Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Chronic Inflammation and Cancer: The Role of Endothelial Dysfunction and Vascular Inflammation

Author(s): Lara J. Bou Malhab, Maha M. Saber-Ayad, Ranyah Al-Hakm, Vidhya A. Nair, Panagiotis Paliogiannis*, Gianfranco Pintus and Wael M. Abdel-Rahman*

Volume 27, Issue 18, 2021

Published on: 03 March, 2021

Page: [2156 - 2169] Pages: 14

DOI: 10.2174/1381612827666210303143442

Price: $65

conference banner
Abstract

Long-lasting subclinical inflammation is associated with a wide range of human diseases, particularly at a middle and older age. Recent reports showed that there is a direct causal link between inflammation and cancer development, as several cancers were found to be associated with chronic inflammatory conditions. In patients with cancer, healthy endothelial cells regulate vascular homeostasis, and it is believed that they can limit tumor growth, invasiveness, and metastasis. Conversely, dysfunctional endothelial cells that have been exposed to the inflammatory tumor microenvironment can support cancer progression and metastasis. Dysfunctional endothelial cells can exert these effects via diverse mechanisms, including dysregulated adhesion, permeability, and activation of NF-κB and STAT3 signaling. In this review, we highlight the role of vascular inflammation in predisposition to cancer within the context of two common disease risk factors: obesity and smoking. In addition, we discuss the molecular triggers, pathophysiological mechanisms, and the biological consequences of vascular inflammation during cancer development and metastasis. Finally, we summarize the current therapies and pharmacological agents that target vascular inflammation and endothelial dysfunction.

Keywords: Cancer, endothelial cells, inflammation, metastasis, obesity, smoking.

[1]
Kumar V, Robbins SL, Cotran RS. Robbins and Cotran pathologic basis of disease. 9th ed. Philadelphia, PA: Elsevier, Saunders 2015.
[2]
Netea MG, Balkwill F, Chonchol M, et al. A guiding map for inflammation. Nat Immunol 2017; 18(8): 826-31.
[http://dx.doi.org/10.1038/ni.3790] [PMID: 28722720]
[3]
Sanz-Moreno V, Balkwill FR. Mets and NETs: The Awakening Force. Immunity 2018; 49(5): 798-800.
[http://dx.doi.org/10.1016/j.immuni.2018.11.009] [PMID: 30462996]
[4]
Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 2005; 7(3): 211-7.
[http://dx.doi.org/10.1016/j.ccr.2005.02.013] [PMID: 15766659]
[5]
Piotrowski I, Kulcenty K, Suchorska W. Interplay between inflammation and cancer. Rep Pract Oncol Radiother 2020; 25(3): 422-7.
[http://dx.doi.org/10.1016/j.rpor.2020.04.004] [PMID: 32372882]
[6]
Weinberg RA. The biology of cancer. 2nd ed. Garland science 2014.
[7]
Abdel-Rahman WM. Genomic instability and carcinogenesis: an update. Curr Genomics 2008; 9(8): 535-41.
[http://dx.doi.org/10.2174/138920208786847926] [PMID: 19516960]
[8]
Tomić T, Domínguez-López S, Barrios-Rodríguez R. Non-aspirin non-steroidal anti-inflammatory drugs in prevention of colorectal cancer in people aged 40 or older: A systematic review and meta-analysis. Cancer Epidemiol 2019; 58: 52-62.
[http://dx.doi.org/10.1016/j.canep.2018.11.002] [PMID: 30472477]
[9]
Dvorak HF. Tumors: wounds that do not heal-redux. Cancer Immunol Res 2015; 3(1): 1-11.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0209] [PMID: 25568067]
[10]
Nakai Y, Nonomura N. Inflammation and prostate carcinogenesis. Int J Urol 2013; 20(2): 150-60.
[http://dx.doi.org/10.1111/j.1442-2042.2012.03101.x] [PMID: 22852773]
[11]
Meldrum DR, Morris MA, Gambone JC. Obesity pandemic: causes, consequences, and solutions-but do we have the will? Fertil Steril 2017; 107(4): 833-9.
[http://dx.doi.org/10.1016/j.fertnstert.2017.02.104] [PMID: 28292617]
[12]
Franco LP, Morais CC, Cominetti C. Normal-weight obesity syndrome: diagnosis, prevalence, and clinical implications. Nutr Rev 2016; 74(9): 558-70.
[http://dx.doi.org/10.1093/nutrit/nuw019] [PMID: 27473199]
[13]
Aguilar-Cazares D, Chavez-Dominguez R, Carlos-Reyes A, Lopez-Camarillo C, Hernadez de la Cruz ON, Lopez-Gonzalez JS. Contribution of Angiogenesis to Inflammation and Cancer. Front Oncol 2019; 9: 1399.
[http://dx.doi.org/10.3389/fonc.2019.01399] [PMID: 31921656]
[14]
Rosen ED, Spiegelman BM. What we talk about when we talk about fat. Cell 2014; 156(1-2): 20-44.
[http://dx.doi.org/10.1016/j.cell.2013.12.012] [PMID: 24439368]
[15]
Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 2000; 21(6): 697-738.
[http://dx.doi.org/10.1210/edrv.21.6.0415] [PMID: 11133069]
[16]
Brestoff JR, Artis D. Immune regulation of metabolic homeostasis in health and disease. Cell 2015; 161(1): 146-60.
[http://dx.doi.org/10.1016/j.cell.2015.02.022] [PMID: 25815992]
[17]
Howe LR, Subbaramaiah K, Hudis CA, Dannenberg AJ. Molecular pathways: adipose inflammation as a mediator of obesity-associated cancer. Clin Cancer Res 2013; 19(22): 6074-83.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2603] [PMID: 23958744]
[18]
Kwaifa IK, Bahari H, Yong YK, Noor SM. Endothelial Dysfunction in Obesity-Induced Inflammation: Molecular Mechanisms and Clinical Implications. Biomolecules 2020; 10(2): 291.
[http://dx.doi.org/10.3390/biom10020291] [PMID: 32069832]
[19]
Vandanmagsar B, Youm YH, Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 2011; 17(2): 179-88.
[http://dx.doi.org/10.1038/nm.2279] [PMID: 21217695]
[20]
Martinez-Useros J, Garcia-Foncillas J. Obesity and colorectal cancer: molecular features of adipose tissue. J Transl Med 2016; 14(1): 21.
[http://dx.doi.org/10.1186/s12967-016-0772-5] [PMID: 26801617]
[21]
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[22]
Gu P, Xu A. Interplay between adipose tissue and blood vessels in obesity and vascular dysfunction. Rev Endocr Metab Disord 2013; 14(1): 49-58.
[http://dx.doi.org/10.1007/s11154-012-9230-8] [PMID: 23283583]
[23]
Sena CM, Pereira AM, Seiça R. Endothelial dysfunction - a major mediator of diabetic vascular disease. Biochim Biophys Acta 2013; 1832(12): 2216-31.
[http://dx.doi.org/10.1016/j.bbadis.2013.08.006] [PMID: 23994612]
[24]
Lubrano V, Balzan S. Consolidated and emerging inflammatory markers in coronary artery disease. World J Exp Med 2015; 5(1): 21-32.
[http://dx.doi.org/10.5493/wjem.v5.i1.21] [PMID: 25699231]
[25]
Rathinam VA, Fitzgerald KA. Inflammasome complexes: emerging mechanisms and effector functions. Cell 2016; 165(4): 792-800.
[http://dx.doi.org/10.1016/j.cell.2016.03.046] [PMID: 27153493]
[26]
Hursting SD, Berger NA. Energy balance, host-related factors, and cancer progression. J Clin Oncol 2010; 28(26): 4058-65.
[http://dx.doi.org/10.1200/JCO.2010.27.9935] [PMID: 20697088]
[27]
Carter JC, Church FC. Obesity and breast cancer: the roles of peroxisome proliferator-activated receptor-γ and plasminogen activator inhibitor-1. PPAR Res 2009; 2009345320
[http://dx.doi.org/10.1155/2009/345320] [PMID: 19672469]
[28]
Poirier P, Giles TD, Bray GA, et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 2006; 113(6): 898-918.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.171016] [PMID: 16380542]
[29]
Pandey AK, Singhi EK, Arroyo JP, et al. Mechanisms of VEGF (vascular endothelial growth factor) inhibitor–associated hypertension and vascular disease. Hypertension 2018; 71(2): e1-8.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.10271] [PMID: 29279311]
[30]
Liu Y, Tamimi RM, Collins LC, et al. The association between vascular endothelial growth factor expression in invasive breast cancer and survival varies with intrinsic subtypes and use of adjuvant systemic therapy: results from the Nurses’ Health Study. Breast Cancer Res Treat 2011; 129(1): 175-84.
[http://dx.doi.org/10.1007/s10549-011-1432-3] [PMID: 21390493]
[31]
Simkens LH, Koopman M, Mol L, et al. Influence of body mass index on outcome in advanced colorectal cancer patients receiving chemotherapy with or without targeted therapy. Eur J Cancer 2011; 47(17): 2560-7.
[http://dx.doi.org/10.1016/j.ejca.2011.06.038] [PMID: 21803570]
[32]
Chen H, Peng H, Liu W, et al. Silencing of plasminogen activator inhibitor-1 suppresses colorectal cancer progression and liver metastasis. Surgery 2015; 158(6): 1704-13.
[http://dx.doi.org/10.1016/j.surg.2015.04.053] [PMID: 26275833]
[33]
Rausch LK, Netzer NC, Hoegel J, Pramsohler S. The linkage between breast cancer, hypoxia, and adipose tissue. Front Oncol 2017; 7: 211.
[http://dx.doi.org/10.3389/fonc.2017.00211] [PMID: 28993797]
[34]
Hursting SD. Minireview: the year in obesity and cancer. Mol Endocrinol 2012; 26(12): 1961-6.
[http://dx.doi.org/10.1210/me.2012-1283] [PMID: 23051592]
[35]
Fukumura D, Ushiyama A, Duda DG, et al. Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis. Circ Res 2003; 93(9): e88-97.
[http://dx.doi.org/10.1161/01.RES.0000099243.20096.FA] [PMID: 14525808]
[36]
Trayhurn P. Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev 2013; 93(1): 1-21.
[http://dx.doi.org/10.1152/physrev.00017.2012] [PMID: 23303904]
[37]
Chen CT, Du Y, Yamaguchi H, et al. Targeting the IKKβ/mTOR/VEGF signaling pathway as a potential therapeutic strategy for obesity-related breast cancer. Mol Cancer Ther 2012; 11(10): 2212-21.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0180] [PMID: 22826466]
[38]
Pelton K, Coticchia CM, Curatolo AS, et al. Hypercholesterolemia induces angiogenesis and accelerates growth of breast tumors in vivo. Am J Pathol 2014; 184(7): 2099-110.
[http://dx.doi.org/10.1016/j.ajpath.2014.03.006] [PMID: 24952430]
[39]
Pervanidou P, Chouliaras G, Akalestos A, et al. Increased placental growth factor (PlGF) concentrations in children and adolescents with obesity and the metabolic syndrome. Hormones (Athens) 2014; 13(3): 369-74.
[PMID: 25079461]
[40]
Voros G, Maquoi E, Demeulemeester D, Clerx N, Collen D, Lijnen HR. Modulation of angiogenesis during adipose tissue development in murine models of obesity. Endocrinology 2005; 146(10): 4545-54.
[http://dx.doi.org/10.1210/en.2005-0532] [PMID: 16020476]
[41]
Gonzalez-Perez RR, Lanier V, Newman G. Leptin’s pro-angiogenic signature in breast cancer. Cancers (Basel) 2013; 5(3): 1140-62.
[http://dx.doi.org/10.3390/cancers5031140] [PMID: 24202338]
[42]
Orecchioni S, Gregato G, Martin-Padura I, et al. Complementary populations of human adipose CD34+ progenitor cells promote growth, angiogenesis, and metastasis of breast cancer. Cancer Res 2013; 73(19): 5880-91.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0821] [PMID: 23918796]
[43]
Martin-Padura I, Gregato G, Marighetti P, et al. The white adipose tissue used in lipotransfer procedures is a rich reservoir of CD34+ progenitors able to promote cancer progression. Cancer Res 2012; 72(1): 325-34.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1739] [PMID: 22052460]
[44]
Li S, Meng L, Chiolero A, Ma C, Xi B. Trends in smoking prevalence and attributable mortality in China, 1991-2011. Prev Med 2016; 93: 82-7.
[http://dx.doi.org/10.1016/j.ypmed.2016.09.027] [PMID: 27677441]
[45]
Maziak W, Nakkash R, Bahelah R, Husseini A, Fanous N, Eissenberg T. Tobacco in the Arab world: old and new epidemics amidst policy paralysis. Health Policy Plan 2014; 29(6): 784-94.
[http://dx.doi.org/10.1093/heapol/czt055] [PMID: 23958628]
[46]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[47]
de Groot PM, Wu CC, Carter BW, Munden RF. The epidemiology of lung cancer. Transl Lung Cancer Res 2018; 7(3): 220-33.
[http://dx.doi.org/10.21037/tlcr.2018.05.06] [PMID: 30050761]
[48]
Golbidi S, Edvinsson L, Laher I. Smoking and Endothelial Dysfunction. Curr Vasc Pharmacol 2020; 18(1): 1-11.
[http://dx.doi.org/10.2174/1573403X14666180913120015] [PMID: 30210003]
[49]
Orosz Z, Csiszar A, Labinskyy N, et al. Cigarette smoke-induced proinflammatory alterations in the endothelial phenotype: role of NAD(P)H oxidase activation. Am J Physiol Heart Circ Physiol 2007; 292(1): H130-9.
[http://dx.doi.org/10.1152/ajpheart.00599.2006] [PMID: 17213480]
[50]
King PT. Inflammation in chronic obstructive pulmonary disease and its role in cardiovascular disease and lung cancer. Clin Transl Med 2015; 4(1): 68.
[http://dx.doi.org/10.1186/s40169-015-0068-z] [PMID: 26220864]
[51]
Perret JL, Walters EH, Abramson MJ, McDonald CF, Dharmage SC. The independent and combined effects of lifetime smoke exposures and asthma as they relate to COPD. Expert Rev Respir Med 2014; 8(4): 503-14.
[http://dx.doi.org/10.1586/17476348.2014.905913] [PMID: 24834459]
[52]
Vlahos R, Bozinovski S, Jones JE, et al. Differential protease, innate immunity, and NF-kappaB induction profiles during lung inflammation induced by subchronic cigarette smoke exposure in mice. Am J Physiol Lung Cell Mol Physiol 2006; 290(5): L931-45.
[http://dx.doi.org/10.1152/ajplung.00201.2005] [PMID: 16361358]
[53]
Arnson Y, Shoenfeld Y, Amital H. Effects of tobacco smoke on immunity, inflammation and autoimmunity. J Autoimmun 2010; 34(3): J258-65.
[http://dx.doi.org/10.1016/j.jaut.2009.12.003] [PMID: 20042314]
[54]
Galdiero MR, Marone G, Mantovani A. Cancer Inflammation and Cytokines. Cold Spring Harb Perspect Biol 2018; 10(8): a028662.
[http://dx.doi.org/10.1101/cshperspect.a028662] [PMID: 28778871]
[55]
Hou W, Hu S, Li C, et al. Cigarette Smoke Induced Lung Barrier Dysfunction, EMT, and Tissue Remodeling: A Possible Link between COPD and Lung Cancer. BioMed Res Int 2019; 20192025636
[http://dx.doi.org/10.1155/2019/2025636] [PMID: 31341890]
[56]
Sanchez-Salcedo P, Zulueta JJ. Lung cancer in chronic obstructive pulmonary disease patients, it is not just the cigarette smoke. Curr Opin Pulm Med 2016; 22(4): 344-9.
[http://dx.doi.org/10.1097/MCP.0000000000000283] [PMID: 27077725]
[57]
Schuller HM, McGavin MD, Orloff M, Riechert A, Porter B. Simultaneous exposure to nicotine and hyperoxia causes tumors in hamsters. Lab Invest 1995; 73(3): 448-56.
[PMID: 7564279]
[58]
Heeschen C, Jang JJ, Weis M, et al. Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nat Med 2001; 7(7): 833-9.
[http://dx.doi.org/10.1038/89961] [PMID: 11433349]
[59]
Maneckjee R, Minna JD. Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines. Proc Natl Acad Sci USA 1990; 87(9): 3294-8.
[http://dx.doi.org/10.1073/pnas.87.9.3294] [PMID: 2159143]
[60]
Dasgupta P, Rastogi S, Pillai S, et al. Nicotine induces cell proliferation by β-arrestin-mediated activation of Src and Rb-Raf-1 pathways. J Clin Invest 2006; 116(8): 2208-17.
[http://dx.doi.org/10.1172/JCI28164] [PMID: 16862215]
[61]
Dasgupta P, Kinkade R, Joshi B, Decook C, Haura E, Chellappan S. Nicotine inhibits apoptosis induced by chemotherapeutic drugs by up-regulating XIAP and survivin. Proc Natl Acad Sci USA 2006; 103(16): 6332-7.
[http://dx.doi.org/10.1073/pnas.0509313103] [PMID: 16601104]
[62]
Dasgupta P, Rizwani W, Pillai S, et al. Nicotine induces cell proliferation, invasion and epithelial-mesenchymal transition in a variety of human cancer cell lines. Int J Cancer 2009; 124(1): 36-45.
[http://dx.doi.org/10.1002/ijc.23894] [PMID: 18844224]
[63]
Davis R, Rizwani W, Banerjee S, et al. Nicotine promotes tumor growth and metastasis in mouse models of lung cancer. PLoS One 2009; 4(10): e7524.
[http://dx.doi.org/10.1371/journal.pone.0007524] [PMID: 19841737]
[64]
Schaal CM, Bora-Singhal N, Kumar DM, Chellappan SP. Regulation of Sox2 and stemness by nicotine and electronic-cigarettes in non-small cell lung cancer. Mol Cancer 2018; 17(1): 149.
[http://dx.doi.org/10.1186/s12943-018-0901-2] [PMID: 30322398]
[65]
Pezzuto A, Morrone M, Mici E. Unusual jaw metastasis from squamous cell lung cancer in heavy smoker: Two case reports and review of the literature. Medicine (Baltimore) 2017; 96(21): e6987.
[http://dx.doi.org/10.1097/MD.0000000000006987] [PMID: 28538407]
[66]
Somm E, Schwitzgebel VM, Vauthay DM, et al. Prenatal nicotine exposure alters early pancreatic islet and adipose tissue development with consequences on the control of body weight and glucose metabolism later in life. Endocrinology 2008; 149(12): 6289-99.
[http://dx.doi.org/10.1210/en.2008-0361] [PMID: 18687784]
[67]
Yamauchi T, Kamon J, Waki H, et al. The mechanisms by which both heterozygous peroxisome proliferator-activated receptor γ (PPARgamma) deficiency and PPARgamma agonist improve insulin resistance. J Biol Chem 2001; 276(44): 41245-54.
[http://dx.doi.org/10.1074/jbc.M103241200] [PMID: 11533050]
[68]
Liu RH, Mizuta M, Matsukura S. The expression and functional role of nicotinic acetylcholine receptors in rat adipocytes. J Pharmacol Exp Ther 2004; 310(1): 52-8.
[http://dx.doi.org/10.1124/jpet.103.065037] [PMID: 14993259]
[69]
Cancello R, Zulian A, Maestrini S, et al. The nicotinic acetylcholine receptor α7 in subcutaneous mature adipocytes: downregulation in human obesity and modulation by diet-induced weight loss. Int J Obes 2012; 36(12): 1552-7.
[http://dx.doi.org/10.1038/ijo.2011.275] [PMID: 22270376]
[70]
Andersson K, Arner P. Systemic nicotine stimulates human adipose tissue lipolysis through local cholinergic and catecholaminergic receptors. Int J Obes Relat Metab Disord 2001; 25(8): 1225-32.
[http://dx.doi.org/10.1038/sj.ijo.0801654] [PMID: 11477508]
[71]
Schuller HM, Tithof PK, Williams M, Plummer H III. The tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone is a β-adrenergic agonist and stimulates DNA synthesis in lung adenocarcinoma via β-adrenergic receptor-mediated release of arachidonic acid. Cancer Res 1999; 59(18): 4510-5.
[PMID: 10493497]
[72]
Alexandre M, Uduman AK, Minervini S, et al. Tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone initiates and enhances pancreatitis responses. Am J Physiol Gastrointest Liver Physiol 2012; 303(6): G696-704.
[http://dx.doi.org/10.1152/ajpgi.00138.2012] [PMID: 22837343]
[73]
Tithof PK, Elgayyar M, Schuller HM, Barnhill M, Andrews R. 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, a nicotine derivative, induces apoptosis of endothelial cells. Am J Physiol Heart Circ Physiol 2001; 281(5): H1946-54.
[http://dx.doi.org/10.1152/ajpheart.2001.281.5.H1946] [PMID: 11668055]
[74]
Zhou MS, Chadipiralla K, Mendez AJ, et al. Nicotine potentiates proatherogenic effects of oxLDL by stimulating and upregulating macrophage CD36 signaling. Am J Physiol Heart Circ Physiol 2013; 305(4): H563-74.
[http://dx.doi.org/10.1152/ajpheart.00042.2013] [PMID: 23748423]
[75]
Lau PP, Li L, Merched AJ, Zhang AL, Ko KW, Chan L. Nicotine induces proinflammatory responses in macrophages and the aorta leading to acceleration of atherosclerosis in low-density lipoprotein receptor(-/-) mice. Arterioscler Thromb Vasc Biol 2006; 26(1): 143-9.
[http://dx.doi.org/10.1161/01.ATV.0000193510.19000.10] [PMID: 16254210]
[76]
Iwashima Y, Katsuya T, Ishikawa K, et al. Association of hypoadiponectinemia with smoking habit in men. Hypertension 2005; 45(6): 1094-100.
[http://dx.doi.org/10.1161/01.HYP.0000169444.05588.4c] [PMID: 15897361]
[77]
De Rosa A, Monaco ML, Capasso M, et al. Adiponectin oligomers as potential indicators of adipose tissue improvement in obese subjects. Eur J Endocrinol 2013; 169(1): 37-43.
[http://dx.doi.org/10.1530/EJE-12-1039] [PMID: 23612446]
[78]
Nobre JL, Lisboa PC, Santos-Silva AP, et al. Calcium supplementation reverts central adiposity, leptin, and insulin resistance in adult offspring programed by neonatal nicotine exposure. J Endocrinol 2011; 210(3): 349-59.
[http://dx.doi.org/10.1530/JOE-11-0172] [PMID: 21680618]
[79]
Targher G, Zenari L, Faccini G, Falezza G, Muggeo M, Zoppini G. Serum leptin concentrations in young smokers with type 1 diabetes. Diabetes Care 2001; 24(4): 793-4.
[http://dx.doi.org/10.2337/diacare.24.4.793] [PMID: 11315857]
[80]
Reseland JE, Mundal HH, Hollung K, et al. Cigarette smoking may reduce plasma leptin concentration via catecholamines. Prostaglandins Leukot Essent Fatty Acids 2005; 73(1): 43-9.
[http://dx.doi.org/10.1016/j.plefa.2005.04.006] [PMID: 15964536]
[81]
Hunter CA, Jones SA. IL-6 as a keystone cytokine in health and disease. Nat Immunol 2015; 16(5): 448-57.
[http://dx.doi.org/10.1038/ni.3153] [PMID: 25898198]
[82]
Mach L, Bedanova H, Soucek M, Karpisek M, Nemec P, Orban M. Tobacco smoking and cytokine levels in human epicardial adipose tissue: Impact of smoking cessation. Atherosclerosis 2016; 255: 37-42.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.10.022] [PMID: 27816807]
[83]
Cappuzzello E, Sommaggio R, Zanovello P, Rosato A. Cytokines for the induction of antitumor effectors: The paradigm of Cytokine-Induced Killer (CIK) cells. Cytokine Growth Factor Rev 2017; 36: 99-105.
[http://dx.doi.org/10.1016/j.cytogfr.2017.06.003] [PMID: 28629761]
[84]
Young B, Woodford P, O'Dowd G. Wheater's Functional Histology E-Book: A Text and Colour Atlas. Elsevier Health Sciences 2013.
[85]
Rajendran P, Rengarajan T, Thangavel J, et al. The vascular endothelium and human diseases. Int J Biol Sci 2013; 9(10): 1057-69.
[http://dx.doi.org/10.7150/ijbs.7502] [PMID: 24250251]
[86]
Mussbacher M, Salzmann M, Brostjan C, et al. Cell type-specific roles of NF-κB linking inflammation and thrombosis. Front Immunol 2019; 10: 85.
[http://dx.doi.org/10.3389/fimmu.2019.00085] [PMID: 30778349]
[87]
Phillipson M, Kubes P. The neutrophil in vascular inflammation. Nat Med 2011; 17(11): 1381-90.
[http://dx.doi.org/10.1038/nm.2514] [PMID: 22064428]
[88]
McDowell SAC, Quail DF. Immunological Regulation of Vascular Inflammation During Cancer Metastasis. Front Immunol 2019; 10: 1984.
[http://dx.doi.org/10.3389/fimmu.2019.01984] [PMID: 31497019]
[89]
Papapanagiotou A, Siasos G, Kassi E, Gargalionis AN, Papavassiliou AG. Novel inflammatory markers in hyperlipidemia: clinical implications. Curr Med Chem 2015; 22(23): 2727-43.
[http://dx.doi.org/10.2174/0929867322666150520095008] [PMID: 25989910]
[90]
Franses JW, Drosu NC, Gibson WJ, Chitalia VC, Edelman ER. Dysfunctional endothelial cells directly stimulate cancer inflammation and metastasis. Int J Cancer 2013; 133(6): 1334-44.
[http://dx.doi.org/10.1002/ijc.28146] [PMID: 23463345]
[91]
Franses JW, Baker AB, Chitalia VC, Edelman ER. Stromal endothelial cells directly influence cancer progression. Sci Transl Med 2011; 3(66): 66ra5.
[http://dx.doi.org/10.1126/scitranslmed.3001542] [PMID: 21248315]
[92]
Wculek SK, Malanchi I. Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 2015; 528(7582): 413-7.
[http://dx.doi.org/10.1038/nature16140] [PMID: 26649828]
[93]
Coussens LM, Zitvogel L, Palucka AK. Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 2013; 339(6117): 286-91.
[http://dx.doi.org/10.1126/science.1232227] [PMID: 23329041]
[94]
Kitamura T, Qian BZ, Pollard JW. Immune cell promotion of metastasis. Nat Rev Immunol 2015; 15(2): 73-86.
[http://dx.doi.org/10.1038/nri3789] [PMID: 25614318]
[95]
Rhim AD, Mirek ET, Aiello NM, et al. EMT and dissemination precede pancreatic tumor formation. Cell 2012; 148(1-2): 349-61.
[http://dx.doi.org/10.1016/j.cell.2011.11.025] [PMID: 22265420]
[96]
Eddy RJ, Weidmann MD, Sharma VP, Condeelis JS. Tumor cell invadopodia: invasive protrusions that orchestrate metastasis. Trends Cell Biol 2017; 27(8): 595-607.
[http://dx.doi.org/10.1016/j.tcb.2017.03.003] [PMID: 28412099]
[97]
Gligorijevic B, Wyckoff J, Yamaguchi H, Wang Y, Roussos ET, Condeelis J. N-WASP-mediated invadopodium formation is involved in intravasation and lung metastasis of mammary tumors. J Cell Sci 2012; 125(Pt 3): 724-34.
[http://dx.doi.org/10.1242/jcs.092726] [PMID: 22389406]
[98]
Mazzone M, Dettori D, de Oliveira RL, et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 2009; 136(5): 839-51.
[http://dx.doi.org/10.1016/j.cell.2009.01.020] [PMID: 19217150]
[99]
Harney AS, Arwert EN, Entenberg D, et al. Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage–derived VEGFA. Cancer Discov 2015; 5(9): 932-43.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0012] [PMID: 26269515]
[100]
Micalizzi DS, Maheswaran S, Haber DA. A conduit to metastasis: circulating tumor cell biology. Genes Dev 2017; 31(18): 1827-40.
[http://dx.doi.org/10.1101/gad.305805.117] [PMID: 29051388]
[101]
Schlesinger M. Role of platelets and platelet receptors in cancer metastasis. J Hematol Oncol 2018; 11(1): 125.
[http://dx.doi.org/10.1186/s13045-018-0669-2] [PMID: 30305116]
[102]
Velez J, Enciso LJ, Suarez M, et al. Platelets promote mitochondrial uncoupling and resistance to apoptosis in leukemia cells: a novel paradigm for the bone marrow microenvironment. Cancer Microenviron 2014; 7(1-2): 79-90.
[http://dx.doi.org/10.1007/s12307-014-0149-3] [PMID: 25112275]
[103]
Dimitroff CJ, Lechpammer M, Long-Woodward D, Kutok JL. Rolling of human bone-metastatic prostate tumor cells on human bone marrow endothelium under shear flow is mediated by E-selectin. Cancer Res 2004; 64(15): 5261-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0691] [PMID: 15289332]
[104]
Läubli H, Borsig L. Selectins promote tumor metastasis. Semin Cancer Biol 2010; 20(3): 169-77.
[http://dx.doi.org/10.1016/j.semcancer.2010.04.005] [PMID: 20452433]
[105]
Glinsky VV, Glinsky GV, Rittenhouse-Olson K, et al. The role of Thomsen-Friedenreich antigen in adhesion of human breast and prostate cancer cells to the endothelium. Cancer Res 2001; 61(12): 4851-7.
[PMID: 11406562]
[106]
Hiratsuka S, Goel S, Kamoun WS, et al. Endothelial focal adhesion kinase mediates cancer cell homing to discrete regions of the lungs via E-selectin up-regulation. Proc Natl Acad Sci USA 2011; 108(9): 3725-30.
[http://dx.doi.org/10.1073/pnas.1100446108] [PMID: 21321210]
[107]
Evani SJ, Prabhu RG, Gnanaruban V, Finol EA, Ramasubramanian AK. Monocytes mediate metastatic breast tumor cell adhesion to endothelium under flow. FASEB J 2013; 27(8): 3017-29.
[http://dx.doi.org/10.1096/fj.12-224824] [PMID: 23616566]
[108]
Chen MB, Hajal C, Benjamin DC, et al. Inflamed neutrophils sequestered at entrapped tumor cells via chemotactic confinement promote tumor cell extravasation. Proc Natl Acad Sci USA 2018; 115(27): 7022-7.
[http://dx.doi.org/10.1073/pnas.1715932115] [PMID: 29915060]
[109]
Reina M, Espel E. Role of LFA-1 and ICAM-1 in Cancer. Cancers (Basel) 2017; 9(11): 153.
[http://dx.doi.org/10.3390/cancers9110153] [PMID: 29099772]
[110]
Benedicto A, Romayor I, Arteta B. Role of liver ICAM-1 in metastasis. Oncol Lett 2017; 14(4): 3883-92.
[http://dx.doi.org/10.3892/ol.2017.6700] [PMID: 28943897]
[111]
Reymond N, d’Água BB, Ridley AJ. Crossing the endothelial barrier during metastasis. Nat Rev Cancer 2013; 13(12): 858-70.
[http://dx.doi.org/10.1038/nrc3628] [PMID: 24263189]
[112]
Qian BZ, Li J, Zhang H, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011; 475(7355): 222-5.
[http://dx.doi.org/10.1038/nature10138] [PMID: 21654748]
[113]
Lim SY, Yuzhalin AE, Gordon-Weeks AN, Muschel RJ. Targeting the CCL2-CCR2 signaling axis in cancer metastasis. Oncotarget 2016; 7(19): 28697-710.
[http://dx.doi.org/10.18632/oncotarget.7376] [PMID: 26885690]
[114]
Häuselmann I, Roblek M, Protsyuk D, et al. Monocyte induction of E-selectin–mediated endothelial activation releases VE-cadherin junctions to promote tumor cell extravasation in the metastasis cascade. Cancer Res 2016; 76(18): 5302-12.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0784] [PMID: 27488527]
[115]
Yang J, Lv X, Chen J, et al. CCL2-CCR2 axis promotes metastasis of nasopharyngeal carcinoma by activating ERK1/2-MMP2/9 pathway. Oncotarget 2016; 7(13): 15632-47.
[http://dx.doi.org/10.18632/oncotarget.6695] [PMID: 26701209]
[116]
Hara T, Nakaoka HJ, Hayashi T, et al. Control of metastatic niche formation by targeting APBA3/Mint3 in inflammatory monocytes. Proc Natl Acad Sci USA 2017; 114(22): E4416-24.
[http://dx.doi.org/10.1073/pnas.1703171114] [PMID: 28507122]
[117]
Spiegel A, Brooks MW, Houshyar S, et al. Neutrophils suppress intraluminal NK cell–mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells. Cancer Discov 2016; 6(6): 630-49.
[http://dx.doi.org/10.1158/2159-8290.CD-15-1157] [PMID: 27072748]
[118]
Seubert B, Grünwald B, Kobuch J, et al. Tissue inhibitor of metalloproteinases (TIMP)-1 creates a premetastatic niche in the liver through SDF-1/CXCR4-dependent neutrophil recruitment in mice. Hepatology 2015; 61(1): 238-48.
[http://dx.doi.org/10.1002/hep.27378] [PMID: 25131778]
[119]
Shao Y, Chen T, Zheng X, et al. Colorectal cancer-derived small extracellular vesicles establish an inflammatory premetastatic niche in liver metastasis. Carcinogenesis 2018; 39(11): 1368-79.
[http://dx.doi.org/10.1093/carcin/bgy115] [PMID: 30184100]
[120]
Dastidar GD, Ghosh D, Chakrabarti G. Tumour vasculature targeted anti-cancer therapy. Vessel Plus 2020; 4(14): 11-21.
[121]
Schaaf MB, Garg AD, Agostinis P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis 2018; 9(2): 115.
[http://dx.doi.org/10.1038/s41419-017-0061-0] [PMID: 29371595]
[122]
Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005; 307(5706): 58-62.
[http://dx.doi.org/10.1126/science.1104819] [PMID: 15637262]
[123]
Lanitis E, Irving M, Coukos G. Targeting the tumor vasculature to enhance T cell activity. Curr Opin Immunol 2015; 33: 55-63.
[http://dx.doi.org/10.1016/j.coi.2015.01.011] [PMID: 25665467]
[124]
Carpenter J, Forero A, Falkson CI, et al. Less Toxic Chemotherapy in Locally Advanced Breast Cancer. South Med J 2020; 113(11): 559-63.
[http://dx.doi.org/10.14423/SMJ.0000000000001169] [PMID: 33140109]
[125]
Novillo A, Gaibar M, Romero-Lorca A, et al. Efficacy of bevacizumab-containing chemotherapy in metastatic colorectal cancer and CXCL5 expression: Six case reports. World J Gastroenterol 2020; 26(16): 1979-86.
[http://dx.doi.org/10.3748/wjg.v26.i16.1979] [PMID: 32390708]
[126]
Polat C, Gokce K. Management of Colorectal Liver Metastases Ch: Colon Polyps and Colorectal Cancer. Springer 2015.
[127]
Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 2004; 64(11): 3731-6.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0074] [PMID: 15172975]
[128]
Peterson JR, Bickford LC, Morgan D, et al. Chemical inhibition of N-WASP by stabilization of a native autoinhibited conformation. Nat Struct Mol Biol 2004; 11(8): 747-55.
[http://dx.doi.org/10.1038/nsmb796] [PMID: 15235593]
[129]
Orian-Rousseau V. CD44, a therapeutic target for metastasising tumours. Eur J Cancer 2010; 46(7): 1271-7.
[http://dx.doi.org/10.1016/j.ejca.2010.02.024] [PMID: 20303742]
[130]
Winkler F, Kozin SV, Tong RT, et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 2004; 6(6): 553-63.
[PMID: 15607960]
[131]
Steele CW, Karim SA, Leach JDG, et al. CXCR2 Inhibition Profoundly Suppresses Metastases and Augments Immunotherapy in Pancreatic Ductal Adenocarcinoma. Cancer Cell 2016; 29(6): 832-45.
[http://dx.doi.org/10.1016/j.ccell.2016.04.014] [PMID: 27265504]
[132]
Park MH, Reátegui E, Li W, et al. Enhanced isolation and release of circulating tumor cells using nanoparticle binding and ligand exchange in a microfluidic chip. J Am Chem Soc 2017; 139(7): 2741-9.
[http://dx.doi.org/10.1021/jacs.6b12236] [PMID: 28133963]
[133]
Chen Z, Zhang P, Xu Y, et al. Surgical stress and cancer progression: the twisted tango. Mol Cancer 2019; 18(1): 1-11.
[http://dx.doi.org/10.1186/s12943-018-0930-x] [PMID: 30609930]
[134]
Andreyev HJN, Davidson SE, Gillespie C, Allum WH, Swarbrick E. Practice guidance on the management of acute and chronic gastrointestinal problems arising as a result of treatment for cancer. Gut 2012; 61(2): 179-92.
[http://dx.doi.org/10.1136/gutjnl-2011-300563] [PMID: 22057051]
[135]
Ma M, Wang J, Hu Y, Weng M, Liu X, Wang Y. Prognostic value of inflammatory biomarkers in gastric cancer patients and the construction of a predictive model. Dig Surg 2019; 36(5): 433-42.
[http://dx.doi.org/10.1159/000493432] [PMID: 30300879]
[136]
Putzu C, Cortinovis DL, Colonese F, et al. Blood cell count indexes as predictors of outcomes in advanced non-small-cell lung cancer patients treated with Nivolumab. Cancer Immunol Immunother 2018; 67(9): 1349-53.
[http://dx.doi.org/10.1007/s00262-018-2182-4] [PMID: 29947960]
[137]
Paliogiannis P, Deidda S, Maslyankov S, et al. Blood cell count indexes as predictors of anastomotic leakage in elective colorectal surgery: a multicenter study on 1432 patients. World J Surg Oncol 2020; 18(1): 89.
[http://dx.doi.org/10.1186/s12957-020-01856-1] [PMID: 32375770]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy