Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Development and Application of Activity-based Fluorescent Probes for High-Throughput Screening

Author(s): Juan Cheng and Xin Li*

Volume 29, Issue 10, 2022

Published on: 24 August, 2021

Page: [1739 - 1756] Pages: 18

DOI: 10.2174/0929867328666210525141728

Price: $65

conference banner
Abstract

High-throughput screening facilitates the rapid identification of novel hit compounds; however, it remains challenging to design effective high-throughput assays, partially due to the difficulty of achieving sensitivity in the assay techniques. Among the various analytical methods that are used, fluorescence-based assays dominate due to their high sensitivity and ease of operation. Recent advances in activity-based sensing/imaging have further expanded the availability of fluorescent probes as monitors for high-throughput screening of result outputs. In this study, we have reviewed various activity-based fluorescent probes used in high-throughput screening assays, with an emphasis on their structure-related working mechanisms. Moreover, we have explored the possibility of developing additional and better probes to boost hit identification and drug development against various targets.

Keywords: High-throughput screening, fluorescent probe, drug target, hit identification, enzyme, receptor, metabolite.

[1]
Santos, R.; Ursu, O.; Gaulton, A.; Bento, A.P.; Donadi, R.S.; Bologa, C.G.; Karlsson, A.; Al-Lazikani, B.; Hersey, A.; Oprea, T.I.; Overington, J.P. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov., 2017, 16(1), 19-34.[http://dx.doi.org/10.1038/nrd.2016.230] [PMID: 27910877]
[2]
Zhang, H.M.; Nan, Z.R.; Hui, G.Q.; Liu, X.H.; Sun, Y. Application of genomics and proteomics in drug target discovery. Genet. Mol. Res., 2014, 13(1), 198-204.[http://dx.doi.org/10.4238/2014.January.10.11] [PMID: 24446303]
[3]
Hughes, J; Rees, S; Kalindjian, S; Philpott, K Principles of early drug discovery. 2011, 162(6), 1239-1249.[http://dx.doi.org/10.1111/j.1476-5381.2010.01127.x]
[4]
Zheng, Y.C.; Chang, J.; Zhang, T.; Suo, F.Z.; Chen, X.B.; Liu, Y.; Zhao, B.; Yu, B.; Liu, H.M. An overview on screening methods for lysine specific demethylase 1 (LSD1) inhibitors. Curr. Med. Chem., 2017, 24(23), 2496-2504.[http://dx.doi.org/10.2174/0929867324666170509114321] [PMID: 28486922]
[5]
Rocha, D.N.; Carvalho, E.D.; Pêgo, A.P. High-throughput platforms for the screening of new therapeutic targets for neurodegenerative diseases. Drug Discov. Today, 2016, 21(9), 1355-1366.[http://dx.doi.org/10.1016/j.drudis.2016.05.005] [PMID: 27178019]
[6]
Lloyd, M.D. High-throughput screening for the discovery of enzyme inhibitors. J. Med. Chem., 2020, 63(19), 10742-10772.[http://dx.doi.org/10.1021/acs.jmedchem.0c00523] [PMID: 32432874]
[7]
Macarron, R.; Banks, M.N.; Bojanic, D.; Burns, D.J.; Cirovic, D.A.; Garyantes, T.; Green, D.V.S.; Hertzberg, R.P.; Janzen, W.P.; Paslay, J.W.; Schopfer, U.; Sittampalam, G.S. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discov., 2011, 10(3), 188-195.[http://dx.doi.org/10.1038/nrd3368] [PMID: 21358738]
[8]
Rothan, H.A.; Teoh, T.C. Cell-Based High-Throughput Screening Protocol for Discovering Antiviral Inhibitors Against SARS-COV-2 Main Protease (3CLpro). Mol. Biotechnol., 2021, 63(3), 240-248.[http://dx.doi.org/10.1007/s12033-021-00299-7] [PMID: 33464543]
[9]
Entzeroth, M; Flotow, H; Condron, P Overview of High-Throughput Screening. 2009, 44(1), 9.4.1-9.4.27.[http://dx.doi.org/10.1002/0471141755.ph0904s44]
[10]
De Simone, A.; Naldi, M.; Tedesco, D.; Bartolini, M.; Davani, L.; Andrisano, V. Advanced analytical methodologies in Alzheimer’s disease drug discovery. J. Pharm. Biomed. Anal., 2020, 178, 112899.[http://dx.doi.org/10.1016/j.jpba.2019.112899] [PMID: 31606562]
[11]
Meleza, C.; Thomasson, B.; Ramachandran, C.; O’Neill, J.W.; Michelsen, K.; Lo, M-C. Development of a scintillation proximity binding assay for high-throughput screening of hematopoietic prostaglandin D2 synthase. Anal. Biochem., 2016, 511, 17-23.[http://dx.doi.org/10.1016/j.ab.2016.07.028] [PMID: 27485270]
[12]
Neuckermans, J.; Mertens, A.; De Win, D.; Schwaneberg, U.; De Kock, J. A robust bacterial assay for high-throughput screening of human 4-hydroxyphenylpyruvate dioxygenase inhibitors. Sci. Rep., 2019, 9(1), 14145.[http://dx.doi.org/10.1038/s41598-019-50533-1] [PMID: 31578365]
[13]
Syed, A.J.; Anderson, J.C. Applications of bioluminescence in biotechnology and beyond. Chem. Soc. Rev., 2021.[http://dx.doi.org/10.1039/D0CS01492C] [PMID: 33735357]
[14]
Xia, Z.; Sacco, M.D.; Ma, C.; Townsend, J.A.; Kitamura, N.; Hu, Y.; Ba, M.; Szeto, T.; Zhang, X.; Meng, X. Discovery of SARS-CoV-2 papain-like protease inhibitors through a combination of high-throughput screening and FlipGFP-based reporter assay. ACS Cent. Sci., 2021, 7(7), 1245-1260.
[15]
Tarpley, M.; Oladapo, H.O.; Strepay, D.; Caligan, T.B.; Chdid, L.; Shehata, H.; Roques, J.R.; Thomas, R.; Laudeman, C.P.; Onyenwoke, R.U.; Darr, D.B.; Williams, K.P. Identification of harmine and β-carboline analogs from a high-throughput screen of an approved drug collection; profiling as differential inhibitors of DYRK1A and monoamine oxidase A and for in vitro and in vivo anticancer studies. Eur. J. Pharm. Sci., 2021, 162, 105821.[http://dx.doi.org/10.1016/j.ejps.2021.105821] [PMID: 33781856]
[16]
Parijat, P.; Kondacs, L.; Alexandrovich, A.; Gautel, M.; Cobb, A.J.A.; Kampourakis, T. High Throughput Screen Identifies Small Molecule Effectors That Modulate Thin Filament Activation in Cardiac Muscle. ACS Chem. Biol., 2021, 16(1), 225-235.[http://dx.doi.org/10.1021/acschembio.0c00908] [PMID: 33315370]
[17]
Choi, J.Y.; Black, R., III; Lee, H.; Di Giovanni, J.; Murphy, R.C.; Ben Mamoun, C.; Voelker, D.R. An improved and highly selective fluorescence assay for measuring phosphatidylserine decarboxylase activity. J. Biol. Chem., 2020, 295(27), 9211-9222.[http://dx.doi.org/10.1074/jbc.RA120.013421] [PMID: 32430397]
[18]
Rohman, M.; Wingfield, J. High-throughput screening using mass spectrometry within drug discovery. Methods Mol. Biol., 2016, 1439, 47-63.[http://dx.doi.org/10.1007/978-1-4939-3673-1_3] [PMID: 27316987]
[19]
Bruemmer, KJ; Crossley, SWM; Chang, CJ Activity-Based Sensing: A Synthetic Methods Approach for Selective Molecular Imaging and Beyond. Angew Chem. Int. Ed. Engl., 2020, 59(33), 13734-13762.[http://dx.doi.org/10.1002/anie.201909690]
[20]
Gardner, S.H.; Reinhardt, C.J.; Chan, J. Advances in activity-based sensing probes for isoform-selective imaging of enzymatic activity. Angew. Chem. Int. Ed. Engl., 2021, 60(10), 5000-5009.
[21]
Lv, X.; Zhang, J-B.; Hou, J.; Dou, T-Y.; Ge, G-B.; Hu, W-Z.; Yang, L. Chemical Probes for Human UDP-Glucuronosyltransferases: A Comprehensive Review. Biotechnol. J., 2019, 14(1), e1800002.[http://dx.doi.org/10.1002/biot.201800002] [PMID: 30192065]
[22]
Fang, X.; Zheng, Y.; Duan, Y.; Liu, Y.; Zhong, W. Recent advances in design of fluorescence-based assays for high-throughput screening. Anal. Chem., 2019, 91(1), 482-504.[http://dx.doi.org/10.1021/acs.analchem.8b05303] [PMID: 30481456]
[23]
Mooradian, A.D. Therapeutic targeting of cellular stress to prevent cardiovascular disease: A review of the evidence. Am. J. Cardiovasc. Drugs, 2017, 17(2), 83-95.[http://dx.doi.org/10.1007/s40256-016-0199-7] [PMID: 27778192]
[24]
Ferrer, M.D.; Busquets-Cortés, C.; Capó, X.; Tejada, S.; Tur, J.A.; Pons, A.; Sureda, A. Cyclooxygenase-2 inhibitors as a therapeutic target in inflammatory diseases. Curr. Med. Chem., 2019, 26(18), 3225-3241.[http://dx.doi.org/10.2174/0929867325666180514112124] [PMID: 29756563]
[25]
Naz, H.; Islam, A.; Waheed, A.; Sly, W.S.; Ahmad, F.; Hassan, I. Human β-glucuronidase: structure, function, and application in enzyme replacement therapy. Rejuvenation Res., 2013, 16(5), 352-363.[http://dx.doi.org/10.1089/rej.2013.1407] [PMID: 23777470]
[26]
Hassan, M.I.; Waheed, A.; Grubb, J.H.; Klei, H.E.; Korolev, S.; Sly, W.S. High resolution crystal structure of human beta-glucuronidase reveals structural basis of lysosome targeting (vol 8, e79687, 2013). PLoS One, 2013, 8(11), e79687.[http://dx.doi.org/10.1371/journal.pone.0138401]
[27]
Khan, F.I.; Shahbaaz, M.; Bisetty, K.; Waheed, A.; Sly, W.S.; Ahmad, F.; Hassan, M.I. Large scale analysis of the mutational landscape in β-glucuronidase: A major player of mucopolysaccharidosis type VII. Gene, 2016, 576(1 Pt 1), 36-44.[http://dx.doi.org/10.1016/j.gene.2015.09.062] [PMID: 26415878]
[28]
Vlodavsky, I.; Beckhove, P.; Lerner, I.; Pisano, C.; Meirovitz, A.; Ilan, N.; Elkin, M. Significance of heparanase in cancer and inflammation. Cancer Microenviron., 2012, 5(2), 115-132.[http://dx.doi.org/10.1007/s12307-011-0082-7] [PMID: 21811836]
[29]
Bramwell, K.K.C.; Mock, K.; Ma, Y.; Weis, J.H.; Teuscher, C.; Weis, J.J. β-Glucuronidase, a regulator of lyme arthritis severity, modulates lysosomal trafficking and MMP-9 secretion in response to inflammatory stimuli. J. Immunol., 2015, 195(4), 1647-1656.[http://dx.doi.org/10.4049/jimmunol.1500212] [PMID: 26170381]
[30]
Feng, L.; Yang, Y.; Huo, X.; Tian, X.; Feng, Y.; Yuan, H.; Zhao, L.; Wang, C.; Chu, P.; Long, F.; Wang, W.; Ma, X. Highly selective NIR probe for intestinal β-glucuronidase and high-throughput screening inhibitors to therapy intestinal damage. ACS Sens., 2018, 3(9), 1727-1734.[http://dx.doi.org/10.1021/acssensors.8b00471] [PMID: 30149692]
[31]
Qu, M.; Liu, T.; Chen, P.; Yang, Q. A sperm-plasma β-N-acetyl-D-hexosaminidase interacting with a Chitinolytic β-N-Acetyl-D-hexosaminidase in insect molting fluid. PLoS One, 2013, 8(8), e71738.[http://dx.doi.org/10.1371/journal.pone.0071738] [PMID: 23951233]
[32]
Platt, F.M. Sphingolipid lysosomal storage disorders. Nature, 2014, 510(7503), 68-75.[http://dx.doi.org/10.1038/nature13476] [PMID: 24899306]
[33]
Liu, T.; Guo, P.; Zhou, Y.; Wang, J.; Chen, L.; Yang, H.; Qian, X.; Yang, Q. A crystal structure-guided rational design switching non-carbohydrate inhibitors’ specificity between two β-GlcNAcase homologs. Sci. Rep., 2014, 4(1), 6188.[http://dx.doi.org/10.1038/srep06188] [PMID: 25155420]
[34]
Yang, H.; Liu, T.; Qi, H.; Huang, Z.; Hao, Z.; Ying, J.; Yang, Q.; Qian, X. Design and synthesis of thiazolylhydrazone derivatives as inhibitors of chitinolytic N-acetyl-β-d-hexosaminidase. Bioorg. Med. Chem., 2018, 26(20), 5420-5426.[http://dx.doi.org/10.1016/j.bmc.2018.09.014] [PMID: 30274940]
[35]
Dong, L.; Shen, S.; Lu, H.; Jin, S.; Zhang, J. Novel glycosylated naphthalimide-based activatable fluorescent probe: A tool for the assessment of hexosaminidase activity and intracellular hexosaminidase imaging. ACS Sens., 2019, 4(5), 1222-1229.[http://dx.doi.org/10.1021/acssensors.8b01617] [PMID: 31001975]
[36]
Julien, O.; Wells, J.A. Caspases and their substrates. Cell Death Differ., 2017, 24(8), 1380-1389.[http://dx.doi.org/10.1038/cdd.2017.44] [PMID: 28498362]
[37]
Jiménez Fernández, D.; Lamkanfi, M. Inflammatory caspases: key regulators of inflammation and cell death. Biol. Chem., 2015, 396(3), 193-203.[http://dx.doi.org/10.1515/hsz-2014-0253] [PMID: 25389992]
[38]
Gabbi, P.; Ribeiro, L.R.; Jessié Martins, G.; Cardoso, A.S.; Haupental, F.; Rodrigues, F.S.; Machado, A.K.; Sperotto Brum, J.; Medeiros Frescura Duarte, M.M.; Schetinger, M.R.; da Cruz, I.B.; Flávia Furian, A.; Oliveira, M.S.; Dos Santos, A.R.; Royes, L.F.; Fighera, M.R.; de Freitas, M.L. Methylmalonate induces inflammatory and apoptotic potential: A link to glial activation and neurological dysfunction. J. Neuropathol. Exp. Neurol., 2017, 76(3), 160-178.[http://dx.doi.org/10.1093/jnen/nlw121] [PMID: 28395089]
[39]
Schuettauf, F.; Stein, T.; Choragiewicz, T.J.; Rejdak, R.; Bolz, S.; Zurakowski, D.; Varde, M.A.; Laties, A.M.; Thaler, S. Caspase inhibitors protect against NMDA-mediated retinal ganglion cell death. Clin. Exp. Ophthalmol., 2011, 39(6), 545-554.[http://dx.doi.org/10.1111/j.1442-9071.2010.02486.x] [PMID: 21176044]
[40]
Lin, H.; Yang, H.; Huang, S.; Wang, F.; Wang, D-M.; Liu, B.; Tang, Y-D.; Zhang, C-J. Caspase-1 specific light-up probe with aggregation-induced emission characteristics for inhibitor screening of coumarin-originated natural products. ACS Appl. Mater. Interfaces, 2018, 10(15), 12173-12180.[http://dx.doi.org/10.1021/acsami.7b14845] [PMID: 29323474]
[41]
Zhang, J.; Li, X.; Han, X.; Liu, R.; Fang, J. Targeting the thioredoxin system for cancer therapy. Trends Pharmacol. Sci., 2017, 38(9), 794-808.[http://dx.doi.org/10.1016/j.tips.2017.06.001] [PMID: 28648527]
[42]
Lu, J.; Holmgren, A. The thioredoxin antioxidant system. Free Radic. Biol. Med., 2014, 66, 75-87.[http://dx.doi.org/10.1016/j.freeradbiomed.2013.07.036] [PMID: 23899494]
[43]
Dagnell, M.; Schmidt, E.E.; Arnér, E.S.J. The A to Z of modulated cell patterning by mammalian thioredoxin reductases. Free Radic. Biol. Med., 2018, 115, 484-496.[http://dx.doi.org/10.1016/j.freeradbiomed.2017.12.029] [PMID: 29278740]
[44]
Li, X.; Zhang, B.; Yan, C.; Li, J.; Wang, S.; Wei, X.; Jiang, X.; Zhou, P.; Fang, J. A fast and specific fluorescent probe for thioredoxin reductase that works via disulphide bond cleavage. Nat. Commun., 2019, 10(1), 2745.[http://dx.doi.org/10.1038/s41467-019-10807-8] [PMID: 31227705]
[45]
Bunik, V.I.; Tylicki, A.; Lukashev, N.V. Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models. FEBS J., 2013, 280(24), 6412-6442.[http://dx.doi.org/10.1111/febs.12512] [PMID: 24004353]
[46]
Lonhienne, T.; Garcia, M.D.; Pierens, G.; Mobli, M.; Nouwens, A.; Guddat, L.W. Structural insights into the mechanism of inhibition of AHAS by herbicides. Proc. Natl. Acad. Sci. USA, 2018, 115(9), E1945-E1954.[http://dx.doi.org/10.1073/pnas.1714392115] [PMID: 29440497]
[47]
Yu, Q.; Powles, S.B. Resistance to AHAS inhibitor herbicides: current understanding. Pest Manag. Sci., 2014, 70(9), 1340-1350.[http://dx.doi.org/10.1002/ps.3710] [PMID: 24338926]
[48]
Liu, X.; Yin, Y.; Wu, J.; Jiang, J.; Ma, Z. Identification and characterization of carbendazim-resistant isolates of Gibberella zeae. Plant Dis., 2010, 94(9), 1137-1142.[http://dx.doi.org/10.1094/PDIS-94-9-1137] [PMID: 30743730]
[49]
Li, K-J.; Qu, R-Y.; Liu, Y-C.; Yang, J-F.; Devendar, P.; Chen, Q.; Niu, C-W.; Xi, Z.; Yang, G-F. Design, synthesis, and herbicidal activity of pyrimidine-biphenyl hybrids as novel acetohydroxyacid synthase inhibitors. J. Agric. Food Chem., 2018, 66(15), 3773-3782.[http://dx.doi.org/10.1021/acs.jafc.8b00665] [PMID: 29618205]
[50]
Vogel, C.; Pleiss, J. The modular structure of ThDP-dependent enzymes. Proteins, 2014, 82(10), 2523-2537.[http://dx.doi.org/10.1002/prot.24615] [PMID: 24888727]
[51]
Xie, Y.; Zhang, C.; Wang, Z.; Wei, C.; Liao, N.; Wen, X.; Niu, C.; Yi, L.; Wang, Z.; Xi, Z. Fluorogenic assay for acetohydroxyacid synthase: Design and applications. Anal. Chem., 2019, 91(21), 13582-13590.[http://dx.doi.org/10.1021/acs.analchem.9b02739] [PMID: 31603309]
[52]
Goon, C.P.; Wang, L.Z.; Wong, F.C.; Thuya, W.L.; Ho, P.C.; Goh, B.C. UGT1A1 mediated drug interactions and its clinical relevance. Curr. Drug Metab., 2016, 17(2), 100-106.[http://dx.doi.org/10.2174/1389200216666151103121253] [PMID: 26526830]
[53]
Bock, K.W. Roles of human UDP-glucuronosyltransferases in clearance and homeostasis of endogenous substrates, and functional implications. Biochem. Pharmacol., 2015, 96(2), 77-82.[http://dx.doi.org/10.1016/j.bcp.2015.04.020] [PMID: 25937523]
[54]
de Souza, M.M.T.; Vaisberg, V.V.; Abreu, R.M.; Ferreira, A.S.; daSilvaFerreira, C.; Nasser, P.D.; Paschoale, H.S.; Carrilho, F.J.; Ono, S.K. UGT1A1*28 relationship with abnormal total bilirubin levels in chronic hepatitis C patients: Outcomes from a case-control study. Medicine (Baltimore), 2017, 96(11), e6306.[http://dx.doi.org/10.1097/MD.0000000000006306] [PMID: 28296739]
[55]
Maruo, Y.; Nakahara, S.; Yanagi, T.; Nomura, A.; Mimura, Y.; Matsui, K.; Sato, H.; Takeuchi, Y. Genotype of UGT1A1 and phenotype correlation between Crigler-Najjar syndrome type II and Gilbert syndrome. J. Gastroenterol. Hepatol., 2016, 31(2), 403-408.[http://dx.doi.org/10.1111/jgh.13071] [PMID: 26250421]
[56]
Lv, X.; Feng, L.; Ai, C-Z.; Hou, J.; Wang, P.; Zou, L-W.; Cheng, J.; Ge, G-B.; Cui, J-N.; Yang, L. A Practical and high-affinity fluorescent probe for uridine diphosphate glucuronosyltransferase 1A1: A good surrogate for bilirubin. J. Med. Chem., 2017, 60(23), 9664-9675.[http://dx.doi.org/10.1021/acs.jmedchem.7b01097] [PMID: 29125289]
[57]
Marx, V. Probes: FRET sensor design and optimization. Nat. Methods, 2017, 14(10), 949-953.[http://dx.doi.org/10.1038/nmeth.4434] [PMID: 28960197]
[58]
Wang, L; Saarela, J; Poque, S; Valkonen, JPT Development of FRET-based high-throughput screening for viral RNase III inhibitors. 2020, 21(7), 961-974.[http://dx.doi.org/10.1111/mpp.12942]
[59]
Osorio-Yáñez, C.; Chin-Chan, M.; Sánchez-Peña, L.C.; Atzatzi-Aguilar, O.G.; Olivares-Reyes, J.A.; Segovia, J.; Del Razo, L.M. The ADMA/DDAH/NO pathway in human vein endothelial cells exposed to arsenite. Toxicol. in vitro, 2017, 42, 281-286.[http://dx.doi.org/10.1016/j.tiv.2017.05.008] [PMID: 28502835]
[60]
Wang, Y.; Hu, S.; Gabisi, A.M., Jr; Er, J.A.; Pope, A.; Burstein, G.; Schardon, C.L.; Cardounel, A.J.; Ekmekcioglu, S.; Fast, W. Developing an irreversible inhibitor of human DDAH-1, an enzyme upregulated in melanoma. ChemMedChem, 2014, 9(4), 792-797.[http://dx.doi.org/10.1002/cmdc.201300557] [PMID: 24574257]
[61]
Tommasi, S.; Zanato, C.; Lewis, B.C.; Nair, P.C.; Dall’Angelo, S.; Zanda, M.; Mangoni, A.A. Arginine analogues incorporating carboxylate bioisosteric functions are micromolar inhibitors of human recombinant DDAH-1. Org. Biomol. Chem., 2015, 13(46), 11315-11330.[http://dx.doi.org/10.1039/C5OB01843A] [PMID: 26420019]
[62]
Lunk, I.; Litty, F-A.; Hennig, S.; Vetter, I.R.; Kotthaus, J.; Altmann, K.S.; Ott, G.; Havemeyer, A.; Carrillo García, C.; Clement, B.; Schade, D. Discovery of N-(4-Aminobutyl)-N'-(2-methoxyethyl)guanidine as the First Selective, Nonamino Acid, Catalytic Site Inhibitor of Human Dimethylarginine Dimethylaminohydrolase-1 (hDDAH-1). J. Med. Chem., 2020, 63(1), 425-432.[http://dx.doi.org/10.1021/acs.jmedchem.9b01230] [PMID: 31841335]
[63]
Sippel, T.O. Microfluorometric analysis of protein thiol groups with a coumarinylphenylmaleimide. J. Histochem. Cytochem., 1981, 29(12), 1377-1381.[http://dx.doi.org/10.1177/29.12.7320496] [PMID: 7320496]
[64]
Linsky, T.; Fast, W. A continuous, fluorescent, high-throughput assay for human dimethylarginine dimethylaminohydrolase-1. J. Biomol. Screen., 2011, 16(9), 1089-1097.[http://dx.doi.org/10.1177/1087057111417712] [PMID: 21921133]
[65]
Kabil, O.; Banerjee, R. Enzymology of H2S biogenesis, decay and signaling. Antioxid. Redox Signal., 2014, 20(5), 770-782.[http://dx.doi.org/10.1089/ars.2013.5339] [PMID: 23600844]
[66]
Whiteman, M.; Le Trionnaire, S.; Chopra, M.; Fox, B.; Whatmore, J. Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools. Clin. Sci. (Lond.), 2011, 121(11), 459-488.[http://dx.doi.org/10.1042/CS20110267] [PMID: 21843150]
[67]
Kimura, H. Hydrogen sulfide: from brain to gut. Antioxid. Redox Signal., 2010, 12(9), 1111-1123.[http://dx.doi.org/10.1089/ars.2009.2919] [PMID: 19803743]
[68]
Hellmich, M.R.; Coletta, C.; Chao, C.; Szabo, C. The therapeutic potential of cystathionine β-synthetase/hydrogen sulfide inhibition in cancer. Antioxid. Redox Signal., 2015, 22(5), 424-448.[http://dx.doi.org/10.1089/ars.2014.5933] [PMID: 24730679]
[69]
Szabo, C.; Coletta, C.; Chao, C.; Módis, K.; Szczesny, B.; Papapetropoulos, A.; Hellmich, M.R. Tumor-derived hydrogen sulfide, produced by cystathionine-β-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proc. Natl. Acad. Sci. USA, 2013, 110(30), 12474-12479.[http://dx.doi.org/10.1073/pnas.1306241110] [PMID: 23836652]
[70]
Bhattacharyya, S.; Saha, S.; Giri, K.; Lanza, I.R.; Nair, K.S.; Jennings, N.B.; Rodriguez-Aguayo, C.; Lopez-Berestein, G.; Basal, E.; Weaver, A.L.; Visscher, D.W.; Cliby, W.; Sood, A.K.; Bhattacharya, R.; Mukherjee, P. Cystathionine beta-synthase (CBS) contributes to advanced ovarian cancer progression and drug resistance. PLoS One, 2013, 8(11), e79167.[http://dx.doi.org/10.1371/journal.pone.0079167] [PMID: 24236104]
[71]
Niu, W.; Wu, P.; Chen, F.; Wang, J.; Shang, X.; Xu, C. Discovery of selective cystathionine β-synthase inhibitors by high-throughput screening with a fluorescent thiol probe. MedChemComm, 2016, 8(1), 198-201.[http://dx.doi.org/10.1039/C6MD00493H] [PMID: 30108705]
[72]
Idzko, M.; Ferrari, D.; Eltzschig, H.K. Nucleotide signalling during inflammation. Nature, 2014, 509(7500), 310-317.[http://dx.doi.org/10.1038/nature13085] [PMID: 24828189]
[73]
Zimmermann, H.; Zebisch, M.; Sträter, N. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal., 2012, 8(3), 437-502.[http://dx.doi.org/10.1007/s11302-012-9309-4] [PMID: 22555564]
[74]
Penadés, J.R.; Donderis, J.; García-Caballer, M.; Tormo-Más, M.Á.; Marina, A. dUTPases, the unexplored family of signalling molecules. Curr. Opin. Microbiol., 2013, 16(2), 163-170.[http://dx.doi.org/10.1016/j.mib.2013.02.005] [PMID: 23541339]
[75]
Baranowski, M.R.; Nowicka, A.; Rydzik, A.M.; Warminski, M.; Kasprzyk, R.; Wojtczak, B.A.; Wojcik, J.; Claridge, T.D.W.; Kowalska, J.; Jemielity, J. Synthesis of fluorophosphate nucleotide analogues and their characterization as tools for 19F NMR studies. J. Org. Chem., 2015, 80(8), 3982-3997.[http://dx.doi.org/10.1021/acs.joc.5b00337] [PMID: 25816092]
[76]
Guranowski, A.; Wojdyła, A.M.; Pietrowska-Borek, M.; Bieganowski, P.; Khurs, E.N.; Cliff, M.J.; Blackburn, G.M.; Błaziak, D.; Stec, W.J. Fhit proteins can also recognize substrates other than dinucleoside polyphosphates. FEBS Lett., 2008, 582(20), 3152-3158.[http://dx.doi.org/10.1016/j.febslet.2008.07.060] [PMID: 18694747]
[77]
Baranowski, M.R.; Nowicka, A.; Jemielity, J.; Kowalska, J. A fluorescent HTS assay for phosphohydrolases based on nucleoside 5′-fluorophosphates: its application in screening for inhibitors of mRNA decapping scavenger and PDE-I. Org. Biomol. Chem., 2016, 14(20), 4595-4604.[http://dx.doi.org/10.1039/C6OB00492J] [PMID: 27031609]
[78]
Lin, W.; Li, Y.; Yang, L.; Chen, T. Development of BODIPY FL VH032 as a High-Affinity and Selective von Hippel-Lindau E3 Ligase Fluorescent Probe and Its Application in a Time-Resolved Fluorescence Resonance Energy-Transfer Assay. ACS Omega, 2020, 6(1), 680-695.[http://dx.doi.org/10.1021/acsomega.0c05221] [PMID: 33458521]
[79]
Sriram, K.; Insel, P.A. G Protein-coupled receptors as targets for approved drugs: How many targets and how many drugs? Mol. Pharmacol., 2018, 93(4), 251-258.[http://dx.doi.org/10.1124/mol.117.111062] [PMID: 29298813]
[80]
Yasi, E.A.; Kruyer, N.S.; Peralta-Yahya, P. Advances in G protein-coupled receptor high-throughput screening. Curr. Opin. Biotechnol., 2020, 64, 210-217.[http://dx.doi.org/10.1016/j.copbio.2020.06.004] [PMID: 32653805]
[81]
Kho, D.T.; Glass, M.; Graham, E.S. Chapter eleven - Is the cannabinoid CB2 receptor a major regulator of the neuroinflammatory axis of the neurovascular unit in humans?Advances in Pharmacology, Kendall, D.; Alexander, S.P.H., Eds.; Academic Press,. 2017, Vol. 80, pp. 367-396.
[82]
Sánchez-Aparicio, P.; Florán, B.; Rodríguez Velázquez, D.; Ibancovichi, J.A.; Varela Guerrero, J.A.; Recillas, S. Cannabinoids CB2 receptors, one new promising drug target for chronic and degenerative pain conditions in equine veterinary patients. J. Equine Vet. Sci., 2020, 85, 102880.[http://dx.doi.org/10.1016/j.jevs.2019.102880] [PMID: 31952645]
[83]
Zhou, J.; Burkovskiy, I.; Yang, H.; Sardinha, J.; Lehmann, C. CB2 and GPR55 receptors as therapeutic targets for systemic immune dysregulation. Front. Pharmacol., 2016, 7, 264.[http://dx.doi.org/10.3389/fphar.2016.00264] [PMID: 27597829]
[84]
Sexton, M.; Woodruff, G.; Horne, E.A.; Lin, Y.H.; Muccioli, G.G.; Bai, M.; Stern, E.; Bornhop, D.J.; Stella, N. NIR-mbc94, a fluorescent ligand that binds to endogenous CB(2) receptors and is amenable to high-throughput screening. Chem. Biol., 2011, 18(5), 563-568.[http://dx.doi.org/10.1016/j.chembiol.2011.02.016] [PMID: 21609837]
[85]
Ngo, D.H.; Vo, T.S. An updated review on pharmaceutical properties of gamma-aminobutyric acid. Molecules, 2019, 24(15), E2678.[http://dx.doi.org/10.3390/molecules24152678] [PMID: 31344785]
[86]
Stagg, C.J.; Bachtiar, V.; Johansen-Berg, H. The role of GABA in human motor learning. Curr. Biol., 2011, 21(6), 480-484.[http://dx.doi.org/10.1016/j.cub.2011.01.069] [PMID: 21376596]
[87]
Yamaura, K.; Kiyonaka, S.; Numata, T.; Inoue, R.; Hamachi, I. Discovery of allosteric modulators for GABAA receptors by ligand-directed chemistry. Nat. Chem. Biol., 2016, 12(10), 822-830.[http://dx.doi.org/10.1038/nchembio.2150] [PMID: 27526031]
[88]
Sakamoto, S.; Yamaura, K.; Numata, T.; Harada, F.; Amaike, K.; Inoue, R.; Kiyonaka, S.; Hamachi, I. Construction of a fluorescent screening system of allosteric modulators for the GABAA Receptor Using a Turn-On Probe. ACS Cent. Sci., 2019, 5(9), 1541-1553.[http://dx.doi.org/10.1021/acscentsci.9b00539] [PMID: 31572781]
[89]
Yu, H.B.; Li, M.; Wang, W.P.; Wang, X.L. High throughput screening technologies for ion channels. Acta Pharmacol. Sin., 2016, 37(1), 34-43.[http://dx.doi.org/10.1038/aps.2015.108] [PMID: 26657056]
[90]
Obergrussberger, A.; Goetze, T.A.; Brinkwirth, N.; Becker, N.; Friis, S.; Rapedius, M.; Haarmann, C.; Rinke-Weiß, I.; Stölzle-Feix, S.; Brüggemann, A.; George, M.; Fertig, N. An update on the advancing high-throughput screening techniques for patch clamp-based ion channel screens: implications for drug discovery. Expert Opin. Drug Discov., 2018, 13(3), 269-277.[http://dx.doi.org/10.1080/17460441.2018.1428555] [PMID: 29343120]
[91]
Lorigo, M.; Oliveira, N.; Cairrao, E. Clinical Importance of the human umbilical artery potassium channels. Cells, 2020, 9(9), E1956.[http://dx.doi.org/10.3390/cells9091956] [PMID: 32854241]
[92]
Li, D.; Sun, H.; Levesque, P. Antiarrhythmic drug therapy for atrial fibrillation: focus on atrial selectivity and safety. Cardiovasc. Hematol. Agents Med. Chem., 2009, 7(1), 64-75.[http://dx.doi.org/10.2174/187152509787047621] [PMID: 19149545]
[93]
Walsh, K.B. A real-time screening assay for GIRK1/4 channel blockers. J. Biomol. Screen., 2010, 15(10), 1229-1237.[http://dx.doi.org/10.1177/1087057110381384] [PMID: 20938046]
[94]
Orr, A.L.; Vargas, L.; Turk, C.N.; Baaten, J.E.; Matzen, J.T.; Dardov, V.J.; Attle, S.J.; Li, J.; Quackenbush, D.C.; Goncalves, R.L.S.; Perevoshchikova, I.V.; Petrassi, H.M.; Meeusen, S.L.; Ainscow, E.K.; Brand, M.D. Suppressors of superoxide production from mitochondrial complex III. Nat. Chem. Biol., 2015, 11(11), 834-836.[http://dx.doi.org/10.1038/nchembio.1910] [PMID: 26368590]
[95]
Brand, M.D.; Goncalves, R.L.; Orr, A.L.; Vargas, L.; Gerencser, A.A.; Borch Jensen, M.; Wang, Y.T.; Melov, S.; Turk, C.N.; Matzen, J.T.; Dardov, V.J.; Petrassi, H.M.; Meeusen, S.L.; Perevoshchikova, I.V.; Jasper, H.; Brookes, P.S.; Ainscow, E.K. Suppressors of superoxide-H2O2 production at site IQ of mitochondrial complex I protect against stem cell hyperplasia and ischemia-reperfusion injury. Cell Metab., 2016, 24(4), 582-592.[http://dx.doi.org/10.1016/j.cmet.2016.08.012] [PMID: 27667666]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy