Review Article

改变 HDL 功能的环境因素

卷 29, 期 10, 2022

发表于: 14 July, 2021

页: [1687 - 1701] 页: 15

弟呕挨: 10.2174/0929867328666210714155422

价格: $65

conference banner
摘要

背景:目前,人们已经认识到高密度脂蛋白(HDL)功能在保护动脉粥样硬化方面比循环HDL胆固醇(HDL-C)水平本身发挥更重要的作用。从巨噬细胞到高密度脂蛋白的胆固醇外排能力(CEC)已被证明是衡量高密度脂蛋白功能的一个关键指标。因此,CEC的定量评估可能是评估HDL功能的一个重要工具,因为HDL功能的改善可能导致降低心血管疾病(CVD)的风险。 简介:虽然HDL的心脏保护作用主要通过参与其胆固醇反向转运(RCT)途径发挥作用,但HDL也具有重要的抗炎、抗氧化、抗聚集和抗凝特性,有助于其良好的心血管作用。某些遗传、病理生理、疾病状态和环境条件可能通过诱导脂质组和/或蛋白质组成的修饰,或诱导负责高密度脂蛋白代谢的酶的修饰,来影响高密度脂蛋白的心脏保护作用。另一方面,某些健康的习惯或药物干预实际上可能会有益地影响高密度脂蛋白的功能。 方法:本文综述了肥胖、吸烟、饮酒、饮食习惯、各种药物干预、有氧运动等环境因素对高密度脂蛋白功能的影响。 结果:实验和临床研究或药物干预支持这些环境因素对高密度脂蛋白功能改变的影响,尽管其相关机制尚未完全了解。结论:需要进一步研究确定这些环境因素的潜在机制,并确定能够增强CEC、改善HDL功能和潜在改善心血管风险的新的药物干预措施。

关键词: 高密度脂蛋白功能、胆固醇外排能力(CEC)、肥胖、吸烟、酒精、饮食习惯、药物干预、有氧运动。

[1]
GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018, 392(10159), 1736-1788.
[http://dx.doi.org/10.1016/S0140-6736(18)32203-7] [PMID: 30496103]
[2]
Castelli, W.P. Cholesterol and lipids in the risk of coronary artery disease-the Framingham Heart Study. Can. J. Cardiol., 1988, 4(Suppl. A), 5A-10A.
[PMID: 3179802]
[3]
Barter, P.; Gotto, A.M.; LaRosa, J.C.; Maroni, J.; Szarek, M.; Grundy, S.M.; Kastelein, J.J.; Bittner, V.; Fruchart, J.C. HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N. Engl. J. Med., 2007, 357(13), 1301-1310.
[http://dx.doi.org/10.1056/NEJMoa064278] [PMID: 17898099]
[4]
Kosmas, C.E.; Christodoulidis, G.; Cheng, J.W.; Vittorio, T.J.; Lerakis, S. High-density lipoprotein functionality in coronary artery disease. Am. J. Med. Sci., 2014, 347(6), 504-508.
[http://dx.doi.org/10.1097/MAJ.0000000000000231] [PMID: 24603157]
[5]
Sourlas, A.; Kosmas, C.E. Inheritance of high and low HDL: Mechanisms and management. Curr. Opin. Lipidol., 2019, 30(4), 307-313.
[http://dx.doi.org/10.1097/MOL.0000000000000610] [PMID: 31135593]
[6]
Cuchel, M.; Rader, D.J. Macrophage reverse cholesterol transport: Key to the regression of atherosclerosis? Circulation, 2006, 113(21), 2548-2555.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.475715] [PMID: 16735689]
[7]
Khera, A.V.; Cuchel, M.; de la Llera-Moya, M.; Rodrigues, A.; Burke, M.F.; Jafri, K.; French, B.C.; Phillips, J.A.; Mucksavage, M.L.; Wilensky, R.L.; Mohler, E.R.; Rothblat, G.H.; Rader, D.J. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Engl. J. Med., 2011, 364(2), 127-135.
[http://dx.doi.org/10.1056/NEJMoa1001689] [PMID: 21226578]
[8]
Adorni, M.P.; Zimetti, F.; Billheimer, J.T.; Wang, N.; Rader, D.J.; Phillips, M.C.; Rothblat, G.H. The roles of different pathways in the release of cholesterol from macrophages. J. Lipid Res., 2007, 48(11), 2453-2462.
[http://dx.doi.org/10.1194/jlr.M700274-JLR200] [PMID: 17761631]
[9]
Rye, K.A.; Barter, P.J. Cardioprotective functions of HDLs. J. Lipid Res., 2014, 55(2), 168-179.
[http://dx.doi.org/10.1194/jlr.R039297] [PMID: 23812558]
[10]
Barter, P.J.; Baker, P.W.; Rye, K.A. Effect of high-density lipoproteins on the expression of adhesion molecules in endothelial cells. Curr. Opin. Lipidol., 2002, 13(3), 285-288.
[http://dx.doi.org/10.1097/00041433-200206000-00008] [PMID: 12045398 ]
[11]
Kosmas, C.E.; Silverio, D.; Sourlas, A.; Montan, P.D.; Guzman, E. Dysfunctional high-density lipoprotein and atherogenesis. Vessel Plus, 2019, 3, 2.
[12]
Montan, P.D.; Sourlas, A.; Olivero, J.; Silverio, D.; Guzman, E.; Kosmas, C.E. Pharmacologic therapy of obesity: Mechanisms of action and cardiometabolic effects. Ann. Transl. Med., 2019, 7(16), 393.
[http://dx.doi.org/10.21037/atm.2019.07.27] [PMID: 31555707]
[13]
World Health Organization; Obesity and overweight., 2020. Available from:. http://www.who.int/news-room/fact-sheets/ detail/obesity-and-overweight
[14]
Zhang, T.; Chen, J.; Tang, X.; Luo, Q.; Xu, D.; Yu, B. Interaction between adipocytes and high-density lipoprotein:New insights into the mechanism of obesity-induced dyslipidemia and atherosclerosis. Lipids Health Dis., 2019, 18(1), 223.
[http://dx.doi.org/10.1186/s12944-019-1170-9] [PMID: 31842884]
[15]
Duong, M.; Uno, K.; Nankivell, V.; Bursill, C.; Nicholls, S.J. Induction of obesity impairs reverse cholesterol transport in ob/ob mice. PLoS One, 2018, 13(9), e0202102.
[http://dx.doi.org/10.1371/journal.pone.0202102] [PMID: 30216355]
[16]
Sasahara, T.; Nestel, P.; Fidge, N.; Sviridov, D. Cholesterol transport between cells and high density lipoprotein subfractions from obese and lean subjects. J. Lipid Res., 1998, 39(3), 544-554.
[http://dx.doi.org/10.1016/S0022-2275(20)33293-4] [PMID: 9548587]
[17]
Matsuo, Y.; Oberbach, A.; Till, H.; Inge, T.H.; Wabitsch, M.; Moss, A.; Jehmlich, N.; Völker, U.; Müller, U.; Siegfried, W.; Kanesawa, N.; Kurabayashi, M.; Schuler, G.; Linke, A.; Adams, V. Impaired HDL function in obese adolescents: Impact of lifestyle intervention and bariatric surgery. Obesity (Silver Spring), 2013, 21(12), E687-E695.
[http://dx.doi.org/10.1002/oby.20538] [PMID: 23804534]
[18]
McMorrow, A.M.; O’Reilly, M.; Connaughton, R.M.; Carolan, E.; O’Shea, D.; Lithander, F.E.; McGillicuddy, F.C.; Roche, H.M. Obesity and dietary fat modulate HDL function in adolescents: Results from a cross-sectional analysis and a randomized, placebo-controlled, crossover trial. FASEB J., 2016, 30(1)(Suppl.)
[19]
Zvintzou, E.; Skroubis, G.; Chroni, A.; Petropoulou, P.I.; Gkolfinopoulou, C.; Sakellaropoulos, G.; Gantz, D.; Mihou, I.; Kalfarentzos, F.; Kypreos, K.E. Effects of bariatric surgery on HDL structure and functionality: Results from a prospective trial. J. Clin. Lipidol., 2014, 8(4), 408-417.
[http://dx.doi.org/10.1016/j.jacl.2014.05.001] [PMID: 25110222]
[20]
He, B.M.; Zhao, S.P.; Peng, Z.Y. Effects of cigarette smoking on HDL quantity and function: Implications for atherosclerosis. J. Cell. Biochem., 2013, 114(11), 2431-2436.
[http://dx.doi.org/10.1002/jcb.24581] [PMID: 23852759]
[21]
Costa, L.G.; Vitalone, A.; Cole, T.B.; Furlong, C.E. Modulation of paraoxonase (PON1) activity. Biochem. Pharmacol., 2005, 69(4), 541-550.
[http://dx.doi.org/10.1016/j.bcp.2004.08.027] [PMID: 15670573 ]
[22]
Mackness, B.; Durrington, P.; McElduff, P.; Yarnell, J.; Azam, N.; Watt, M.; Mackness, M. Low paraoxonase activity predicts coronary events in the Caerphilly Prospective Study. Circulation, 2003, 107(22), 2775-2779.
[http://dx.doi.org/10.1161/01.CIR.0000070954.00271.13] [PMID: 12756158]
[23]
Granér, M.; James, R.W.; Kahri, J.; Nieminen, M.S.; Syvänne, M.; Taskinen, M.R. Association of paraoxonase-1 activity and concentration with angiographic severity and extent of coronary artery disease. J. Am. Coll. Cardiol., 2006, 47(12), 2429-2435.
[http://dx.doi.org/10.1016/j.jacc.2006.01.074] [PMID: 16781370]
[24]
James, R.W.; Leviev, I.; Righetti, A. Smoking is associated with reduced serum paraoxonase activity and concentration in patients with coronary artery disease. Circulation, 2000, 101(19), 2252-2257.
[http://dx.doi.org/10.1161/01.CIR.101.19.2252] [PMID: 10811591]
[25]
Chiva-Blanch, G.; Badimon, L. Benefits and risks of moderate alcohol consumption on cardiovascular disease: Current findings and controversies. Nutrients, 2019, 12(1), 108.
[http://dx.doi.org/10.3390/nu12010108] [PMID: 31906033]
[26]
Pownall, H.J.; Gotto, A.M. Jr. New insights into the high-density lipoprotein dilemma. Trends Endocrinol. Metab., 2016, 27(1), 44-53.
[http://dx.doi.org/10.1016/j.tem.2015.11.004] [PMID: 26673122]
[27]
Marmillot, P.; Munoz, J.; Patel, S.; Garige, M.; Rosse, R.B.; Lakshman, M.R. Long-term ethanol consumption impairs reverse cholesterol transport function of high-density lipoproteins by depleting high-density lipoprotein sphingomyelin both in rats and in humans. Metabolism, 2007, 56(7), 947-953.
[http://dx.doi.org/10.1016/j.metabol.2007.03.003] [PMID: 17570257]
[28]
Mäkelä, S.M.; Jauhiainen, M.; Ala-Korpela, M.; Metso, J.; Lehto, T.M.; Savolainen, M.J.; Hannuksela, M.L. HDL2 of heavy alcohol drinkers enhances cholesterol efflux from raw macrophages via phospholipid-rich HDL 2b particles. Alcohol. Clin. Exp. Res., 2008, 32(6), 991-1000.
[http://dx.doi.org/10.1111/j.1530-0277.2008.00660.x] [PMID: 18498551]
[29]
Beulens, J.W.; Sierksma, A.; van Tol, A.; Fournier, N.; van Gent, T.; Paul, J.L.; Hendriks, H.F. Moderate alcohol consumption increases cholesterol efflux mediated by ABCA1. J. Lipid Res., 2004, 45(9), 1716-1723.
[http://dx.doi.org/10.1194/jlr.M400109-JLR200] [PMID: 15231854]
[30]
De Oliveira, E. Silva, E.R.; Foster, D.; McGee Harper, M.; Seidman, C.E.; Smith, J.D.; Breslow, J.L.; Brinton, E.A. Alcohol consumption raises HDL cholesterol levels by increasing the transport rate of apolipoproteins A-I and A-II. Circulation, 2000, 102(19), 2347-2352.
[http://dx.doi.org/10.1161/01.CIR.102.19.2347] [PMID: 11067787 ]
[31]
Escolà-Gil, J.C.; Julve, J.; Griffin, B.A.; Freeman, D.; Blanco-Vaca, F. HDL and lifestyle interventions. Handb. Exp. Pharmacol., 2015, 224, 569-592.
[http://dx.doi.org/10.1007/978-3-319-09665-0_18] [PMID: 25523002]
[32]
van der Gaag, M.S.; van Tol, A.; Scheek, L.M.; James, R.W.; Urgert, R.; Schaafsma, G.; Hendriks, H.F. Daily moderate alcohol consumption increases serum paraoxonase activity; a diet-controlled, randomised intervention study in middle-aged men. Atherosclerosis, 1999, 147(2), 405-410.
[http://dx.doi.org/10.1016/S0021-9150(99)00243-9] [PMID: 10559527]
[33]
Rao, M.N.; Marmillot, P.; Gong, M.; Palmer, D.A.; Seeff, L.B.; Strader, D.B.; Lakshman, M.R. Light, but not heavy alcohol drinking, stimulates paraoxonase by upregulating liver mRNA in rats and humans. Metabolism, 2003, 52(10), 1287-1294.
[http://dx.doi.org/10.1016/S0026-0495(03)00191-4] [PMID: 14564680]
[34]
Kasbi Chadli, F.; Nazih, H.; Krempf, M.; Nguyen, P.; Ouguerram, K. Omega 3 fatty acids promote macrophage reverse cholesterol transport in hamster fed high fat diet. PLoS One, 2013, 8(4), e61109.
[http://dx.doi.org/10.1371/journal.pone.0061109] [PMID: 23613796]
[35]
Helal, O.; Berrougui, H.; Loued, S.; Khalil, A. Extra-virgin olive oil consumption improves the capacity of HDL to mediate cholesterol efflux and increases ABCA1 and ABCG1 expression in human macrophages. Br. J. Nutr., 2013, 109(10), 1844-1855.
[http://dx.doi.org/10.1017/S0007114512003856] [PMID: 23051557]
[36]
Nicholls, S.J.; Lundman, P.; Harmer, J.A.; Cutri, B.; Griffiths, K.A.; Rye, K.A.; Barter, P.J.; Celermajer, D.S. Consumption of saturated fat impairs the anti-inflammatory properties of high-density lipoproteins and endothelial function. J. Am. Coll. Cardiol., 2006, 48(4), 715-720.
[http://dx.doi.org/10.1016/j.jacc.2006.04.080] [PMID: 16904539]
[37]
Tall, A.R. Plasma cholesteryl ester transfer protein. J. Lipid Res., 1993, 34(8), 1255-1274.
[http://dx.doi.org/10.1016/S0022-2275(20)36957-1] [PMID: 8409761]
[38]
Kosmas, C.E.; DeJesus, E.; Rosario, D.; Vittorio, T.J. CETP inhibition: Past failures and future hopes. Clin. Med. Insights Cardiol., 2016, 10, 37-42.
[http://dx.doi.org/10.4137/CMC.S32667] [PMID: 26997876 ]
[39]
Barter, P.J.; Caulfield, M.; Eriksson, M.; Grundy, S.M.; Kastelein, J.J.; Komajda, M.; Lopez-Sendon, J.; Mosca, L.; Tardif, J.C.; Waters, D.D.; Shear, C.L.; Revkin, J.H.; Buhr, K.A.; Fisher, M.R.; Tall, A.R.; Brewer, B. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med., 2007, 357(21), 2109-2122.
[http://dx.doi.org/10.1056/NEJMoa0706628] [PMID: 17984165]
[40]
Schwartz, G.G.; Olsson, A.G.; Abt, M.; Ballantyne, C.M.; Barter, P.J.; Brumm, J.; Chaitman, B.R.; Holme, I.M.; Kallend, D.; Leiter, L.A.; Leitersdorf, E.; McMurray, J.J.; Mundl, H.; Nicholls, S.J.; Shah, P.K.; Tardif, J.C.; Wright, R.S. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N. Engl. J. Med., 2012, 367(22), 2089-2099.
[http://dx.doi.org/10.1056/NEJMoa1206797] [PMID: 23126252 ]
[41]
Lincoff, A.M.; Nicholls, S.J.; Riesmeyer, J.S.; Barter, P.J.; Brewer, H.B.; Fox, K.A.A.; Gibson, C.M.; Granger, C.; Menon, V.; Montalescot, G.; Rader, D.; Tall, A.R.; McErlean, E.; Wolski, K.; Ruotolo, G.; Vangerow, B.; Weerakkody, G.; Goodman, S.G.; Conde, D.; McGuire, D.K.; Nicolau, J.C.; Leiva-Pons, J.L.; Pesant, Y.; Li, W.; Kandath, D.; Kouz, S.; Tahirkheli, N.; Mason, D.; Nissen, S.E. Accelerate investigators. Evacetrapib and cardiovascular outcomes in high-risk vascular disease. N. Engl. J. Med., 2017, 376(20), 1933-1942.
[http://dx.doi.org/10.1056/NEJMoa1609581] [PMID: 28514624]
[42]
Bowman, L.; Hopewell, J.C.; Chen, F.; Wallendszus, K.; Stevens, W.; Collins, R.; Wiviott, S.D.; Cannon, C.P.; Braunwald, E.; Sammons, E.; Landray, M.J. Effects of anacetrapib in patients with atherosclerotic vascular disease. N. Engl. J. Med., 2017, 377(13), 1217-1227.
[http://dx.doi.org/10.1056/NEJMoa1706444] [PMID: 28847206 ]
[43]
Kosmas, C.E.; Martinez, I.; Sourlas, A.; Bouza, K.V.; Campos, F.N.; Torres, V.; Montan, P.D.; Guzman, E. High-density lipoprotein (HDL) functionality and its relevance to atherosclerotic cardiovascular disease. Drugs Context, 2018, 72, 12525.
[http://dx.doi.org/10.7573/dic.212525] [PMID: 29623098]
[44]
Mackey, R.H.; Greenland, P.; Goff, D.C., Jr; Lloyd-Jones, D.; Sibley, C.T.; Mora, S. High-density lipoprotein cholesterol and particle concentrations, carotid atherosclerosis, and coronary events: MESA (multi-ethnic study of atherosclerosis). J. Am. Coll. Cardiol., 2012, 60(6), 508-516.
[http://dx.doi.org/10.1016/j.jacc.2012.03.060] [PMID: 22796256]
[45]
Kontush, A. HDL particle number and size as predictors of cardiovascular disease. Front. Pharmacol., 2015, 6, 218.
[http://dx.doi.org/10.3389/fphar.2015.00218] [PMID: 26500551]
[46]
Rashedi, N.; Brennan, D.; Kastelein, J.J.; Nissen, S.E.; Nicholls, S. Impact of cholesteryl ester transfer protein inhibition on nuclear magnetic resonance derived lipoprotein particle parameters (abstr). Atheroscler. Suppl., 2011, 12, 48.
[http://dx.doi.org/10.1016/S1567-5688(11)70218-5]
[47]
Ballantyne, C.M.; Miller, M.; Niesor, E.J.; Burgess, T.; Kallend, D.; Stein, E.A. Effect of dalcetrapib plus pravastatin on lipoprotein metabolism and high-density lipoprotein composition and function in dyslipidemic patients: Results of a phase IIb dose-ranging study. Am. Heart J., 2012, 163(3), 515-521. , 521.e1-521.e3.
[http://dx.doi.org/10.1016/j.ahj.2011.11.017] [PMID: 22424025]
[48]
Ishigami, M.; Yamashita, S.; Sakai, N.; Arai, T.; Hirano, K.; Hiraoka, H.; Kameda-Takemura, K.; Matsuzawa, Y. Large and cholesteryl ester-rich high-density lipoproteins in cholesteryl ester transfer protein (CETP) deficiency can not protect macrophages from cholesterol accumulation induced by acetylated low-density lipoproteins. J. Biochem., 1994, 116(2), 257-262.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a124516] [PMID: 7822240]
[49]
Qi, Y.; Fan, J.; Liu, J.; Wang, W.; Wang, M.; Sun, J.; Liu, J.; Xie, W.; Zhao, F.; Li, Y.; Zhao, D. Cholesterol-overloaded HDL particles are independently associated with progression of carotid atherosclerosis in a cardiovascular disease-free population: A community-based cohort study. J. Am. Coll. Cardiol., 2015, 65(4), 355-363.
[http://dx.doi.org/10.1016/j.jacc.2014.11.019] [PMID: 25634834]
[50]
van der Steeg, W.A.; Holme, I.; Boekholdt, S.M.; Larsen, M.L.; Lindahl, C.; Stroes, E.S.; Tikkanen, M.J.; Wareham, N.J.; Faergeman, O.; Olsson, A.G.; Pedersen, T.R.; Khaw, K.T.; Kastelein, J.J. High-density lipoprotein cholesterol, high-density lipoprotein particle size, and apolipoprotein A-I: Significance for cardiovascular risk: The IDEAL and EPIC-Norfolk studies. J. Am. Coll. Cardiol., 2008, 51(6), 634-642.
[http://dx.doi.org/10.1016/j.jacc.2007.09.060] [PMID: 18261682]
[51]
Camont, L.; Chapman, M.J.; Kontush, A. Biological activities of HDL subpopulations and their relevance to cardiovascular disease. Trends Mol. Med., 2011, 17(10), 594-603.
[http://dx.doi.org/10.1016/j.molmed.2011.05.013] [PMID: 21839683 ]
[52]
Kontush, A.; Chantepie, S.; Chapman, M.J. Small, dense HDL particles exert potent protection of atherogenic LDL against oxidative stress. Arterioscler. Thromb. Vasc. Biol., 2003, 23(10), 1881-1888.
[http://dx.doi.org/10.1161/01.ATV.0000091338.93223.E8] [PMID: 12920049 ]
[53]
Wang, H.; Liu, Y.; Zhu, L.; Wang, W.; Wan, Z.; Chen, F.; Wu, Y.; Zhou, J.; Yuan, Z. 17β-estradiol promotes cholesterol efflux from vascular smooth muscle cells through a liver X receptor α-dependent pathway. Int. J. Mol. Med., 2014, 33(3), 550-558.
[http://dx.doi.org/10.3892/ijmm.2014.1619] [PMID: 24398697 ]
[54]
Zhu, L.; Shi, J.; Luu, T.N.; Neuman, J.C.; Trefts, E.; Yu, S.; Palmisano, B.T.; Wasserman, D.H.; Linton, M.F.; Stafford, J.M. Hepatocyte estrogen receptor alpha mediates estrogen action to promote reverse cholesterol transport during Western-type diet feeding. Mol. Metab., 2018, 8, 106-116.
[http://dx.doi.org/10.1016/j.molmet.2017.12.012] [PMID: 29331506 ]
[55]
Ulloa, N.; Arteaga, E.; Bustos, P.; Durán-Sandoval, D.; Schulze, K.; Castro, G.; Jauhiainen, M.; Fruchart, J.C.; Calvo, C. Sequential estrogen-progestin replacement therapy in healthy postmenopausal women: Effects on cholesterol efflux capacity and key proteins regulating high-density lipoprotein levels. Metabolism, 2002, 51(11), 1410-1417.
[http://dx.doi.org/10.1053/meta.2002.35580] [PMID: 12404190 ]
[56]
Ansell, B.J.; Navab, M.; Hama, S.; Kamranpour, N.; Fonarow, G.; Hough, G.; Rahmani, S.; Mottahedeh, R.; Dave, R.; Reddy, S.T.; Fogelman, A.M. Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation, 2003, 108(22), 2751-2756.
[http://dx.doi.org/10.1161/01.CIR.0000103624.14436.4B] [PMID: 14638544 ]
[57]
Triolo, M.; Annema, W.; de Boer, J.F.; Tietge, U.J.; Dullaart, R.P. Simvastatin and bezafibrate increase cholesterol efflux in men with type 2 diabetes. Eur. J. Clin. Invest., 2014, 44(3), 240-248.
[http://dx.doi.org/10.1111/eci.12226] [PMID: 24325778 ]
[58]
Khera, A.V.; Demler, O.V.; Adelman, S.J.; Collins, H.L.; Glynn, R.J.; Ridker, P.M.; Rader, D.J.; Mora, S. Cholesterol efflux capacity, high-density lipoprotein particle number, and incident cardiovascular events: An analysis from the Jupiter trial (justification for the use of statins in prevention: An intervention trial evaluating rosuvastatin). Circulation, 2017, 135(25), 2494-2504.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.025678] [PMID: 28450350 ]
[59]
Lee, C.J.; Choi, S.; Cheon, D.H.; Kim, K.Y.; Cheon, E.J.; Ann, S.J.; Noh, H.M.; Park, S.; Kang, S.M.; Choi, D.; Lee, J.E.; Lee, S.H. Effect of two lipid-lowering strategies on high-density lipoprotein function and some HDL-related proteins: A randomized clinical trial. Lipids Health Dis., 2017, 16(1), 49.
[http://dx.doi.org/10.1186/s12944-017-0433-6] [PMID: 28245873 ]
[60]
Miyamoto-Sasaki, M.; Yasuda, T.; Monguchi, T.; Nakajima, H.; Mori, K.; Toh, R.; Ishida, T.; Hirata, K. Pitavastatin increases HDL particles functionally preserved with cholesterol efflux capacity and antioxidative actions in dyslipidemic patients. J. Atheroscler. Thromb., 2013, 20(9), 708-716.
[http://dx.doi.org/10.5551/jat.17210] [PMID: 23739642 ]
[61]
Muñoz-Hernandez, L.; Ortiz-Bautista, R.J.; Brito-Córdova, G.; Lozano-Arvizu, F.; Saucedo, S.; Pérez-Méndez, O.; Zentella-Dehesa, A.; Dauteuille, C.; Lhomme, M.; Lesnik, P.; Chapman, M.J.; Kontush, A.; Aguilar Salinas, C.A. Cholesterol efflux capacity of large, small and total HDL particles is unaltered by atorvastatin in patients with type 2 diabetes. Atherosclerosis, 2018, 277, 72-79.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.08.027] [PMID: 30176567 ]
[62]
Le, N.A.; Jin, R.; Tomassini, J.E.; Tershakovec, A.M.; Neff, D.R.; Wilson, P.W. Changes in lipoprotein particle number with ezetimibe/simvastatin coadministered with extended-release niacin in hyperlipidemic patients. J. Am. Heart Assoc., 2013, 2(4)e000037
[http://dx.doi.org/10.1161/JAHA.113.000037] [PMID: 23926117 ]
[63]
Boden, W.E.; Probstfield, J.L.; Anderson, T.; Chaitman, B.R.; Desvignes-Nickens, P.; Koprowicz, K.; McBride, R.; Teo, K.; Weintraub, W. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med., 2011, 365(24), 2255-2267.
[http://dx.doi.org/10.1056/NEJMoa1107579] [PMID: 22085343 ]
[64]
HPS2-THRIVE Collaborative Group, Landray, M.J.; Haynes, R.; Hopewell, J.C.; Parish, S.; Aung, T.; Tomson, J.; Wallendszus, K.; Craig, M.; Jiang, L.; Collins, R.; Armitage, J. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med., 2014, 371(3), 203-212.
[65]
Mani, P.; Rohatgi, A. Niacin therapy, hdl cholesterol, and cardiovascular disease: Is the HDL hypothesis defunct? Curr. Atheroscler. Rep., 2015, 17(8), 43.
[http://dx.doi.org/10.1007/s11883-015-0521-x] [PMID: 26048725]
[66]
Khera, A.V.; Patel, P.J.; Reilly, M.P.; Rader, D.J. The addition of niacin to statin therapy improves high-density lipoprotein cholesterol levels but not metrics of functionality. J. Am. Coll. Cardiol., 2013, 62(20), 1909-1910.
[http://dx.doi.org/10.1016/j.jacc.2013.07.025] [PMID: 23933538]
[67]
Staels, B.; Maes, M.; Zambon, A. Fibrates and future PPARalpha agonists in the treatment of cardiovascular disease. Nat. Clin. Pract. Cardiovasc. Med., 2008, 5(9), 542-553.
[http://dx.doi.org/10.1038/ncpcardio1278] [PMID: 18628776]
[68]
Scott, R.; O’Brien, R.; Fulcher, G.; Pardy, C.; D’Emden, M.; Tse, D.; Taskinen, M.R.; Ehnholm, C.; Keech, A. Effects of fenofibrate treatment on cardiovascular disease risk in 9,795 individuals with type 2 diabetes and various components of the metabolic syndrome: The Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetes Care, 2009, 32(3), 493-498.
[http://dx.doi.org/10.2337/dc08-1543] [PMID: 18984774]
[69]
Ginsberg, H.N.; Elam, M.B.; Lovato, L.C.; Crouse, J.R., III; Leiter, L.A.; Linz, P.; Friedewald, W.T.; Buse, J.B.; Gerstein, H.C.; Probstfield, J.; Grimm, R.H.; Ismail-Beigi, F.; Bigger, J.T.; Goff, D.C. Jr.; Cushman, W.C.; Simons-Morton, D.G.; Byington, R.P. Effects of combination lipid therapy in type 2 diabetes mellitus. N. Engl. J. Med., 2010, 362(17), 1563-1574.
[http://dx.doi.org/10.1056/NEJMoa1001282] [PMID: 20228404]
[70]
Annema, W.; von Eckardstein, A. Dysfunctional high-density lipoproteins in coronary heart disease: Implications for diagnostics and therapy. Transl. Res., 2016, 173, 30-57.
[http://dx.doi.org/10.1016/j.trsl.2016.02.008] [PMID: 26972566]
[71]
Rotllan, N.; Llaverías, G.; Julve, J.; Jauhiainen, M.; Calpe-Berdiel, L.; Hernández, C.; Simó, R.; Blanco-Vaca, F.; Escolà-Gil, J.C. Differential effects of gemfibrozil and fenofibrate on reverse cholesterol transport from macrophages to feces in vivo. Biochim. Biophys. Acta, 2011, 1811(2), 104-110.
[http://dx.doi.org/10.1016/j.bbalip.2010.11.006] [PMID: 21126601]
[72]
Franceschini, G.; Calabresi, L.; Colombo, C.; Favari, E.; Bernini, F.; Sirtori, C.R. Effects of fenofibrate and simvastatin on HDL-related biomarkers in low-HDL patients. Atherosclerosis, 2007, 195(2), 385-391.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.10.017] [PMID: 17109866]
[73]
Franceschini, G.; Favari, E.; Calabresi, L.; Simonelli, S.; Bondioli, A.; Adorni, M.P.; Zimetti, F.; Gomaraschi, M.; Coutant, K.; Rossomanno, S.; Niesor, E.J.; Bernini, F.; Benghozi, R. Differential effects of fenofibrate and extended-release niacin on high-density lipoprotein particle size distribution and cholesterol efflux capacity in dyslipidemic patients. J. Clin. Lipidol., 2013, 7(5), 414-422.
[http://dx.doi.org/10.1016/j.jacl.2013.06.007] [PMID: 24079282]
[74]
Tsunoda, F.; Asztalos, I.B.; Horvath, K.V.; Steiner, G.; Schaefer, E.J.; Asztalos, B.F. Fenofibrate, HDL, and cardiovascular disease in Type-2 diabetes: The DAIS trial. Atherosclerosis, 2016, 247, 35-39.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.01.028] [PMID: 26854974]
[75]
Khera, A.V.; Millar, J.S.; Ruotolo, G.; Wang, M.D.; Rader, D.J. Potent peroxisome proliferator-activated receptor-α agonist treatment increases cholesterol efflux capacity in humans with the metabolic syndrome. Eur. Heart J., 2015, 36(43), 3020-3022.
[http://dx.doi.org/10.1093/eurheartj/ehv291] [PMID: 26112886]
[76]
Yokote, K.; Yamashita, S.; Arai, H.; Araki, E.; Suganami, H.; Ishibashi, S. Of The K-Study Group, O.B. Long-term efficacy and safety of pemafibrate, a novel selective peroxisome proliferator-activated receptor-α modulator (spparmα), in dyslipidemic patients with renal impairment. Int. J. Mol. Sci., 2019, 20(3), 706.
[http://dx.doi.org/10.3390/ijms20030706] [PMID: 30736366 ]
[77]
Yamashita, S.; Masuda, D.; Matsuzawa, Y. Pemafibrate, a new selective pparα modulator: Drug concept and its clinical applications for dyslipidemia and metabolic diseases. Curr. Atheroscler. Rep., 2020, 22(1), 5.
[http://dx.doi.org/10.1007/s11883-020-0823-5] [PMID: 31974794 ]
[78]
Miyazaki, Y.; DeFronzo, R.A. Rosiglitazone and pioglitazone similarly improve insulin sensitivity and secretion, glucose tolerance and adipocytokines in type 2 diabetic patients. Diabetes Obes. Metab., 2008, 10(12), 1204-1211.
[http://dx.doi.org/10.1111/j.1463-1326.2008.00880.x] [PMID: 18476983 ]
[79]
Ozasa, H.; Ayaori, M.; Iizuka, M.; Terao, Y.; Uto-Kondo, H.; Yakushiji, E.; Takiguchi, S.; Nakaya, K.; Hisada, T.; Uehara, Y.; Ogura, M.; Sasaki, M.; Komatsu, T.; Horii, S.; Mochizuki, S.; Yoshimura, M.; Ikewaki, K. Pioglitazone enhances cholesterol efflux from macrophages by increasing ABCA1/ABCG1 expressions via PPARγ/LXRα pathway: Findings from in vitro and ex vivo studies. Atherosclerosis, 2011, 219(1), 141-150.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.07.113] [PMID: 21862012 ]
[80]
Millar, J.S.; Ikewaki, K.; Bloedon, L.T.; Wolfe, M.L.; Szapary, P.O.; Rader, D.J. Effect of rosiglitazone on HDL metabolism in subjects with metabolic syndrome and low HDL. J. Lipid Res., 2011, 52(1), 136-142.
[http://dx.doi.org/10.1194/jlr.P008136] [PMID: 20971975 ]
[81]
Nissen, S.E.; Wolski, K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med., 2007, 356(24), 2457-2471.
[http://dx.doi.org/10.1056/NEJMoa072761] [PMID: 17517853 ]
[82]
Wallach, J.D.; Wang, K.; Zhang, A.D.; Cheng, D.; Grossetta Nardini, H.K.; Lin, H.; Bracken, M.B.; Desai, M.; Krumholz, H.M.; Ross, J.S. Updating insights into rosiglitazone and cardiovascular risk through shared data: Individual patient and summary level meta-analyses. BMJ, 2020, 368, l7078.
[http://dx.doi.org/10.1136/bmj.l7078] [PMID: 32024657 ]
[83]
Goldberg, R.B.; Kendall, D.M.; Deeg, M.A.; Buse, J.B.; Zagar, A.J.; Pinaire, J.A.; Tan, M.H.; Khan, M.A.; Perez, A.T.; Jacober, S.J. A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care, 2005, 28(7), 1547-1554.
[http://dx.doi.org/10.2337/diacare.28.7.1547] [PMID: 15983299 ]
[84]
Mazzone, T.; Meyer, P.M.; Feinstein, S.B.; Davidson, M.H.; Kondos, G.T.; D’Agostino, R.B., Sr; Perez, A.; Provost, J.C.; Haffner, S.M. Effect of pioglitazone compared with glimepiride on carotid intima-media thickness in type 2 diabetes: A randomized trial. JAMA, 2006, 296(21), 2572-2581.
[http://dx.doi.org/10.1001/jama.296.21.joc60158] [PMID: 17101640 ]
[85]
Nissen, S.E.; Nicholls, S.J.; Wolski, K.; Nesto, R.; Kupfer, S.; Perez, A.; Jure, H.; De Larochellière, R.; Staniloae, C.S.; Mavromatis, K.; Saw, J.; Hu, B.; Lincoff, A.M.; Tuzcu, E.M. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: The PERISCOPE randomized controlled trial. JAMA, 2008, 299(13), 1561-1573.
[http://dx.doi.org/10.1001/jama.299.13.1561] [PMID: 18378631 ]
[86]
Liao, H.W.; Saver, J.L.; Wu, Y.L.; Chen, T.H.; Lee, M.; Ovbiagele, B. Pioglitazone and cardiovascular outcomes in patients with insulin resistance, pre-diabetes and type 2 diabetes: A systematic review and meta-analysis. BMJ Open, 2017, 7(1), e013927.
[http://dx.doi.org/10.1136/bmjopen-2016-013927] [PMID: 28057658]
[87]
Choi, S.; Aljakna, A.; Srivastava, U.; Peterson, B.R.; Deng, B.; Prat, A.; Korstanje, R. Decreased APOE-containing HDL subfractions and cholesterol efflux capacity of serum in mice lacking PCSK9. Lipids Health Dis., 2013, 12, 112.
[http://dx.doi.org/10.1186/1476-511X-12-112] [PMID: 23883163 ]
[88]
Ingueneau, C.; Hollstein, T.; Grenkowitz, T.; Ruidavets, J.B.; Kassner, U.; Duparc, T.; Combes, G.; Perret, B.; Genoux, A.; Schumann, F.; Bobbert, T.; Steinhagen-Thiessen, E.; Martinez, L.O. Treatment with PCSK9 inhibitors induces a more anti-atherogenic HDL lipid profile in patients at high cardiovascular risk. Vascul. Pharmacol., 2020, 135106804
[http://dx.doi.org/10.1016/j.vph.2020.106804] [PMID: 32987194 ]
[89]
Ruiz-Ramie, J.J.; Barber, J.L.; Sarzynski, M.A. Effects of exercise on HDL functionality. Curr. Opin. Lipidol., 2019, 30(1), 16-23.
[http://dx.doi.org/10.1097/MOL.0000000000000568] [PMID: 30480581 ]
[90]
Koba, S.; Ayaori, M.; Uto-Kondo, H.; Furuyama, F.; Yokota, Y.; Tsunoda, F.; Shoji, M.; Ikewaki, K.; Kobayashi, Y. Beneficial effects of exercise-based cardiac rehabilitation on high-density lipoprotein-mediated cholesterol efflux capacity in patients with acute coronary syndrome. J. Atheroscler. Thromb., 2016, 23(7), 865-877.
[http://dx.doi.org/10.5551/jat.34454] [PMID: 26947596 ]
[91]
Furuyama, F.; Koba, S.; Yokota, Y.; Tsunoda, F.; Shoji, M.; Kobayashi, Y. Effects of cardiac rehabilitation on high-density lipoprotein-mediated cholesterol efflux capacity and paraoxonase-1 activity in patients with acute coronary syndrome. J. Atheroscler. Thromb., 2018, 25(2), 153-169.
[http://dx.doi.org/10.5551/jat.41095] [PMID: 28855433 ]
[92]
Boyer, M.; Mitchell, P.L.; Poirier, P.; Alméras, N.; Tremblay, A.; Bergeron, J.; Després, J.P.; Arsenault, B.J. Impact of a one-year lifestyle modification program on cholesterol efflux capacities in men with abdominal obesity and dyslipidemia. Am. J. Physiol. Endocrinol. Metab., 2018, 315(4), E460-E468.
[http://dx.doi.org/10.1152/ajpendo.00127.2018] [PMID: 29870675 ]
[93]
Khan, A.A.; Mundra, P.A.; Straznicky, N.E.; Nestel, P.J.; Wong, G.; Tan, R.; Huynh, K.; Ng, T.W.; Mellett, N.A.; Weir, J.M.; Barlow, C.K.; Alshehry, Z.H.; Lambert, G.W.; Kingwell, B.A.; Meikle, P.J. Weight loss and exercise alter the high-density lipoprotein lipidome and improve high-density lipoprotein functionality in metabolic syndrome. Arterioscler. Thromb. Vasc. Biol., 2018, 38(2), 438-447.
[http://dx.doi.org/10.1161/ATVBAHA.117.310212] [PMID: 29284607 ]
[94]
Wesnigk, J.; Bruyndonckx, L.; Hoymans, V.Y.; De Guchtenaere, A.; Fischer, T.; Schuler, G.; Vrints, C.J.; Adams, V. Impact of lifestyle intervention on HDL-induced enos activation and cholesterol efflux capacity in obese adolescent. Cardiol. Res. Pract., 2016, 2016, 2820432.
[http://dx.doi.org/10.1155/2016/2820432] [PMID: 27965912 ]
[95]
Albaghdadi, M.S.; Wang, Z.; Gao, Y.; Mutharasan, R.K.; Wilkins, J. High-density lipoprotein subfractions and cholesterol efflux capacity are not affected by supervised exercise but are associated with baseline interleukin-6 in patients with peripheral artery disease. Front. Cardiovasc. Med., 2017, 4, 9.
[http://dx.doi.org/10.3389/fcvm.2017.00009] [PMID: 28303243 ]
[96]
Sarzynski, M.A.; Ruiz-Ramie, J.J.; Barber, J.L.; Slentz, C.A.; Apolzan, J.W.; McGarrah, R.W.; Harris, M.N.; Church, T.S.; Borja, M.S.; He, Y.; Oda, M.N.; Martin, C.K.; Kraus, W.E.; Rohatgi, A. Effects of increasing exercise intensity and dose on multiple measures of HDL (high-density lipoprotein) function. Arterioscler. Thromb. Vasc. Biol., 2018, 38(4), 943-952.
[http://dx.doi.org/10.1161/ATVBAHA.117.310307] [PMID: 29437573 ]
[97]
Ribeiro, I.C.; Iborra, R.T.; Neves, M.Q.; Lottenberg, S.A.; Charf, A.M.; Nunes, V.S.; Negrão, C.E.; Nakandakare, E.R.; Quintão, E.C.; Passarelli, M. HDL atheroprotection by aerobic exercise training in type 2 diabetes mellitus. Med. Sci. Sports Exerc., 2008, 40(5), 779-786.
[http://dx.doi.org/10.1249/MSS.0b013e3181632d2d] [PMID: 18408623 ]
[98]
Casella-Filho, A.; Chagas, A.C.; Maranhão, R.C.; Trombetta, I.C.; Cesena, F.H.; Silva, V.M.; Tanus-Santos, J.E.; Negrão, C.E.; da Luz, P.L. Effect of exercise training on plasma levels and functional properties of high-density lipoprotein cholesterol in the metabolic syndrome. Am. J. Cardiol., 2011, 107(8), 1168-1172.
[http://dx.doi.org/10.1016/j.amjcard.2010.12.014] [PMID: 21310370 ]
[99]
Sang, H.; Yao, S.; Zhang, L.; Li, X.; Yang, N.; Zhao, J.; Zhao, L.; Si, Y.; Zhang, Y.; Lv, X.; Xue, Y.; Qin, S. Walk-run training improves the anti-inflammation properties of high-density lipoprotein in patients with metabolic syndrome. J. Clin. Endocrinol. Metab., 2015, 100(3), 870-879.
[http://dx.doi.org/10.1210/jc.2014-2979] [PMID: 25514103]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy