Review Article

活性高通量筛选荧光探针的开发与应用

卷 29, 期 10, 2022

发表于: 24 August, 2021

页: [1739 - 1756] 页: 18

弟呕挨: 10.2174/0929867328666210525141728

价格: $65

conference banner
摘要

高通量筛选有助于快速识别新型命中化合物;然而,设计有效的高通量分析方法仍然具有挑战性,部分原因是分析技术难以实现灵敏度。在所使用的各种分析方法中,基于荧光的分析由于其高灵敏度和易于操作而占主导地位。基于活动的传感/成像方面的最新进展进一步扩大了荧光探针作为结果输出的高通量筛选的监测器的可用性。在本研究中,我们回顾了用于高通量筛选分析的各种基于活性的荧光探针,重点介绍了其结构相关的工作机制。此外,我们还探索了开发更多和更好的探针的可能性,以促进针对各种靶点的打击识别和药物开发。

关键词: 高通量筛选、荧光探针、药物靶点、命中鉴定、酶、受体、代谢物。

[1]
Santos, R.; Ursu, O.; Gaulton, A.; Bento, A.P.; Donadi, R.S.; Bologa, C.G.; Karlsson, A.; Al-Lazikani, B.; Hersey, A.; Oprea, T.I.; Overington, J.P. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov., 2017, 16(1), 19-34.[http://dx.doi.org/10.1038/nrd.2016.230] [PMID: 27910877]
[2]
Zhang, H.M.; Nan, Z.R.; Hui, G.Q.; Liu, X.H.; Sun, Y. Application of genomics and proteomics in drug target discovery. Genet. Mol. Res., 2014, 13(1), 198-204.[http://dx.doi.org/10.4238/2014.January.10.11] [PMID: 24446303]
[3]
Hughes, J; Rees, S; Kalindjian, S; Philpott, K Principles of early drug discovery. 2011, 162(6), 1239-1249.[http://dx.doi.org/10.1111/j.1476-5381.2010.01127.x]
[4]
Zheng, Y.C.; Chang, J.; Zhang, T.; Suo, F.Z.; Chen, X.B.; Liu, Y.; Zhao, B.; Yu, B.; Liu, H.M. An overview on screening methods for lysine specific demethylase 1 (LSD1) inhibitors. Curr. Med. Chem., 2017, 24(23), 2496-2504.[http://dx.doi.org/10.2174/0929867324666170509114321] [PMID: 28486922]
[5]
Rocha, D.N.; Carvalho, E.D.; Pêgo, A.P. High-throughput platforms for the screening of new therapeutic targets for neurodegenerative diseases. Drug Discov. Today, 2016, 21(9), 1355-1366.[http://dx.doi.org/10.1016/j.drudis.2016.05.005] [PMID: 27178019]
[6]
Lloyd, M.D. High-throughput screening for the discovery of enzyme inhibitors. J. Med. Chem., 2020, 63(19), 10742-10772.[http://dx.doi.org/10.1021/acs.jmedchem.0c00523] [PMID: 32432874]
[7]
Macarron, R.; Banks, M.N.; Bojanic, D.; Burns, D.J.; Cirovic, D.A.; Garyantes, T.; Green, D.V.S.; Hertzberg, R.P.; Janzen, W.P.; Paslay, J.W.; Schopfer, U.; Sittampalam, G.S. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discov., 2011, 10(3), 188-195.[http://dx.doi.org/10.1038/nrd3368] [PMID: 21358738]
[8]
Rothan, H.A.; Teoh, T.C. Cell-Based High-Throughput Screening Protocol for Discovering Antiviral Inhibitors Against SARS-COV-2 Main Protease (3CLpro). Mol. Biotechnol., 2021, 63(3), 240-248.[http://dx.doi.org/10.1007/s12033-021-00299-7] [PMID: 33464543]
[9]
Entzeroth, M; Flotow, H; Condron, P Overview of High-Throughput Screening. 2009, 44(1), 9.4.1-9.4.27.[http://dx.doi.org/10.1002/0471141755.ph0904s44]
[10]
De Simone, A.; Naldi, M.; Tedesco, D.; Bartolini, M.; Davani, L.; Andrisano, V. Advanced analytical methodologies in Alzheimer’s disease drug discovery. J. Pharm. Biomed. Anal., 2020, 178, 112899.[http://dx.doi.org/10.1016/j.jpba.2019.112899] [PMID: 31606562]
[11]
Meleza, C.; Thomasson, B.; Ramachandran, C.; O’Neill, J.W.; Michelsen, K.; Lo, M-C. Development of a scintillation proximity binding assay for high-throughput screening of hematopoietic prostaglandin D2 synthase. Anal. Biochem., 2016, 511, 17-23.[http://dx.doi.org/10.1016/j.ab.2016.07.028] [PMID: 27485270]
[12]
Neuckermans, J.; Mertens, A.; De Win, D.; Schwaneberg, U.; De Kock, J. A robust bacterial assay for high-throughput screening of human 4-hydroxyphenylpyruvate dioxygenase inhibitors. Sci. Rep., 2019, 9(1), 14145.[http://dx.doi.org/10.1038/s41598-019-50533-1] [PMID: 31578365]
[13]
Syed, A.J.; Anderson, J.C. Applications of bioluminescence in biotechnology and beyond. Chem. Soc. Rev., 2021.[http://dx.doi.org/10.1039/D0CS01492C] [PMID: 33735357]
[14]
Xia, Z.; Sacco, M.D.; Ma, C.; Townsend, J.A.; Kitamura, N.; Hu, Y.; Ba, M.; Szeto, T.; Zhang, X.; Meng, X. Discovery of SARS-CoV-2 papain-like protease inhibitors through a combination of high-throughput screening and FlipGFP-based reporter assay. ACS Cent. Sci., 2021, 7(7), 1245-1260.
[15]
Tarpley, M.; Oladapo, H.O.; Strepay, D.; Caligan, T.B.; Chdid, L.; Shehata, H.; Roques, J.R.; Thomas, R.; Laudeman, C.P.; Onyenwoke, R.U.; Darr, D.B.; Williams, K.P. Identification of harmine and β-carboline analogs from a high-throughput screen of an approved drug collection; profiling as differential inhibitors of DYRK1A and monoamine oxidase A and for in vitro and in vivo anticancer studies. Eur. J. Pharm. Sci., 2021, 162, 105821.[http://dx.doi.org/10.1016/j.ejps.2021.105821] [PMID: 33781856]
[16]
Parijat, P.; Kondacs, L.; Alexandrovich, A.; Gautel, M.; Cobb, A.J.A.; Kampourakis, T. High Throughput Screen Identifies Small Molecule Effectors That Modulate Thin Filament Activation in Cardiac Muscle. ACS Chem. Biol., 2021, 16(1), 225-235.[http://dx.doi.org/10.1021/acschembio.0c00908] [PMID: 33315370]
[17]
Choi, J.Y.; Black, R., III; Lee, H.; Di Giovanni, J.; Murphy, R.C.; Ben Mamoun, C.; Voelker, D.R. An improved and highly selective fluorescence assay for measuring phosphatidylserine decarboxylase activity. J. Biol. Chem., 2020, 295(27), 9211-9222.[http://dx.doi.org/10.1074/jbc.RA120.013421] [PMID: 32430397]
[18]
Rohman, M.; Wingfield, J. High-throughput screening using mass spectrometry within drug discovery. Methods Mol. Biol., 2016, 1439, 47-63.[http://dx.doi.org/10.1007/978-1-4939-3673-1_3] [PMID: 27316987]
[19]
Bruemmer, KJ; Crossley, SWM; Chang, CJ Activity-Based Sensing: A Synthetic Methods Approach for Selective Molecular Imaging and Beyond. Angew Chem. Int. Ed. Engl., 2020, 59(33), 13734-13762.[http://dx.doi.org/10.1002/anie.201909690]
[20]
Gardner, S.H.; Reinhardt, C.J.; Chan, J. Advances in activity-based sensing probes for isoform-selective imaging of enzymatic activity. Angew. Chem. Int. Ed. Engl., 2021, 60(10), 5000-5009.
[21]
Lv, X.; Zhang, J-B.; Hou, J.; Dou, T-Y.; Ge, G-B.; Hu, W-Z.; Yang, L. Chemical Probes for Human UDP-Glucuronosyltransferases: A Comprehensive Review. Biotechnol. J., 2019, 14(1), e1800002.[http://dx.doi.org/10.1002/biot.201800002] [PMID: 30192065]
[22]
Fang, X.; Zheng, Y.; Duan, Y.; Liu, Y.; Zhong, W. Recent advances in design of fluorescence-based assays for high-throughput screening. Anal. Chem., 2019, 91(1), 482-504.[http://dx.doi.org/10.1021/acs.analchem.8b05303] [PMID: 30481456]
[23]
Mooradian, A.D. Therapeutic targeting of cellular stress to prevent cardiovascular disease: A review of the evidence. Am. J. Cardiovasc. Drugs, 2017, 17(2), 83-95.[http://dx.doi.org/10.1007/s40256-016-0199-7] [PMID: 27778192]
[24]
Ferrer, M.D.; Busquets-Cortés, C.; Capó, X.; Tejada, S.; Tur, J.A.; Pons, A.; Sureda, A. Cyclooxygenase-2 inhibitors as a therapeutic target in inflammatory diseases. Curr. Med. Chem., 2019, 26(18), 3225-3241.[http://dx.doi.org/10.2174/0929867325666180514112124] [PMID: 29756563]
[25]
Naz, H.; Islam, A.; Waheed, A.; Sly, W.S.; Ahmad, F.; Hassan, I. Human β-glucuronidase: structure, function, and application in enzyme replacement therapy. Rejuvenation Res., 2013, 16(5), 352-363.[http://dx.doi.org/10.1089/rej.2013.1407] [PMID: 23777470]
[26]
Hassan, M.I.; Waheed, A.; Grubb, J.H.; Klei, H.E.; Korolev, S.; Sly, W.S. High resolution crystal structure of human beta-glucuronidase reveals structural basis of lysosome targeting (vol 8, e79687, 2013). PLoS One, 2013, 8(11), e79687.[http://dx.doi.org/10.1371/journal.pone.0138401]
[27]
Khan, F.I.; Shahbaaz, M.; Bisetty, K.; Waheed, A.; Sly, W.S.; Ahmad, F.; Hassan, M.I. Large scale analysis of the mutational landscape in β-glucuronidase: A major player of mucopolysaccharidosis type VII. Gene, 2016, 576(1 Pt 1), 36-44.[http://dx.doi.org/10.1016/j.gene.2015.09.062] [PMID: 26415878]
[28]
Vlodavsky, I.; Beckhove, P.; Lerner, I.; Pisano, C.; Meirovitz, A.; Ilan, N.; Elkin, M. Significance of heparanase in cancer and inflammation. Cancer Microenviron., 2012, 5(2), 115-132.[http://dx.doi.org/10.1007/s12307-011-0082-7] [PMID: 21811836]
[29]
Bramwell, K.K.C.; Mock, K.; Ma, Y.; Weis, J.H.; Teuscher, C.; Weis, J.J. β-Glucuronidase, a regulator of lyme arthritis severity, modulates lysosomal trafficking and MMP-9 secretion in response to inflammatory stimuli. J. Immunol., 2015, 195(4), 1647-1656.[http://dx.doi.org/10.4049/jimmunol.1500212] [PMID: 26170381]
[30]
Feng, L.; Yang, Y.; Huo, X.; Tian, X.; Feng, Y.; Yuan, H.; Zhao, L.; Wang, C.; Chu, P.; Long, F.; Wang, W.; Ma, X. Highly selective NIR probe for intestinal β-glucuronidase and high-throughput screening inhibitors to therapy intestinal damage. ACS Sens., 2018, 3(9), 1727-1734.[http://dx.doi.org/10.1021/acssensors.8b00471] [PMID: 30149692]
[31]
Qu, M.; Liu, T.; Chen, P.; Yang, Q. A sperm-plasma β-N-acetyl-D-hexosaminidase interacting with a Chitinolytic β-N-Acetyl-D-hexosaminidase in insect molting fluid. PLoS One, 2013, 8(8), e71738.[http://dx.doi.org/10.1371/journal.pone.0071738] [PMID: 23951233]
[32]
Platt, F.M. Sphingolipid lysosomal storage disorders. Nature, 2014, 510(7503), 68-75.[http://dx.doi.org/10.1038/nature13476] [PMID: 24899306]
[33]
Liu, T.; Guo, P.; Zhou, Y.; Wang, J.; Chen, L.; Yang, H.; Qian, X.; Yang, Q. A crystal structure-guided rational design switching non-carbohydrate inhibitors’ specificity between two β-GlcNAcase homologs. Sci. Rep., 2014, 4(1), 6188.[http://dx.doi.org/10.1038/srep06188] [PMID: 25155420]
[34]
Yang, H.; Liu, T.; Qi, H.; Huang, Z.; Hao, Z.; Ying, J.; Yang, Q.; Qian, X. Design and synthesis of thiazolylhydrazone derivatives as inhibitors of chitinolytic N-acetyl-β-d-hexosaminidase. Bioorg. Med. Chem., 2018, 26(20), 5420-5426.[http://dx.doi.org/10.1016/j.bmc.2018.09.014] [PMID: 30274940]
[35]
Dong, L.; Shen, S.; Lu, H.; Jin, S.; Zhang, J. Novel glycosylated naphthalimide-based activatable fluorescent probe: A tool for the assessment of hexosaminidase activity and intracellular hexosaminidase imaging. ACS Sens., 2019, 4(5), 1222-1229.[http://dx.doi.org/10.1021/acssensors.8b01617] [PMID: 31001975]
[36]
Julien, O.; Wells, J.A. Caspases and their substrates. Cell Death Differ., 2017, 24(8), 1380-1389.[http://dx.doi.org/10.1038/cdd.2017.44] [PMID: 28498362]
[37]
Jiménez Fernández, D.; Lamkanfi, M. Inflammatory caspases: key regulators of inflammation and cell death. Biol. Chem., 2015, 396(3), 193-203.[http://dx.doi.org/10.1515/hsz-2014-0253] [PMID: 25389992]
[38]
Gabbi, P.; Ribeiro, L.R.; Jessié Martins, G.; Cardoso, A.S.; Haupental, F.; Rodrigues, F.S.; Machado, A.K.; Sperotto Brum, J.; Medeiros Frescura Duarte, M.M.; Schetinger, M.R.; da Cruz, I.B.; Flávia Furian, A.; Oliveira, M.S.; Dos Santos, A.R.; Royes, L.F.; Fighera, M.R.; de Freitas, M.L. Methylmalonate induces inflammatory and apoptotic potential: A link to glial activation and neurological dysfunction. J. Neuropathol. Exp. Neurol., 2017, 76(3), 160-178.[http://dx.doi.org/10.1093/jnen/nlw121] [PMID: 28395089]
[39]
Schuettauf, F.; Stein, T.; Choragiewicz, T.J.; Rejdak, R.; Bolz, S.; Zurakowski, D.; Varde, M.A.; Laties, A.M.; Thaler, S. Caspase inhibitors protect against NMDA-mediated retinal ganglion cell death. Clin. Exp. Ophthalmol., 2011, 39(6), 545-554.[http://dx.doi.org/10.1111/j.1442-9071.2010.02486.x] [PMID: 21176044]
[40]
Lin, H.; Yang, H.; Huang, S.; Wang, F.; Wang, D-M.; Liu, B.; Tang, Y-D.; Zhang, C-J. Caspase-1 specific light-up probe with aggregation-induced emission characteristics for inhibitor screening of coumarin-originated natural products. ACS Appl. Mater. Interfaces, 2018, 10(15), 12173-12180.[http://dx.doi.org/10.1021/acsami.7b14845] [PMID: 29323474]
[41]
Zhang, J.; Li, X.; Han, X.; Liu, R.; Fang, J. Targeting the thioredoxin system for cancer therapy. Trends Pharmacol. Sci., 2017, 38(9), 794-808.[http://dx.doi.org/10.1016/j.tips.2017.06.001] [PMID: 28648527]
[42]
Lu, J.; Holmgren, A. The thioredoxin antioxidant system. Free Radic. Biol. Med., 2014, 66, 75-87.[http://dx.doi.org/10.1016/j.freeradbiomed.2013.07.036] [PMID: 23899494]
[43]
Dagnell, M.; Schmidt, E.E.; Arnér, E.S.J. The A to Z of modulated cell patterning by mammalian thioredoxin reductases. Free Radic. Biol. Med., 2018, 115, 484-496.[http://dx.doi.org/10.1016/j.freeradbiomed.2017.12.029] [PMID: 29278740]
[44]
Li, X.; Zhang, B.; Yan, C.; Li, J.; Wang, S.; Wei, X.; Jiang, X.; Zhou, P.; Fang, J. A fast and specific fluorescent probe for thioredoxin reductase that works via disulphide bond cleavage. Nat. Commun., 2019, 10(1), 2745.[http://dx.doi.org/10.1038/s41467-019-10807-8] [PMID: 31227705]
[45]
Bunik, V.I.; Tylicki, A.; Lukashev, N.V. Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models. FEBS J., 2013, 280(24), 6412-6442.[http://dx.doi.org/10.1111/febs.12512] [PMID: 24004353]
[46]
Lonhienne, T.; Garcia, M.D.; Pierens, G.; Mobli, M.; Nouwens, A.; Guddat, L.W. Structural insights into the mechanism of inhibition of AHAS by herbicides. Proc. Natl. Acad. Sci. USA, 2018, 115(9), E1945-E1954.[http://dx.doi.org/10.1073/pnas.1714392115] [PMID: 29440497]
[47]
Yu, Q.; Powles, S.B. Resistance to AHAS inhibitor herbicides: current understanding. Pest Manag. Sci., 2014, 70(9), 1340-1350.[http://dx.doi.org/10.1002/ps.3710] [PMID: 24338926]
[48]
Liu, X.; Yin, Y.; Wu, J.; Jiang, J.; Ma, Z. Identification and characterization of carbendazim-resistant isolates of Gibberella zeae. Plant Dis., 2010, 94(9), 1137-1142.[http://dx.doi.org/10.1094/PDIS-94-9-1137] [PMID: 30743730]
[49]
Li, K-J.; Qu, R-Y.; Liu, Y-C.; Yang, J-F.; Devendar, P.; Chen, Q.; Niu, C-W.; Xi, Z.; Yang, G-F. Design, synthesis, and herbicidal activity of pyrimidine-biphenyl hybrids as novel acetohydroxyacid synthase inhibitors. J. Agric. Food Chem., 2018, 66(15), 3773-3782.[http://dx.doi.org/10.1021/acs.jafc.8b00665] [PMID: 29618205]
[50]
Vogel, C.; Pleiss, J. The modular structure of ThDP-dependent enzymes. Proteins, 2014, 82(10), 2523-2537.[http://dx.doi.org/10.1002/prot.24615] [PMID: 24888727]
[51]
Xie, Y.; Zhang, C.; Wang, Z.; Wei, C.; Liao, N.; Wen, X.; Niu, C.; Yi, L.; Wang, Z.; Xi, Z. Fluorogenic assay for acetohydroxyacid synthase: Design and applications. Anal. Chem., 2019, 91(21), 13582-13590.[http://dx.doi.org/10.1021/acs.analchem.9b02739] [PMID: 31603309]
[52]
Goon, C.P.; Wang, L.Z.; Wong, F.C.; Thuya, W.L.; Ho, P.C.; Goh, B.C. UGT1A1 mediated drug interactions and its clinical relevance. Curr. Drug Metab., 2016, 17(2), 100-106.[http://dx.doi.org/10.2174/1389200216666151103121253] [PMID: 26526830]
[53]
Bock, K.W. Roles of human UDP-glucuronosyltransferases in clearance and homeostasis of endogenous substrates, and functional implications. Biochem. Pharmacol., 2015, 96(2), 77-82.[http://dx.doi.org/10.1016/j.bcp.2015.04.020] [PMID: 25937523]
[54]
de Souza, M.M.T.; Vaisberg, V.V.; Abreu, R.M.; Ferreira, A.S.; daSilvaFerreira, C.; Nasser, P.D.; Paschoale, H.S.; Carrilho, F.J.; Ono, S.K. UGT1A1*28 relationship with abnormal total bilirubin levels in chronic hepatitis C patients: Outcomes from a case-control study. Medicine (Baltimore), 2017, 96(11), e6306.[http://dx.doi.org/10.1097/MD.0000000000006306] [PMID: 28296739]
[55]
Maruo, Y.; Nakahara, S.; Yanagi, T.; Nomura, A.; Mimura, Y.; Matsui, K.; Sato, H.; Takeuchi, Y. Genotype of UGT1A1 and phenotype correlation between Crigler-Najjar syndrome type II and Gilbert syndrome. J. Gastroenterol. Hepatol., 2016, 31(2), 403-408.[http://dx.doi.org/10.1111/jgh.13071] [PMID: 26250421]
[56]
Lv, X.; Feng, L.; Ai, C-Z.; Hou, J.; Wang, P.; Zou, L-W.; Cheng, J.; Ge, G-B.; Cui, J-N.; Yang, L. A Practical and high-affinity fluorescent probe for uridine diphosphate glucuronosyltransferase 1A1: A good surrogate for bilirubin. J. Med. Chem., 2017, 60(23), 9664-9675.[http://dx.doi.org/10.1021/acs.jmedchem.7b01097] [PMID: 29125289]
[57]
Marx, V. Probes: FRET sensor design and optimization. Nat. Methods, 2017, 14(10), 949-953.[http://dx.doi.org/10.1038/nmeth.4434] [PMID: 28960197]
[58]
Wang, L; Saarela, J; Poque, S; Valkonen, JPT Development of FRET-based high-throughput screening for viral RNase III inhibitors. 2020, 21(7), 961-974.[http://dx.doi.org/10.1111/mpp.12942]
[59]
Osorio-Yáñez, C.; Chin-Chan, M.; Sánchez-Peña, L.C.; Atzatzi-Aguilar, O.G.; Olivares-Reyes, J.A.; Segovia, J.; Del Razo, L.M. The ADMA/DDAH/NO pathway in human vein endothelial cells exposed to arsenite. Toxicol. in vitro, 2017, 42, 281-286.[http://dx.doi.org/10.1016/j.tiv.2017.05.008] [PMID: 28502835]
[60]
Wang, Y.; Hu, S.; Gabisi, A.M., Jr; Er, J.A.; Pope, A.; Burstein, G.; Schardon, C.L.; Cardounel, A.J.; Ekmekcioglu, S.; Fast, W. Developing an irreversible inhibitor of human DDAH-1, an enzyme upregulated in melanoma. ChemMedChem, 2014, 9(4), 792-797.[http://dx.doi.org/10.1002/cmdc.201300557] [PMID: 24574257]
[61]
Tommasi, S.; Zanato, C.; Lewis, B.C.; Nair, P.C.; Dall’Angelo, S.; Zanda, M.; Mangoni, A.A. Arginine analogues incorporating carboxylate bioisosteric functions are micromolar inhibitors of human recombinant DDAH-1. Org. Biomol. Chem., 2015, 13(46), 11315-11330.[http://dx.doi.org/10.1039/C5OB01843A] [PMID: 26420019]
[62]
Lunk, I.; Litty, F-A.; Hennig, S.; Vetter, I.R.; Kotthaus, J.; Altmann, K.S.; Ott, G.; Havemeyer, A.; Carrillo García, C.; Clement, B.; Schade, D. Discovery of N-(4-Aminobutyl)-N'-(2-methoxyethyl)guanidine as the First Selective, Nonamino Acid, Catalytic Site Inhibitor of Human Dimethylarginine Dimethylaminohydrolase-1 (hDDAH-1). J. Med. Chem., 2020, 63(1), 425-432.[http://dx.doi.org/10.1021/acs.jmedchem.9b01230] [PMID: 31841335]
[63]
Sippel, T.O. Microfluorometric analysis of protein thiol groups with a coumarinylphenylmaleimide. J. Histochem. Cytochem., 1981, 29(12), 1377-1381.[http://dx.doi.org/10.1177/29.12.7320496] [PMID: 7320496]
[64]
Linsky, T.; Fast, W. A continuous, fluorescent, high-throughput assay for human dimethylarginine dimethylaminohydrolase-1. J. Biomol. Screen., 2011, 16(9), 1089-1097.[http://dx.doi.org/10.1177/1087057111417712] [PMID: 21921133]
[65]
Kabil, O.; Banerjee, R. Enzymology of H2S biogenesis, decay and signaling. Antioxid. Redox Signal., 2014, 20(5), 770-782.[http://dx.doi.org/10.1089/ars.2013.5339] [PMID: 23600844]
[66]
Whiteman, M.; Le Trionnaire, S.; Chopra, M.; Fox, B.; Whatmore, J. Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools. Clin. Sci. (Lond.), 2011, 121(11), 459-488.[http://dx.doi.org/10.1042/CS20110267] [PMID: 21843150]
[67]
Kimura, H. Hydrogen sulfide: from brain to gut. Antioxid. Redox Signal., 2010, 12(9), 1111-1123.[http://dx.doi.org/10.1089/ars.2009.2919] [PMID: 19803743]
[68]
Hellmich, M.R.; Coletta, C.; Chao, C.; Szabo, C. The therapeutic potential of cystathionine β-synthetase/hydrogen sulfide inhibition in cancer. Antioxid. Redox Signal., 2015, 22(5), 424-448.[http://dx.doi.org/10.1089/ars.2014.5933] [PMID: 24730679]
[69]
Szabo, C.; Coletta, C.; Chao, C.; Módis, K.; Szczesny, B.; Papapetropoulos, A.; Hellmich, M.R. Tumor-derived hydrogen sulfide, produced by cystathionine-β-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proc. Natl. Acad. Sci. USA, 2013, 110(30), 12474-12479.[http://dx.doi.org/10.1073/pnas.1306241110] [PMID: 23836652]
[70]
Bhattacharyya, S.; Saha, S.; Giri, K.; Lanza, I.R.; Nair, K.S.; Jennings, N.B.; Rodriguez-Aguayo, C.; Lopez-Berestein, G.; Basal, E.; Weaver, A.L.; Visscher, D.W.; Cliby, W.; Sood, A.K.; Bhattacharya, R.; Mukherjee, P. Cystathionine beta-synthase (CBS) contributes to advanced ovarian cancer progression and drug resistance. PLoS One, 2013, 8(11), e79167.[http://dx.doi.org/10.1371/journal.pone.0079167] [PMID: 24236104]
[71]
Niu, W.; Wu, P.; Chen, F.; Wang, J.; Shang, X.; Xu, C. Discovery of selective cystathionine β-synthase inhibitors by high-throughput screening with a fluorescent thiol probe. MedChemComm, 2016, 8(1), 198-201.[http://dx.doi.org/10.1039/C6MD00493H] [PMID: 30108705]
[72]
Idzko, M.; Ferrari, D.; Eltzschig, H.K. Nucleotide signalling during inflammation. Nature, 2014, 509(7500), 310-317.[http://dx.doi.org/10.1038/nature13085] [PMID: 24828189]
[73]
Zimmermann, H.; Zebisch, M.; Sträter, N. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal., 2012, 8(3), 437-502.[http://dx.doi.org/10.1007/s11302-012-9309-4] [PMID: 22555564]
[74]
Penadés, J.R.; Donderis, J.; García-Caballer, M.; Tormo-Más, M.Á.; Marina, A. dUTPases, the unexplored family of signalling molecules. Curr. Opin. Microbiol., 2013, 16(2), 163-170.[http://dx.doi.org/10.1016/j.mib.2013.02.005] [PMID: 23541339]
[75]
Baranowski, M.R.; Nowicka, A.; Rydzik, A.M.; Warminski, M.; Kasprzyk, R.; Wojtczak, B.A.; Wojcik, J.; Claridge, T.D.W.; Kowalska, J.; Jemielity, J. Synthesis of fluorophosphate nucleotide analogues and their characterization as tools for 19F NMR studies. J. Org. Chem., 2015, 80(8), 3982-3997.[http://dx.doi.org/10.1021/acs.joc.5b00337] [PMID: 25816092]
[76]
Guranowski, A.; Wojdyła, A.M.; Pietrowska-Borek, M.; Bieganowski, P.; Khurs, E.N.; Cliff, M.J.; Blackburn, G.M.; Błaziak, D.; Stec, W.J. Fhit proteins can also recognize substrates other than dinucleoside polyphosphates. FEBS Lett., 2008, 582(20), 3152-3158.[http://dx.doi.org/10.1016/j.febslet.2008.07.060] [PMID: 18694747]
[77]
Baranowski, M.R.; Nowicka, A.; Jemielity, J.; Kowalska, J. A fluorescent HTS assay for phosphohydrolases based on nucleoside 5′-fluorophosphates: its application in screening for inhibitors of mRNA decapping scavenger and PDE-I. Org. Biomol. Chem., 2016, 14(20), 4595-4604.[http://dx.doi.org/10.1039/C6OB00492J] [PMID: 27031609]
[78]
Lin, W.; Li, Y.; Yang, L.; Chen, T. Development of BODIPY FL VH032 as a High-Affinity and Selective von Hippel-Lindau E3 Ligase Fluorescent Probe and Its Application in a Time-Resolved Fluorescence Resonance Energy-Transfer Assay. ACS Omega, 2020, 6(1), 680-695.[http://dx.doi.org/10.1021/acsomega.0c05221] [PMID: 33458521]
[79]
Sriram, K.; Insel, P.A. G Protein-coupled receptors as targets for approved drugs: How many targets and how many drugs? Mol. Pharmacol., 2018, 93(4), 251-258.[http://dx.doi.org/10.1124/mol.117.111062] [PMID: 29298813]
[80]
Yasi, E.A.; Kruyer, N.S.; Peralta-Yahya, P. Advances in G protein-coupled receptor high-throughput screening. Curr. Opin. Biotechnol., 2020, 64, 210-217.[http://dx.doi.org/10.1016/j.copbio.2020.06.004] [PMID: 32653805]
[81]
Kho, D.T.; Glass, M.; Graham, E.S. Chapter eleven - Is the cannabinoid CB2 receptor a major regulator of the neuroinflammatory axis of the neurovascular unit in humans?Advances in Pharmacology, Kendall, D.; Alexander, S.P.H., Eds.; Academic Press,. 2017, Vol. 80, pp. 367-396.
[82]
Sánchez-Aparicio, P.; Florán, B.; Rodríguez Velázquez, D.; Ibancovichi, J.A.; Varela Guerrero, J.A.; Recillas, S. Cannabinoids CB2 receptors, one new promising drug target for chronic and degenerative pain conditions in equine veterinary patients. J. Equine Vet. Sci., 2020, 85, 102880.[http://dx.doi.org/10.1016/j.jevs.2019.102880] [PMID: 31952645]
[83]
Zhou, J.; Burkovskiy, I.; Yang, H.; Sardinha, J.; Lehmann, C. CB2 and GPR55 receptors as therapeutic targets for systemic immune dysregulation. Front. Pharmacol., 2016, 7, 264.[http://dx.doi.org/10.3389/fphar.2016.00264] [PMID: 27597829]
[84]
Sexton, M.; Woodruff, G.; Horne, E.A.; Lin, Y.H.; Muccioli, G.G.; Bai, M.; Stern, E.; Bornhop, D.J.; Stella, N. NIR-mbc94, a fluorescent ligand that binds to endogenous CB(2) receptors and is amenable to high-throughput screening. Chem. Biol., 2011, 18(5), 563-568.[http://dx.doi.org/10.1016/j.chembiol.2011.02.016] [PMID: 21609837]
[85]
Ngo, D.H.; Vo, T.S. An updated review on pharmaceutical properties of gamma-aminobutyric acid. Molecules, 2019, 24(15), E2678.[http://dx.doi.org/10.3390/molecules24152678] [PMID: 31344785]
[86]
Stagg, C.J.; Bachtiar, V.; Johansen-Berg, H. The role of GABA in human motor learning. Curr. Biol., 2011, 21(6), 480-484.[http://dx.doi.org/10.1016/j.cub.2011.01.069] [PMID: 21376596]
[87]
Yamaura, K.; Kiyonaka, S.; Numata, T.; Inoue, R.; Hamachi, I. Discovery of allosteric modulators for GABAA receptors by ligand-directed chemistry. Nat. Chem. Biol., 2016, 12(10), 822-830.[http://dx.doi.org/10.1038/nchembio.2150] [PMID: 27526031]
[88]
Sakamoto, S.; Yamaura, K.; Numata, T.; Harada, F.; Amaike, K.; Inoue, R.; Kiyonaka, S.; Hamachi, I. Construction of a fluorescent screening system of allosteric modulators for the GABAA Receptor Using a Turn-On Probe. ACS Cent. Sci., 2019, 5(9), 1541-1553.[http://dx.doi.org/10.1021/acscentsci.9b00539] [PMID: 31572781]
[89]
Yu, H.B.; Li, M.; Wang, W.P.; Wang, X.L. High throughput screening technologies for ion channels. Acta Pharmacol. Sin., 2016, 37(1), 34-43.[http://dx.doi.org/10.1038/aps.2015.108] [PMID: 26657056]
[90]
Obergrussberger, A.; Goetze, T.A.; Brinkwirth, N.; Becker, N.; Friis, S.; Rapedius, M.; Haarmann, C.; Rinke-Weiß, I.; Stölzle-Feix, S.; Brüggemann, A.; George, M.; Fertig, N. An update on the advancing high-throughput screening techniques for patch clamp-based ion channel screens: implications for drug discovery. Expert Opin. Drug Discov., 2018, 13(3), 269-277.[http://dx.doi.org/10.1080/17460441.2018.1428555] [PMID: 29343120]
[91]
Lorigo, M.; Oliveira, N.; Cairrao, E. Clinical Importance of the human umbilical artery potassium channels. Cells, 2020, 9(9), E1956.[http://dx.doi.org/10.3390/cells9091956] [PMID: 32854241]
[92]
Li, D.; Sun, H.; Levesque, P. Antiarrhythmic drug therapy for atrial fibrillation: focus on atrial selectivity and safety. Cardiovasc. Hematol. Agents Med. Chem., 2009, 7(1), 64-75.[http://dx.doi.org/10.2174/187152509787047621] [PMID: 19149545]
[93]
Walsh, K.B. A real-time screening assay for GIRK1/4 channel blockers. J. Biomol. Screen., 2010, 15(10), 1229-1237.[http://dx.doi.org/10.1177/1087057110381384] [PMID: 20938046]
[94]
Orr, A.L.; Vargas, L.; Turk, C.N.; Baaten, J.E.; Matzen, J.T.; Dardov, V.J.; Attle, S.J.; Li, J.; Quackenbush, D.C.; Goncalves, R.L.S.; Perevoshchikova, I.V.; Petrassi, H.M.; Meeusen, S.L.; Ainscow, E.K.; Brand, M.D. Suppressors of superoxide production from mitochondrial complex III. Nat. Chem. Biol., 2015, 11(11), 834-836.[http://dx.doi.org/10.1038/nchembio.1910] [PMID: 26368590]
[95]
Brand, M.D.; Goncalves, R.L.; Orr, A.L.; Vargas, L.; Gerencser, A.A.; Borch Jensen, M.; Wang, Y.T.; Melov, S.; Turk, C.N.; Matzen, J.T.; Dardov, V.J.; Petrassi, H.M.; Meeusen, S.L.; Perevoshchikova, I.V.; Jasper, H.; Brookes, P.S.; Ainscow, E.K. Suppressors of superoxide-H2O2 production at site IQ of mitochondrial complex I protect against stem cell hyperplasia and ischemia-reperfusion injury. Cell Metab., 2016, 24(4), 582-592.[http://dx.doi.org/10.1016/j.cmet.2016.08.012] [PMID: 27667666]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy