect. Dis., 2012, 31(10), 2755-2764.
[http://dx.doi.org/10.1007/s10096-012-1624-8] [PMID: 22562430]
[104]
Liang, J.; Melican, D.; Cafro, L.; Palace, G.; Fisette, L.; Armstrong, R.; Patchen, M.L. Enhanced clearance of a multiple antibiotic resistant Staphylococcus aureus in rats treated with PGG-glucan is associated with increased leukocyte counts and increased neutrophil oxidative burst activity. Int. J. Immunopharmacol., 1998, 20(11), 595-614.
[http://dx.doi.org/10.1016/S0192-0561(98)00007-1] [PMID: 9848393]
[105]
Bose, N.; Wurst, L.R.; Chan, A.S.; Dudney, C.M.; LeRoux, M.L.; Danielson, M.E.; Will, P.M.; Nodland, S.E.; Patchen, M.L.; Dalle Lucca, J.J.; Lebeda, F.J.; Vasilakos, J.P. Differential regulation of oxidative burst by distinct β-glucan-binding receptors and signaling pathways in human peripheral blood mononuclear cells. Glycobiology, 2014, 24(4), 379-391.
[http://dx.doi.org/10.1093/glycob/cwu005] [PMID: 24440830]
[106]
Tian, J.; Ma, J.; Ma, K.; Guo, H.; Baidoo, S.E.; Zhang, Y.; Yan, J.; Lu, L.; Xu, H.; Wang, S. β-Glucan enhances antitumor immune responses by regulating differentiation and function of monocytic myeloid-derived suppressor cells. Eur. J. Immunol., 2013, 43(5), 1220-1230.
[http://dx.doi.org/10.1002/eji.201242841] [PMID: 23424024]
[107]
Vlahopoulos, S.A. Aberrant control of NF-κB in cancer permits transcriptional and phenotypic plasticity, to curtail dependence on host tissue: molecular mode. Cancer Biol. Med., 2017, 14(3), 254-270.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2017.0029] [PMID: 28884042]
[108]
Harbort, C.J.; Soeiro-Pereira, P.V.; von Bernuth, H.; Kaindl, A.M.; Costa-Carvalho, B.T.; Condino-Neto, A.; Reichenbach, J.; Roesler, J.; Zychlinsky, A.; Amulic, B. Neutrophil oxidative burst activates ATM to regulate cytokine production and apoptosis. Blood, 2015, 126(26), 2842-2851.
[http://dx.doi.org/10.1182/blood-2015-05-645424] [PMID: 26491069]
[109]
Wang, N.; Liu, H.; Liu, G.; Li, M.; He, X.; Yin, C.; Tu, Q.; Shen, X.; Bai, W.; Wang, Q.; Tao, Y.; Yin, H. Yeast β-D-glucan exerts antitumour activity in liver cancer through impairing autophagy and lysosomal function, promoting reactive oxygen species production and apoptosis. Redox Biol., 2020, 32, 101495.
[http://dx.doi.org/10.1016/j.redox.2020.101495] [PMID: 32171725]
[110]
Kim, MJ; Hong, SY; Kim, SK; Cheong, C; Park, HJ Chun, HK beta-Glucan enhanced apoptosis in human colon cancer cells SNUC4. Nut Res practice,, 2009, 3, 180-184.
[111]
Gu, YY; Chen, MH; May, BH; Liao, XZ; Liu, JH; Tao, LT Matrine induces apoptosis in multiple colorectal cancer cell lines in vitro and inhibits tumour growth with minimum side effects in vivo via Bcl-2 and caspase-3. Phytomedicine: International journal of phytotherapy and phytopharmacology, 2018, 51, 214-225.
[http://dx.doi.org/10.1016/j.phymed.2018.10.00]
[112]
Saravanakumar, K.; Jeevithan, E.; Hu, X.; Chelliah, R.; Oh, D.H.; Wang, M.H. Enhanced anti-lung carcinoma and anti-biofilm activity of fungal molecules mediated biogenic zinc oxide nanoparticles conjugated with β-D-glucan from barley. J. Photochem. Photobiol. B, 2020, 203, 111728.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111728] [PMID: 31864088]
[113]
Thomas, M.; Sadjadian, P.; Kollmeier, J.; Lowe, J.; Mattson, P.; Trout, J.R.; Gargano, M.; Patchen, M.L.; Walsh, R.; Beliveau, M.; Marier, J.F.; Bose, N.; Gorden, K.; Schneller, F. III A randomized, open-label, multicenter, phase II study evaluating the efficacy and safety of BTH1677 (1,3-1,6 beta glucan; Imprime PGG) in combination with cetuximab and chemotherapy in patients with advanced non-small cell lung cancer. Invest. New Drugs, 2017, 35(3), 345-358.
[http://dx.doi.org/10.1007/s10637-017-0450-3] [PMID: 28303530]
[114]
Li, X.J.; Jia, Y.J.; Chen, L. Clinical observation of thermotherapy combined with thoracic injection of lentinan in treatment of cancerous hydrothorax of patients with lung cancer. Zhongguo Zhong Xi Yi Jie He Za Zhi, 2011, 31(8), 1062-1065. [Clinical observation of thermotherapy combined with thoracic injection of lentinan in treatment of cancerous hydrothorax of patients with lung cancer].
[PMID: 21910335]
[115]
Ostadrahimi, A.; Ziaei, J.E.; Esfahani, A.; Jafarabadi, M.A.; Movassaghpourakbari, A.; Farrin, N. Effect of beta glucan on white blood cell counts and serum levels of IL-4 and IL-12 in women with breast cancer undergoing chemotherapy: a randomized double-blind placebo-controlled clinical trial. Asian Pac. J. Cancer Prev., 2014, 15(14), 5733-5739.
[http://dx.doi.org/10.7314/APJCP.2014.15.14.5733] [PMID: 25081694]
[116]
Kataoka, H.; Shimura, T.; Mizoshita, T.; Kubota, E.; Mori, Y.; Mizushima, T.; Wada, T.; Ogasawara, N.; Tanida, S.; Sasaki, M.; Togawa, S.; Sano, H.; Hirata, Y.; Ikai, M.; Mochizuki, H.; Seno, K.; Itoh, S.; Kawai, T.; Joh, T. Lentinan with S-1 and paclitaxel for gastric cancer chemotherapy improve patient quality of life. Hepatogastroenterology, 2009, 56(90), 547-550.
[PMID: 19579640]
[117]
Tari, K.; Satake, I.; Nakagomi, K.; Ozawa, K.; Oowada, F.; Higashi, Y.; Negishi, T.; Yamada, T.; Saito, H.; Yoshida, K. Effect of lentinan for advanced prostate carcinoma. Hinyokika Kiyo, 1994, 40(2), 119-123.
[PMID: 8128920]
[118]
Zhang, Y.; Li, S.; Wang, X.; Zhang, L.; Cheung, P.C. Advances in lentinan: isolation, structure, chain conformation and bioactivities. Food Hydrocoll., 2011, 25, 196-206.
[http://dx.doi.org/10.1016/j.foodhyd.2010.02.001]
[119]
Fujimoto, K.; Tomonaga, M.; Goto, S. A case of recurrent ovarian cancer successfully treated with adoptive immunotherapy and lentinan. Anticancer Res., 2006, 26(6A), 4015-4018.
[PMID: 17195451]
[120]
Shimizu, Y; Hasumi, K; Chen, J; Hirai, Y; Nakayama, K; Teshima, H H Successful treatment of a patient with recurrent ovarian cancer bylentinan combined with intraarterial 5FU. Nihon Gan Chiryo Gakkai shi.,, 1989, 24, 647-651.
[121]
Guo, L-Y.; Zhang, S-Y.; Chen, C.; Zeng, H-X.; Li, F-Y.; Xu, Q-X. Lentinan combined with cisplatin and paclitaxel in the treatment of patients with ovarian cancer with ascites. Eur. J. Gynaecol. Oncol., 2018, 39, 615-620.
[122]
Zhang, M.; Zhang, Y.; Zhang, L.; Tian, Q. Mushroom polysaccharide lentinan for treating different types of cancers: A review of 12 years clinical studies in China. Prog. Mol. Biol. Transl. Sci., 2019, 163, 297-328.
[http://dx.doi.org/10.1016/bs.pmbts.2019.02.013] [PMID: 31030752]
[123]
Liu, X-d; Li, M; Li, W-x; Wang, Q-y; zhang, H-x combined effect of lentinan and cisplatin on cytokines IL-6, TNF-α, and TGF-β in tumor therapy. Int J Polymer Sci.,, 2019, 2019
[124]
Kony, D.B.; Damm, W.; Stoll, S.; van Gunsteren, W.F.; Hünenberger, P.H. Explicit-solvent molecular dynamics simulations of the polysaccharide schizophyllan in water. Biophys. J., 2007, 93(2), 442-455.
[http://dx.doi.org/10.1529/biophysj.106.086116] [PMID: 17237195]
[125]
Chen, J.T.; Hasumi, K.; Masubuchi, K. Interferon-alpha, interferon-gamma and sizofiran in the adjuvant therapy in ovarian cancer--a preliminary trial. Biotherapy, 1992, 5(4), 275-280.
[http://dx.doi.org/10.1007/BF02179044] [PMID: 1290723]
[126]
Hoshino, T.; Suzuki, Y.; Takeichi, M.; Adachi, T.; Takayama, M. Combined effects of sizofiran and rG-CSF on myelosuppression in cancer chemotherapy. Nippon Sanka Fujinka Gakkai Zasshi, 1996, 48(3), 206-212.
[PMID: 8721055]
[127]
Inoue, M.; Tanaka, Y.; Sugita, N.; Yamasaki, M.; Yamanaka, T.; Minagawa, J.; Nakamuro, K.; Tani, T.; Okudaira, Y.; Karita, T. Improvement of long-term prognosis in patients with ovarian cancers by adjuvant sizofiran immunotherapy: a prospective randomized controlled study. Biotherapy, 1993, 6(1), 13-18.
[http://dx.doi.org/10.1007/BF01877381] [PMID: 8507540]
[128]
Sugiyama, T.; Nishida, T.; Kumagai, S.; Imaishi, K.; Ushijima, K.; Kataoka, A.; Yakushiji, M. Combination treatment with cisplatin and schizophyllan for 7,12-dimethylbenz(a)anthracene-induced rat ovarian adenocarcinoma. J Obstet Gynaecol (Tokyo 1995),, 1995, 21(5), 521-527.
[http://dx.doi.org/10.1111/j.1447-0756.1995.tb01047.x] [PMID: 8542479]
[129]
Chen, J-T.; Hasumi, K. Activation of peritoneal macrophages in patients with gynecological malignancies by sizofiran and recombinant interferon-γ. Biotherapy, 1993, 6(3), 189-194.
[http://dx.doi.org/10.1007/BF01878080] [PMID: 8292460]
[130]
Yallapu, M.M.; Dobberpuhl, M.R.; Maher, D.M.; Jaggi, M.; Chauhan, S.C. Design of curcumin loaded cellulose nanoparticles for prostate cancer. Curr. Drug Metab., 2012, 13(1), 120-128.
[http://dx.doi.org/10.2174/138920012798356952] [PMID: 21892919]
[131]
Picaud, L.; Thibault, B.; Mery, E.; Ouali, M.; Martinez, A.; Delord, J-P.; Couderc, B.; Ferron, G. Evaluation of the effects of hyaluronic acid-carboxymethyl cellulose barrier on ovarian tumor progression. J. Ovarian Res., 2014, 7, 40.
[http://dx.doi.org/10.1186/1757-2215-7-40] [PMID: 24739440]
[132]
Münster, L.; Fojtů, M.; Capáková, Z.; Vaculovič, T.; Tvrdoňová, M.; Kuřitka, I.; Masařík, M.; Vícha, J. Selectively oxidized cellulose with adjustable molecular weight for controlled release of platinum anticancer drugs. Biomacromolecules, 2019, 20(4), 1623-1634.
[http://dx.doi.org/10.1021/acs.biomac.8b01807] [PMID: 30794396]
[133]
Kadam, S.U.; Tiwari, B.K.; O’Donnell, C.P. Extraction, structure and biofunctional activities of laminarin from brown algae. Int. J. Food Sci. Technol., 2015, 50, 24-31.
[http://dx.doi.org/10.1111/ijfs.12692]
[134]
Bae, H.; Song, G.; Lee, J.Y.; Hong, T.; Chang, M.J.; Lim, W. Laminarin-derived from brown algae suppresses the growth of ovarian cancer cells via mitochondrial dysfunction and er stress. Mar. Drugs, 2020, 18(3), 18.
[http://dx.doi.org/10.3390/md18030152] [PMID: 32182828]
[135]
Gockley, A.; Wright, A. living through ovarian cancer treatment: acute and long-term toxicities of chemotherapy for Advanced-Stage Disease. Hematol. Oncol. Clin. North Am., 2018, 32(6), 1073-1085.
[http://dx.doi.org/10.1016/j.hoc.2018.07.009] [PMID: 30390761]
[136]
Cheung, N-K.V.; Modak, S.; Vickers, A.; Knuckles, B. Orally administered β-glucans enhance anti-tumor effects of monoclonal antibodies. Cancer Immunol. Immunother., 2002, 51(10), 557-564.
[http://dx.doi.org/10.1007/s00262-002-0321-3] [PMID: 12384807]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy