Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Chick Embryo Chorioallantoic Membrane Model: A Research Approach for Ex Vivo and In Vivo Experiments

Author(s): Ana Isabel Fraguas-Sánchez*, Cristina Martín-Sabroso and Ana Isabel Torres-Suárez

Volume 29, Issue 10, 2022

Published on: 25 June, 2021

Page: [1702 - 1717] Pages: 16

DOI: 10.2174/0929867328666210625105438

Price: $65

conference banner
Abstract

Background: The chick chorioallantoic membrane (CAM) model has attracted a great deal of interest in pharmaceutical and biological research as an alternative or complimentary in vivo assay to animal models. Traditionally, CAM assay has been widely used to perform some toxicological studies, specifically to evaluate the skin, ocular and embryo toxicity of new drugs and formulations, and to perform angiogenesis studies. Due to the possibility to generate the tumors onto the CAM, this model has also become an excellent strategy to evaluate the metastatic potential of different tumours and to test the efficacy of novel anticancer therapies in vivo. Moreover, in the recent years, its use has considerably grown in other research areas, including the evaluation of new anti-infective agents, the development of biodistribution studies and in tissue engineering research.

Objective: This manuscript provides a critical overview of the use of CAM model in pharmaceutical and biological research, especially to test the toxicity of new drugs and formulations and the biodistribution and the efficacy of novel anticancer and antiinfective therapies, analyzing its advantages and disadvantages in comparison to animal models.

Conclusion: The chick chorioallantoic membrane model shows a great utility in several research areas, such as cancer, toxicology, biodistribution studies and anti-infective therapies. In fact, it has become an intermediate stage between in vitro experiments and animal studies, and, in the case of toxicological studies (skin and ocular toxicity), it has even replaced the animal models.

Keywords: Angiogenesis, CAM assay, cancer, ex ovo, HET-CAM assay, in ovo, in vivo, toxicological studies.

[1]
Ribatti, D. The chick embryo chorioallantoic membrane as a model for tumor biology. Exp. Cell Res., 2014, 328(2), 314-324.
[http://dx.doi.org/10.1016/j.yexcr.2014.06.010] [PMID: 24972385]
[2]
Cimpean, A.M.; Ribatti, D.; Raica, M. The chick embryo chorioallantoic membrane as a model to study tumor metastasis. Angiogenesis, 2008, 11(4), 311-319.
[http://dx.doi.org/10.1007/s10456-008-9117-1] [PMID: 18780151]
[3]
Vargas, A.; Zeisser-Labouèbe, M.; Lange, N.; Gurny, R.; Delie, F. The chick embryo and its chorioallantoic membrane (CAM) for the in vivo evaluation of drug delivery systems. Adv. Drug Deliv. Rev., 2007, 59(11), 1162-1176.
[http://dx.doi.org/10.1016/j.addr.2007.04.019] [PMID: 17870202]
[4]
Ribatti, D. The chick embryo chorioallantoic membrane (CAM) assay. Reprod. Toxicol., 2017, 70, 97-101.
[http://dx.doi.org/10.1016/j.reprotox.2016.11.004] [PMID: 27832950]
[5]
Hamamichi, S.; Nishigori, H. Establishment of a chick embryo shell-less culture system and its use to observe change in behavior caused by nicotine and substances from cigarette smoke. Toxicol. Lett., 2001, 119(2), 95-102.
[http://dx.doi.org/10.1016/S0378-4274(00)00300-3] [PMID: 11311570]
[6]
Janse, E.M.; Jeurissen, S.H. Ontogeny and function of two non-lymphoid cell populations in the chicken embryo. Immunobiology, 1991, 182(5), 472-481.
[http://dx.doi.org/10.1016/S0171-2985(11)80211-1] [PMID: 1916887]
[7]
Murphy, J.B. Transplantability of tissues to the embryo of foreign species: Its bearing on questions of tissue specificity and tumor immunity. J. Exp. Med., 1913, 17(4), 482-493.
[http://dx.doi.org/10.1084/jem.17.4.482] [PMID: 19867659]
[8]
Murphy, J.B. Factors of resistance to heteroplastic tissue-grafting: Studies in tissue specificity. III. J. Exp. Med., 1914, 19(5), 513-522.
[http://dx.doi.org/10.1084/jem.19.5.513] [PMID: 19867789]
[9]
Murphy, J.B. Studies in tissue specificity: II. The ultimate fate of mammalian tissue implanted in the chick embryo. J. Exp. Med., 1914, 19(2), 181-186.
[http://dx.doi.org/10.1084/jem.19.2.181] [PMID: 19867756]
[10]
Taizi, M.; Deutsch, V.R.; Leitner, A.; Ohana, A.; Goldstein, R.S. A novel and rapid in vivo system for testing therapeutics on human leukemias. Exp. Hematol., 2006, 34(12), 1698-1708.
[http://dx.doi.org/10.1016/j.exphem.2006.07.005] [PMID: 17157167]
[11]
Avram, S.; Coricovac, D.E.; Pavel, I.Z.; Pinzaru, I.; Ghiulai, R.; Baderca, F.; Soica, C.; Muntean, D.; Branisteanu, D.E.; Spandidos, D.A.; Tsatsakis, A.M.; Dehelean, C.A. Standardization of A375 human melanoma models on chicken embryo chorioallantoic membrane and Balb/c nude mice. Oncol. Rep., 2017, 38(1), 89-99.
[http://dx.doi.org/10.3892/or.2017.5658] [PMID: 28535001]
[12]
Auerbach, R.; Kubai, L.; Sidky, Y. Angiogenesis induction by tumors, embryonic tissues, and lymphocytes. Cancer Res., 1976, 36(9 PT 2), 3435-3440.
[PMID: 975113]
[13]
Mostafa, L.K.; Jones, D.B.; Wright, D.H. Mechanism of the induction of angiogenesis by human neoplastic lymphoid tissue: Studies on the chorioallantoic membrane (CAM) of the chick embryo. J. Pathol., 1980, 132(3), 191-205.
[http://dx.doi.org/10.1002/path.1711320302] [PMID: 6159466]
[14]
Knighton, D. D., F.V.D.; Philipps, G.D. The assay for angiogenesis. Clinical and experimental approaches to dermal and epidermal repair normal and chronic wound 1991, 291-299.
[15]
Deryugina, E.I.; Quigley, J.P. Chapter 2. Chick embryo chorioallantoic membrane models to quantify angiogenesis induced by inflammatory and tumor cells or purified effector molecules. Methods Enzymol., 2008, 444, 21-41.
[http://dx.doi.org/10.1016/S0076-6879(08)02802-4] [PMID: 19007659]
[16]
Mousa, S.A.; O’Connor, L.; Rossman, T.G.; Block, E. Pro-angiogenesis action of arsenic and its reversal by selenium-derived compounds. Carcinogenesis, 2007, 28(5), 962-967.
[http://dx.doi.org/10.1093/carcin/bgl229] [PMID: 17158527]
[17]
Aljada, A.; O’Connor, L.; Fu, Y.Y.; Mousa, S.A. PPAR gamma ligands, rosiglitazone and pioglitazone, inhibit bFGF- and VEGF-mediated angiogenesis. Angiogenesis, 2008, 11(4), 361-367.
[http://dx.doi.org/10.1007/s10456-008-9118-0] [PMID: 18810647]
[18]
Ulus, G.; Koparal, A.T.; Baysal, K.; Yetik Anacak, G.; Karabay Yavaşoğlu, N.U. The anti-angiogenic potential of (±) gossypol in comparison to suramin. Cytotechnology, 2018, 70(6), 1537-1550.
[http://dx.doi.org/10.1007/s10616-018-0247-z] [PMID: 30123923]
[19]
Liu, Y.; He, Y.; Yang, F.; Cong, X.; Wang, J.; Peng, S.; Gao, D.; Wang, W.; Lan, L.; Ying, X.; Liu, M.; Chen, Y.; Yi, Z. A novel synthetic small molecule YF-452 inhibits tumor growth through antiangiogenesis by suppressing VEGF receptor 2 signaling. Sci. China Life Sci., 2017, 60(2), 202-214.
[http://dx.doi.org/10.1007/s11427-016-0369-6] [PMID: 28194552]
[20]
Zhu, D.; Wang, S.; Lawless, J.; He, J.; Zheng, Z. Dose dependent dual effect of baicalin and herb huang qin extract on angiogenesis. PLoS One, 2016, 11(11), e0167125.
[http://dx.doi.org/10.1371/journal.pone.0167125] [PMID: 27902752]
[21]
Rathinavelu, A.; Kanagasabai, T.; Dhandayuthapani, S.; Alhazzani, K. Anti-angiogenic and pro-apoptotic effects of a small-molecule JFD-WS in in vitro and breast cancer xenograft mouse models. Oncol. Rep., 2018, 39(4), 1711-1724.
[http://dx.doi.org/10.3892/or.2018.6256] [PMID: 29436685]
[22]
Kumar, M.; Meshram, G.G.; Rastogi, T.; Sharma, S.; Gupta, R.; Jain, S.; Prasad, A.; Galav, V.; Bhattacharya, S.K. Antiangiogenic activity of zinc and zinc-sorafenib combination using the chick chorioallantoic membrane assay: A descriptive study. J. Cancer Res. Ther., 2020, 16(Suppl.), S84-S89.
[http://dx.doi.org/10.4103/jcrt.JCRT_737_16] [PMID: 33380658]
[23]
Xu, S.; Guo, R.; Li, P.Z.; Li, K.; Yan, Y.; Chen, J.; Wang, G.; Brand-Saberi, B.; Yang, X.; Cheng, X. Dexamethasone interferes with osteoblasts formation during osteogenesis through altering IGF-1-mediated angiogenesis. J. Cell. Physiol., 2019. Online ahead of print.
[http://dx.doi.org/10.1002/jcp.28157] [PMID: 30671960]
[24]
Kardamakis, D.; Hadjimichael, C.; Ginopoulos, P.; Papaioannou, S. Effects of paclitaxel in combination with ionizing radiation on angiogenesis in the chick embryo chorioallantoic membrane. A radiobiological study. Strahlenther. Onkol., 2004, 180(3), 152-156.
[http://dx.doi.org/10.1007/s00066-004-1140-6] [PMID: 14991203]
[25]
Dragostin, O-M.; Tatia, R.; Samal, S.K.; Oancea, A.; Zamfir, A.S.; Dragostin, I.; Lisă, E-L.; Apetrei, C.; Zamfir, C.L. Designing of chitosan derivatives nanoparticles with antiangiogenic effect for cancer therapy. Nanomaterials (Basel), 2020, 10(4), 698.
[http://dx.doi.org/10.3390/nano10040698] [PMID: 32272625]
[26]
Li, Q.; Yuan, D.M.; Ma, L.H.; Ma, C.H.; Liu, Y.F.; Lv, T.F.; Song, Y. Chloroquine inhibits tumor growth and angiogenesis in malignant pleural effusion. Tumour Biol., 2016.
[http://dx.doi.org/10.1007/s13277-016-5441-z] [PMID: 27771855]
[27]
Buzzá, H.H.; Fialho de Freitas, L.C.; Moriyama, L.T.; Teixeira Rosa, R.G.; Bagnato, V.S.; Kurachi, C. Vascular effects of photodynamic therapy with curcumin in a chorioallantoic membrane model. Int. J. Mol. Sci., 2019, 20(5), E1084.
[http://dx.doi.org/10.3390/ijms20051084] [PMID: 30832361]
[28]
Fu, Y.; Ponce, M.L.; Thill, M.; Yuan, P.; Wang, N.S.; Csaky, K.G. Angiogenesis inhibition and choroidal neovascularization suppression by sustained delivery of an integrin antagonist, EMD478761. Invest. Ophthalmol. Vis. Sci., 2007, 48(11), 5184-5190.
[http://dx.doi.org/10.1167/iovs.07-0469] [PMID: 17962472]
[29]
Soares, D.C.F.; de Paula Oliveira, D.C.; Barcelos, L.S.; Barbosa, A.S.; Vieira, L.C.; Townsend, D.M.; Rubello, D.; de Barros, A.L.B.; Duarte, L.P.; Silva-Cunha, A. Antiangiogenic activity of PLGA-Lupeol implants for potential intravitreal applications. Biomed. Pharmacother., 2017, 92, 394-402.
[http://dx.doi.org/10.1016/j.biopha.2017.05.093] [PMID: 28558353]
[30]
Kang, M.S.; Lee, N.H.; Singh, R.K.; Mandakhbayar, N.; Perez, R.A.; Lee, J.H.; Kim, H.W. Nanocements produced from mesoporous bioactive glass nanoparticles. Biomaterials, 2018, 162, 183-199.
[http://dx.doi.org/10.1016/j.biomaterials.2018.02.005] [PMID: 29448144]
[31]
Pedrosa, P.; Heuer-Jungemann, A.; Kanaras, A.G.; Fernandes, A.R.; Baptista, P.V. Potentiating angiogenesis arrest in vivovia laser irradiation of peptide functionalised gold nanoparticles. J. Nanobiotechnology, 2017, 15(1), 85.
[http://dx.doi.org/10.1186/s12951-017-0321-2] [PMID: 29162137]
[32]
Nooris, M.; Aparna, D.; Radha, S. Synthesis and characterization of MFe2O4 (M = Co, Ni, Mn) magnetic nanoparticles for modulation of angiogenesis in chick chorioallantoic membrane (CAM). Eur. Biophys. J., 2016, 45(2), 139-148.
[http://dx.doi.org/10.1007/s00249-015-1083-0] [PMID: 26493065]
[33]
Özcetin, A.; Aigner, A.; Bakowsky, U. A chorioallantoic membrane model for the determination of anti-angiogenic effects of imatinib. Eur. J. Pharm. Biopharm., 2013, 85(3 Pt A), 711-715.
[http://dx.doi.org/10.1016/j.ejpb.2013.07.010] [PMID: 23891770]
[34]
Li, Z.; Guo, Z.; Chu, D.; Feng, H.; Zhang, J.; Zhu, L.; Li, J. Effectively suppressed angiogenesis-mediated retinoblastoma growth using celastrol nanomicelles. Drug Deliv., 2020, 27(1), 358-366.
[http://dx.doi.org/10.1080/10717544.2020.1730522] [PMID: 32091275]
[35]
Vargas, A.; Pegaz, B.; Debefve, E.; Konan-Kouakou, Y.; Lange, N.; Ballini, J.P.; van den Bergh, H.; Gurny, R.; Delie, F. Improved photodynamic activity of porphyrin loaded into nanoparticles: An in vivo evaluation using chick embryos. Int. J. Pharm., 2004, 286(1-2), 131-145.
[http://dx.doi.org/10.1016/j.ijpharm.2004.07.029] [PMID: 15501010]
[36]
Samson, F.P.; Patrick, A.T.; Fabunmi, T.E.; Yahaya, M.F.; Madu, J.; He, W.; Sripathi, S.R.; Tyndall, J.; Raji, H.; Jee, D.; Gutsaeva, D.R.; Jahng, W.J. Oleic acid, cholesterol, and linoleic acid as angiogenesis initiators. ACS Omega, 2020, 5(32), 20575-20585.
[http://dx.doi.org/10.1021/acsomega.0c02850] [PMID: 32832811]
[37]
Rudy, S.F.; Brenner, J.C.; Harris, J.L.; Liu, J.; Che, J.; Scott, M.V.; Owen, J.H.; Komarck, C.M.; Graham, M.P.; Bellile, E.L.; Bradford, C.R.; Prince, M.E.; Carey, T.E. in vivo Wnt pathway inhibition of human squamous cell carcinoma growth and metastasis in the chick chorioallantoic model. J. Otolaryngol. Head Neck Surg., 2016, 45, 26.
[http://dx.doi.org/10.1186/s40463-016-0140-8] [PMID: 27117272]
[38]
Liu, M.; Scanlon, C.S.; Banerjee, R.; Russo, N.; Inglehart, R.C.; Willis, A.L.; Weiss, S.J.; D’Silva, N.J. The histone methyltransferase ezh2 mediates tumor progression on the chick chorioallantoic membrane assay, a novel model of head and neck squamous cell carcinoma. Transl. Oncol., 2013, 6(3), 273-281.
[http://dx.doi.org/10.1593/tlo.13175] [PMID: 23730406]
[39]
Ivanova, I.A.; Arulanantham, S.; Barr, K.; Cepeda, M.; Parkins, K.M.; Hamilton, A.M.; Johnston, D.; Penuela, S.; Hess, D.A.; Ronald, J.A.; Dagnino, L. Targeting FER kinase inhibits melanoma growth and metastasis. Cancers (Basel), 2019, 11(3), E419.
[http://dx.doi.org/10.3390/cancers11030419] [PMID: 30909648]
[40]
Schexnayder, C.; Broussard, K.; Onuaguluchi, D.; Poché, A.; Ismail, M.; McAtee, L.; Llopis, S.; Keizerweerd, A.; McFerrin, H.; Williams, C. Metformin inhibits migration and invasion by suppressing ros production and cox2 expression in mda-mb-231 breast cancer cells. Int. J. Mol. Sci., 2018, 19(11), E3692.
[http://dx.doi.org/10.3390/ijms19113692] [PMID: 30469399]
[41]
Pruksakorn, D.; Klangjorhor, J.; Lirdprapamongkol, K.; Teeyakasem, P.; Sungngam, P.; Chaiyawat, P.; Phanphaisarn, A.; Settakorn, J.; Srisomsap, C. Oncogenic roles of serine-threonine kinase receptor-associated protein (STRAP) in osteosarcoma. Cancer Chemother. Pharmacol., 2018, 82(6), 1039-1047.
[http://dx.doi.org/10.1007/s00280-018-3696-3] [PMID: 30276452]
[42]
Xiao, X.; Zhou, X.; Ming, H.; Zhang, J.; Huang, G.; Zhang, Z.; Li, P. Chick chorioallantoic membrane assay: A 3D animal model for study of human nasopharyngeal carcinoma. PLoS One, 2015, 10(6), e0130935.
[http://dx.doi.org/10.1371/journal.pone.0130935] [PMID: 26107941]
[43]
Bobek, V.; Plachy, J.; Pinterova, D.; Kolostova, K.; Boubelik, M.; Jiang, P.; Yang, M.; Hoffman, R.M. Development of a green fluorescent protein metastatic-cancer chick-embryo drug-screen model. Clin. Exp. Metastasis, 2004, 21(4), 347-352.
[http://dx.doi.org/10.1023/B:CLIN.0000046138.58210.31] [PMID: 15554391]
[44]
Pawlikowska, P.; Tayoun, T.; Oulhen, M.; Faugeroux, V.; Rouffiac, V.; Aberlenc, A.; Pommier, A.L.; Honore, A.; Marty, V.; Bawa, O.; Lacroix, L.; Scoazec, J.Y.; Chauchereau, A.; Laplace-Builhe, C.; Farace, F. Exploitation of the chick embryo chorioallantoic membrane (CAM) as a platform for anti-metastatic drug testing. Sci. Rep., 2020, 10(1), 16876.
[http://dx.doi.org/10.1038/s41598-020-73632-w] [PMID: 33037240]
[45]
Klingenberg, M.; Becker, J.; Eberth, S.; Kube, D.; Wilting, J. The chick chorioallantoic membrane as an in vivo xenograft model for Burkitt lymphoma. BMC Cancer, 2014, 14, 339.
[http://dx.doi.org/10.1186/1471-2407-14-339] [PMID: 24884418]
[46]
Stoletov, K.; Willetts, L.; Beatty, P.H.; Lewis, J.D. Intravital imaging tumor screen used to identify novel metastasis-blocking therapeutic targets. Cell Stress, 2018, 2(10), 275-278.
[http://dx.doi.org/10.15698/cst2018.10.159] [PMID: 31225451]
[47]
Vu, B.T.; Shahin, S.A.; Croissant, J.; Fatieiev, Y.; Matsumoto, K.; Le-Hoang Doan, T.; Yik, T.; Simargi, S.; Conteras, A.; Ratliff, L.; Jimenez, C.M.; Raehm, L.; Khashab, N.; Durand, J.O.; Glackin, C.; Tamanoi, F. Chick chorioallantoic membrane assay as an in vivo model to study the effect of nanoparticle-based anticancer drugs in ovarian cancer. Sci. Rep., 2018, 8(1), 8524.
[http://dx.doi.org/10.1038/s41598-018-25573-8] [PMID: 29867159]
[48]
Yalcin, M.; Bharali, D.J.; Lansing, L.; Dyskin, E.; Mousa, S.S.; Hercbergs, A.; Davis, F.B.; Davis, P.J.; Mousa, S.A. Tetraidothyroacetic acid (tetrac) and tetrac nanoparticles inhibit growth of human renal cell carcinoma xenografts. Anticancer Res., 2009, 29(10), 3825-3831.
[PMID: 19846915]
[49]
Niemelä, E.; Desai, D.; Niemi, R.; Doroszko, M.; Özliseli, E.; Kemppainen, K.; Rahman, N.A.; Sahlgren, C.; Törnquist, K.; Eriksson, J.E.; Rosenholm, J.M. Nanoparticles carrying fingolimod and methotrexate enables targeted induction of apoptosis and immobilization of invasive thyroid cancer. Eur. J. Pharm. Biopharm., 2020, 148, 1-9.
[http://dx.doi.org/10.1016/j.ejpb.2019.12.015] [PMID: 31917332]
[50]
Pastorino, F.; Brignole, C.; Di Paolo, D.; Nico, B.; Pezzolo, A.; Marimpietri, D.; Pagnan, G.; Piccardi, F.; Cilli, M.; Longhi, R.; Ribatti, D.; Corti, A.; Allen, T.M.; Ponzoni, M. Targeting liposomal chemotherapy via both tumor cell-specific and tumor vasculature-specific ligands potentiates therapeutic efficacy. Cancer Res., 2006, 66(20), 10073-10082.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2117] [PMID: 17047071]
[51]
Fraguas-Sánchez, A.I.; Fernández-Carballido, A.; Simancas-Herbada, R.; Martin-Sabroso, C.; Torres-Suárez, A.I. CBD loaded microparticles as a potential formulation to improve paclitaxel and doxorubicin-based chemotherapy in breast cancer. Int. J. Pharm., 2020, 574, 118916.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118916] [PMID: 31811927]
[52]
Fraguas-Sánchez, A.I.; Fernández-Carballido, A.; Delie, F.; Cohen, M.; Martin-Sabroso, C.; Mezzanzanica, D.; Figini, M.; Satta, A.; Torres-Suárez, A.I. Enhancing ovarian cancer conventional chemotherapy through the combination with cannabidiol loaded microparticles. Eur. J. Pharm. Biopharm., 2020, 154, 246-258.
[http://dx.doi.org/10.1016/j.ejpb.2020.07.008] [PMID: 32682943]
[53]
Fraguas-Sánchez, A.I.; Torres-Suárez, A.I.; Cohen, M.; Delie, F.; Bastida-Ruiz, D.; Yart, L.; Martin-Sabroso, C.; Fernández-Carballido, A. PLGA nanoparticles for the intraperitoneal administration of cbd in the treatment of ovarian cancer: In vitro and in ovo assessment. Pharmaceutics, 2020, 12(5), E439.
[http://dx.doi.org/10.3390/pharmaceutics12050439] [PMID: 32397428]
[54]
Honda, N.; Kariyama, Y.; Hazama, H.; Ishii, T.; Kitajima, Y.; Inoue, K.; Ishizuka, M.; Tanaka, T.; Awazu, K. Optical properties of tumor tissues grown on the chorioallantoic membrane of chicken eggs: Tumor model to assay of tumor response to photodynamic therapy. J. Biomed. Opt., 2015, 20(12), 125001.
[http://dx.doi.org/10.1117/1.JBO.20.12.125001] [PMID: 26662299]
[55]
Nascimento, B.F.O.; Laranjo, M.; Pereira, N.A.M.; Dias-Ferreira, J.; Piñeiro, M.; Botelho, M.F.; Pinho, E. Melo, T.M.V.D. Ring-fused diphenylchlorins as potent photosensitizers for photodynamic therapy applications: In vitro tumor cell biology and in vivo chick embryo chorioallantoic membrane studies. ACS Omega, 2019, 4(17), 17244-17250.
[http://dx.doi.org/10.1021/acsomega.9b01865] [PMID: 31656898]
[56]
Kuzyniak, W.; Schmidt, J.; Glac, W.; Berkholz, J.; Steinemann, G.; Hoffmann, B.; Ermilov, E.A.; Gürek, A.G.; Ahsen, V.; Nitzsche, B.; Höpfner, M. Novel zinc phthalocyanine as a promising photosensitizer for photodynamic treatment of esophageal cancer. Int. J. Oncol., 2017, 50(3), 953-963.
[http://dx.doi.org/10.3892/ijo.2017.3854] [PMID: 28098886]
[57]
Yoon, J.H.; Yoon, H.E.; Kim, O.; Kim, S.K.; Ahn, S.G.; Kang, K.W. The enhanced anti-cancer effect of hexenyl ester of 5-aminolaevulinic acid photodynamic therapy in adriamycin-resistant compared to non-resistant breast cancer cells. Lasers Surg. Med., 2012, 44(1), 76-86.
[http://dx.doi.org/10.1002/lsm.21154] [PMID: 22246987]
[58]
Park, J.H.; Moon, Y.H.; Kim, D.J.; Kim, S.A.; Lee, J.B.; Ahn, S.G.; Yoon, J.H. Photodynamic therapy with hexenyl ester of 5-aminolevulinic acid induces necrotic cell death in salivary gland adenocarcinoma cells. Oncol. Rep., 2010, 24(1), 177-181.
[PMID: 20514459]
[59]
Uto, Y.; Abe, C.; Futawaka, M.; Yamada, H.; Tominaga, M.; Endo, Y. in vivo drug screening method of radiosensitizers using tumor-bearing chick embryo. Enzymes, 2019, 46, 113-127.
[http://dx.doi.org/10.1016/bs.enz.2019.08.008] [PMID: 31727273]
[60]
Barile, F.A. Validating and troubleshooting ocular in vitro toxicology tests. J. Pharmacol. Toxicol. Methods, 2010, 61(2), 136-145.
[http://dx.doi.org/10.1016/j.vascn.2010.01.001] [PMID: 20096797]
[61]
Spielmann, H.; Kalweit, S.; Liebsch, M.; Wirnsberger, T.; Gerner, I.; Bertram-Neis, E.; Krauser, K.; Kreiling, R.; Miltenburger, H.G.; Pape, W.; Steiling, W. Validation study of alternatives to the draize eye irritation test in Germany: Cytotoxicity testing and HET-CAM test with 136 industrial chemicals. Toxicol. In Vitro, 1993, 7(4), 505-510.
[http://dx.doi.org/10.1016/0887-2333(93)90055-A] [PMID: 20732242]
[62]
Steiling, W.; Bracher, M.; Courtellemont, P.; de Silva, O. The het-cam, a useful in vitro assay for assessing the eye irritation properties of cosmetic formulations and ingredients. Toxicol. In Vitro, 1999, 13(2), 375-384.
[http://dx.doi.org/10.1016/S0887-2333(98)00091-5] [PMID: 20654494]
[63]
Gilleron, L.; Coecke, S.; Sysmans, M.; Hansen, E.; van Oproy, S.; Marzin, D.; van Cauteren, H.; Vanparys, P. Evaluation of the HET-CAM-TSA method as an alternative to the draize eye irritation test. Toxicol. In Vitro, 1997, 11(5), 641-644.
[http://dx.doi.org/10.1016/S0887-2333(97)00074-X] [PMID: 20654364]
[64]
Baig, M.S.; Ahad, A.; Aslam, M.; Imam, S.S.; Aqil, M.; Ali, A. Application of Box-Behnken design for preparation of levofloxacin-loaded stearic acid solid lipid nanoparticles for ocular delivery: Optimization, in vitro release, ocular tolerance, and antibacterial activity. Int. J. Biol. Macromol., 2016, 85, 258-270.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.077] [PMID: 26740466]
[65]
Hao, J.; Wang, X.; Bi, Y.; Teng, Y.; Wang, J.; Li, F.; Li, Q.; Zhang, J.; Guo, F.; Liu, J. Fabrication of a composite system combining solid lipid nanoparticles and thermosensitive hydrogel for challenging ophthalmic drug delivery. Colloids Surf. B Biointerfaces, 2014, 114, 111-120.
[http://dx.doi.org/10.1016/j.colsurfb.2013.09.059] [PMID: 24176890]
[66]
Gupta, H.; Aqil, M.; Khar, R.K.; Ali, A.; Bhatnagar, A.; Mittal, G. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine (Lond.), 2010, 6(2), 324-333.
[http://dx.doi.org/10.1016/j.nano.2009.10.004] [PMID: 19857606]
[67]
Abdelkader, H.; Ismail, S.; Hussein, A.; Wu, Z.; Al-Kassas, R.; Alany, R.G. Conjunctival and corneal tolerability assessment of ocular naltrexone niosomes and their ingredients on the hen’s egg chorioallantoic membrane and excised bovine cornea models. Int. J. Pharm., 2012, 432(1-2), 1-10.
[http://dx.doi.org/10.1016/j.ijpharm.2012.04.063] [PMID: 22575752]
[68]
Kojima, H.; Hanamura, A.; Miyamoto, S.; Sato, A.; Konishi, H.; Yoshimura, I. Evaluation of seven alternative assays on the main ingredients in cosmetics as predictors of Draize eye irritation scores. Toxicol. In Vitro, 1995, 9(3), 333-340.
[http://dx.doi.org/10.1016/0887-2333(95)00015-Z] [PMID: 20650095]
[69]
Debbasch, C.; Ebenhahn, C.; Dami, N.; Pericoi, M.; Van den Berghe, C.; Cottin, M.; Nohynek, G.J. Eye irritation of low-irritant cosmetic formulations: Correlation of in vitro results with clinical data and product composition. Food Chem. Toxicol., 2005, 43(1), 155-165.
[http://dx.doi.org/10.1016/j.fct.2004.09.004] [PMID: 15582208]
[70]
Felippi, C.C.; Oliveira, D.; Ströher, A.; Carvalho, A.R.; Van Etten, E.A.; Bruschi, M.; Raffin, R.P. Safety and efficacy of antioxidants-loaded nanoparticles for an anti-aging application. J. Biomed. Nanotechnol., 2012, 8(2), 316-321.
[http://dx.doi.org/10.1166/jbn.2012.1379] [PMID: 22515083]
[71]
Polláková, M.; Petrilla, V.; Andrejčáková, Z.; Petrillová, M.; Sopková, D.; Petrovová, E. Spitting cobras: Experimental assay employing the model of chicken embryo and the chick chorioallantoic membrane for imaging and evaluation of effects of venom from African and Asian species (Naja ashei, Naja nigricollis, Naja siamensis, Naja sumatrana). Toxicon, 2021, 189, 79-90.
[http://dx.doi.org/10.1016/j.toxicon.2020.10.025] [PMID: 33130187]
[72]
Vives, M.A.; Macián, M.; Seguer, J.; Infante, M.R.; Vinardell, M.P. Irritancy potential induced by surfactants derived from lysine. Toxicol. In Vitro, 1997, 11(6), 779-783.
[http://dx.doi.org/10.1016/S0887-2333(97)00068-4] [PMID: 20654384]
[73]
Budai, P.; Lehel, J.; Tavaszi, J.; Kormos, E. HET-CAM test for determining the possible eye irritancy of pesticides. Acta Vet. Hung., 2010, 58(3), 369-377.
[http://dx.doi.org/10.1556/avet.58.2010.3.9] [PMID: 20713327]
[74]
Jira, D.; Janousek, S.; Pikula, J.; Vitula, F.; Kejlova, K. Toxicity hazard of organophosphate insecticide malathion identified by in vitro methods. Neuroendocrinol. Lett., 2012, 33(Suppl. 3), 53-59.
[PMID: 23353844]
[75]
Palmeira-de-Oliveira, R.; Monteiro Machado, R.; Martinez-de-Oliveira, J.; Palmeira-de-Oliveira, A. Testing vaginal irritation with the Hen’s Egg Test-Chorioallantoic Membrane assay. ALTEX, 2018, 35(4), 495-503.
[http://dx.doi.org/10.14573/altex.1710091] [PMID: 29534246]
[76]
Ardelean, S.; Feflea, S.; Ionescu, D.; Năstase, V.; Dehelean, C.A. Toxicologic screening of some surfactants using modern in vivo bioassays. Rev. Med. Chir. Soc. Med. Nat. Iasi, 2011, 115(1), 251-258.
[PMID: 21682193]
[77]
Batista-Duharte, A.; Jorge Murillo, G.; Pérez, U.M.; Tur, E.N.; Portuondo, D.F.; Martínez, B.T.; Téllez-Martínez, D.; Betancourt, J.E.; Pérez, O. The hen’s egg test on chorioallantoic membrane: An alternative assay for the assessment of the irritating effect of vaccine adjuvants. Int. J. Toxicol., 2016, 35(6), 627-633.
[http://dx.doi.org/10.1177/1091581816672187] [PMID: 27733445]
[78]
Ferreira, M.; Rzhepishevska, O.; Grenho, L.; Malheiros, D.; Gonçalves, L.; Almeida, A.J.; Jordão, L.; Ribeiro, I.A.; Ramstedt, M.; Gomes, P.; Bettencourt, A. Levofloxacin-loaded bone cement delivery system: Highly effective against intracellular bacteria and Staphylococcus aureus biofilms. Int. J. Pharm., 2017, 532(1), 241-248.
[http://dx.doi.org/10.1016/j.ijpharm.2017.08.089] [PMID: 28851574]
[79]
Datar, S.; Bhonde, R.R. Shell-less chick embryo culture as an alternative in vitro model to investigate glucose-induced malformations in mammalian embryos. Rev. Diabet. Stud., 2005, 2(4), 221-227.
[http://dx.doi.org/10.1900/RDS.2005.2.221] [PMID: 17491698]
[80]
Mete, M.; Gurcu, B.; Collu, F.; Unsal, U.U.; Duransoy, Y.K.; Tuglu, M.I.; Selcuki, M. Effects of lacosamide “a novel antiepileptic drug” in the early stages of chicken embryo development. Childs Nerv. Syst., 2016, 32(9), 1715-1719.
[http://dx.doi.org/10.1007/s00381-016-3181-4] [PMID: 27473858]
[81]
Rodrigues, P.C.; Beyer, U.; Schumacher, P.; Roth, T.; Fiebig, H.H.; Unger, C.; Messori, L.; Orioli, P.; Paper, D.H.; Mülhaupt, R.; Kratz, F. Acid-sensitive polyethylene glycol conjugates of doxorubicin: Preparation, in vitro efficacy and intracellular distribution. Bioorg. Med. Chem., 1999, 7(11), 2517-2524.
[http://dx.doi.org/10.1016/S0968-0896(99)00209-6] [PMID: 10632061]
[82]
Strojny, B.; Grodzik, M.; Sawosz, E.; Winnicka, A.; Kurantowicz, N.; Jaworski, S.; Kutwin, M.; Urbańska, K.; Hotowy, A.; Wierzbicki, M.; Chwalibog, A. Diamond nanoparticles modify curcumin activity: In vitro studies on cancer and normal cells and in ovo studies on chicken embryo model. PLoS One, 2016, 11(10), e0164637.
[http://dx.doi.org/10.1371/journal.pone.0164637] [PMID: 27736939]
[83]
Nnadi, E.N.; Enweani, I.B.; Ayanbimpe, G.M. Infection of chick chorioallantoic membrane (cam) as a model for the pathogenesis of cryptococcus gattii. Med. Mycol. J., 2018, 59(2), E25-E30.
[http://dx.doi.org/10.3314/mmj.17-00018] [PMID: 29848908]
[84]
Jacobsen, I.D.; Grosse, K.; Berndt, A.; Hube, B. Pathogenesis of Candida albicans infections in the alternative chorio-allantoic membrane chicken embryo model resembles systemic murine infections. PLoS One, 2011, 6(5), e19741.
[http://dx.doi.org/10.1371/journal.pone.0019741] [PMID: 21603634]
[85]
Abdel-Moneim, A.S.; Zlotowski, P.; Veits, J.; Keil, G.M.; Teifke, J.P. Immunohistochemistry for detection of avian infectious bronchitis virus strain M41 in the proventriculus and nervous system of experimentally infected chicken embryos. Virol. J., 2009, 6, 15.
[http://dx.doi.org/10.1186/1743-422X-6-15] [PMID: 19196466]
[86]
Braukmann, M.; Sachse, K.; Jacobsen, I.D.; Westermann, M.; Menge, C.; Saluz, H.P.; Berndt, A. Distinct intensity of host-pathogen interactions in Chlamydia psittaci- and Chlamydia abortus-infected chicken embryos. Infect. Immun., 2012, 80(9), 2976-2988.
[http://dx.doi.org/10.1128/IAI.00437-12] [PMID: 22689815]
[87]
García-Gareta, E.; Binkowska, J.; Kohli, N.; Sharma, V. Towards the development of a novel ex ovo model of infection to pre-screen biomaterials intended for treating chronic wounds. J. Funct. Biomater., 2020, 11(2), E37.
[http://dx.doi.org/10.3390/jfb11020037] [PMID: 32498233]
[88]
Sharma, B.K.; Kakker, N.K.; Bhadouriya, S.; Chhabra, R. Effect of TLR agonist on infections bronchitis virus replication and cytokine expression in embryonated chicken eggs. Mol. Immunol., 2020, 120, 52-60.
[http://dx.doi.org/10.1016/j.molimm.2020.02.001] [PMID: 32065987]
[89]
Petrovova, E.; Giretova, M.; Kvasilova, A.; Benada, O.; Danko, J.; Medvecky, L.; Sedmera, D. Preclinical alternative model for analysis of porous scaffold biocompatibility in bone tissue engineering. ALTEX, 2019, 36(1), 121-130.
[http://dx.doi.org/10.14573/altex.1807241] [PMID: 30474687]
[90]
Smith, E.L.; Kanczler, J.M.; Gothard, D.; Roberts, C.A.; Wells, J.A.; White, L.J.; Qutachi, O.; Sawkins, M.J.; Peto, H.; Rashidi, H.; Rojo, L.; Stevens, M.M.; El Haj, A.J.; Rose, F.R.; Shakesheff, K.M.; Oreffo, R.O. Evaluation of skeletal tissue repair, part 2: Enhancement of skeletal tissue repair through dual-growth-factor-releasing hydrogels within an ex vivo chick femur defect model. Acta Biomater., 2014, 10(10), 4197-4205.
[http://dx.doi.org/10.1016/j.actbio.2014.05.025] [PMID: 24907660]
[91]
Smith, E.L.; Kanczler, J.M.; Roberts, C.A.; Oreffo, R.O. Developmental cues for bone formation from parathyroid hormone and parathyroid hormone-related protein in an ex vivo organotypic culture system of embryonic chick femora. Tissue Eng. Part C Methods, 2012, 18(12), 984-994.
[http://dx.doi.org/10.1089/ten.tec.2012.0132] [PMID: 22690868]
[92]
Moreno-Jiménez, I.; Lanham, S.A.; Kanczler, J.M.; Hulsart-Billstrom, G.; Evans, N.D.; Oreffo, R.O.C. Remodelling of human bone on the chorioallantoic membrane of the chicken egg: De novo bone formation and resorption. J. Tissue Eng. Regen. Med., 2018, 12(8), 1877-1890.
[http://dx.doi.org/10.1002/term.2711] [PMID: 29893478]
[93]
Yang, X.B.; Whitaker, M.J.; Sebald, W.; Clarke, N.; Howdle, S.M.; Shakesheff, K.M.; Oreffo, R.O. Human osteoprogenitor bone formation using encapsulated bone morphogenetic protein 2 in porous polymer scaffolds. Tissue Eng., 2004, 10(7-8), 1037-1045.
[http://dx.doi.org/10.1089/ten.2004.10.1037] [PMID: 15363161]
[94]
Moreno-Jiménez, I.; Hulsart-Billstrom, G.; Lanham, S.A.; Janeczek, A.A.; Kontouli, N.; Kanczler, J.M.; Evans, N.D.; Oreffo, R.O. The chorioallantoic membrane (CAM) assay for the study of human bone regeneration: A refinement animal model for tissue engineering. Sci. Rep., 2016, 6, 32168.
[http://dx.doi.org/10.1038/srep32168] [PMID: 27577960]
[95]
Joniová, J.; Wagnières, G. Catechin reduces phototoxic effects induced by protoporphyrin IX-based photodynamic therapy in the chick embryo chorioallantoic membrane. J. Biomed. Opt., 2020, 25(6), 1-9.
[http://dx.doi.org/10.1117/1.JBO.25.6.063807] [PMID: 32052612]
[96]
Haller, S.; Ametamey, S.M.; Schibli, R.; Müller, C. Investigation of the chick embryo as a potential alternative to the mouse for evaluation of radiopharmaceuticals. Nucl. Med. Biol., 2015, 42(3), 226-233.
[http://dx.doi.org/10.1016/j.nucmedbio.2014.10.010] [PMID: 25533725]
[97]
Winter, G.; Koch, A.B.F.; Löffler, J.; Lindén, M.; Solbach, C.; Abaei, A.; Li, H.; Glatting, G.; Beer, A.J.; Rasche, V. Multi-Modal PET and MR Imaging in the Hen’s Egg Test-Chorioallantoic Membrane (HET-CAM) Model for Initial in vivo Testing of Target-Specific Radioligands. Cancers (Basel), 2020, 12(5), E1248.
[http://dx.doi.org/10.3390/cancers12051248] [PMID: 32429233]
[98]
Derouiche, M.T.T.; Abdennour, S. HET-CAM test. Application to shampoos in developing countries. Toxicol. In Vitro, 2017, 45(Pt 3), 393-396.
[http://dx.doi.org/10.1016/j.tiv.2017.05.024] [PMID: 28602853]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy