Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Blood Cell Count Indexes of Systemic Inflammation in Carotid Artery Disease: Current Evidence and Future Perspectives

Author(s): Paola Dettori, Panagiotis Paliogiannis*, Rosa M. Pascale, Angelo Zinellu, Arduino A. Mangoni and Gianfranco Pintus

Volume 27, Issue 18, 2021

Published on: 22 December, 2020

Page: [2170 - 2179] Pages: 10

DOI: 10.2174/1381612826666201222155630

Price: $65

conference banner
Abstract

Carotid artery disease is commonly encountered in clinical practice and accounts for approximately 30% of ischemic strokes in the general population. Numerous biomarkers have been investigated as predictors of the onset and progression of carotid disease, the occurrence of cerebrovascular complications, and overall prognosis. Among them, blood cell count (BCC) indexes of systemic inflammation might be particularly useful, from a pathophysiological and clinical point of view, given the inflammatory nature of the atherosclerotic process. The aim of this review is to discuss the available evidence regarding the role of common BCC indexes, such as the neutrophil to lymphocyte ratio (NLR), monocyte to lymphocyte ratio (MLR), platelet to lymphocyte ratio (PLR), mean platelet volume (MPV), platelet distribution width (PDW), and red cell distribution width (RDW), in the diagnosis and risk stratification of carotid artery disease, and their potential clinical applications.

Keywords: Carotid artery disease, atherosclerosis, NLR, PLR, MLR, RDW, MPV.

[1]
de Weerd M, Greving JP, Hedblad B, et al. Prevalence of asymptomatic carotid artery stenosis in the general population: an individual participant data meta-analysis. Stroke 2010; 41(6): 1294-7.
[http://dx.doi.org/10.1161/STROKEAHA.110.581058] [PMID: 20431077]
[2]
Henry M, Polydorou A, Klonaris C, Henry I, Polydorou AD, Hugel M. Carotid angioplasty and stenting under protection. State of the art. Minerva Cardioangiol 2007; 55(1): 19-56.
[PMID: 17287680]
[3]
Wolfe CD. The impact of stroke. Br Med Bull 2000; 56(2): 275-86.
[http://dx.doi.org/10.1258/0007142001903120] [PMID: 11092079]
[4]
Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation 2002; 105(9): 1135-43.
[http://dx.doi.org/10.1161/hc0902.104353] [PMID: 11877368]
[5]
Zalewski A, Macphee C. Role of lipoprotein-associated phospholipase A2 in atherosclerosis: biology, epidemiology, and possible therapeutic target. Arterioscler Thromb Vasc Biol 2005; 25(5): 923-31.
[http://dx.doi.org/10.1161/01.ATV.0000160551.21962.a7] [PMID: 15731492]
[6]
Paliogiannis P, Satta R, Deligia G, et al. Associations between the neutrophil-to-lymphocyte and the platelet-to-lymphocyte ratios and the presence and severity of psoriasis: a systematic review and meta-analysis. Clin Exp Med 2019; 19(1): 37-45.
[http://dx.doi.org/10.1007/s10238-018-0538-x] [PMID: 30478648]
[7]
Pinna A, Porcu T, D’Amico-Ricci G, et al. Complete blood cell count-derived inflammation biomarkers in men with age-related macular degeneration. Ocul Immunol Inflamm 2019; 27(6): 932-6.
[http://dx.doi.org/10.1080/09273948.2018.1485960] [PMID: 29953308]
[8]
Erre GL, Paliogiannis P, Castagna F, et al. Meta-analysis of neutrophil-to-lymphocyte and platelet-to-lymphocyte ratio in rheumatoid arthritis. Eur J Clin Invest 2019; 49(1): e13037.
[http://dx.doi.org/10.1111/eci.13037] [PMID: 30316204]
[9]
Paliogiannis P, Fois AG, Sotgia S, et al. The neutrophil-to-lymphocyte ratio as a marker of chronic obstructive pulmonary disease and its exacerbations: A systematic review and meta-analysis. Eur J Clin Invest 2018; 48(8): e12984.
[http://dx.doi.org/10.1111/eci.12984] [PMID: 29924383]
[10]
Paliogiannis P, Fois AG, Sotgia S, et al. Neutrophil to lymphocyte ratio and clinical outcomes in COPD: recent evidence and future perspectives. Eur Respir Rev 2018; 27(147): 170113.
[http://dx.doi.org/10.1183/16000617.0113-2017] [PMID: 29436405]
[11]
Zhang J, Zhang HY, Li J, Shao XY, Zhang CX. The elevated NLR, PLR and PLT may predict the prognosis of patients with colorectal cancer: a systematic review and meta-analysis. Oncotarget 2017; 8(40): 68837-46.
[http://dx.doi.org/10.18632/oncotarget.18575] [PMID: 28978160]
[12]
Putzu C, Cortinovis DL, Colonese F, et al. Blood cell count indexes as predictors of outcomes in advanced non-small-cell lung cancer patients treated with Nivolumab. Cancer Immunol Immunother 2018; 67(9): 1349-53.
[http://dx.doi.org/10.1007/s00262-018-2182-4] [PMID: 29947960]
[13]
Ethier JL, Desautels D, Templeton A, Shah PS, Amir E. Prognostic role of neutrophil-to-lymphocyte ratio in breast cancer: a systematic review and meta-analysis. Breast Cancer Res 2017; 19(1): 2.
[http://dx.doi.org/10.1186/s13058-016-0794-1] [PMID: 28057046]
[14]
Peng H, Luo X. Prognostic significance of elevated pretreatment systemic inflammatory markers for patients with prostate cancer: a meta-analysis. Cancer Cell Int 2019; 19: 70.
[http://dx.doi.org/10.1186/s12935-019-0785-2] [PMID: 30962764]
[15]
Paliogiannis P, Scognamillo F, Bellomo M, Pittalis ML, Pisano IP, et al. Neutrophil to lymphocyte ratio as a predictor of thyroid papillary carcinoma. Acta Med Mediter 2015; 31: 371-5.
[16]
Afari ME, Bhat T. Neutrophil to lymphocyte ratio (NLR) and cardiovascular diseases: an update. Expert Rev Cardiovasc Ther 2016; 14(5): 573-7.
[http://dx.doi.org/10.1586/14779072.2016.1154788] [PMID: 26878164]
[17]
Luke K, Purwanto B, Herawati L, Al-Farabi MJ, Oktaviono YH. Predictive Value of Hematologic Indices in the Diagnosis of Acute Coronary Syndrome. Open Access Maced J Med Sci 2019; 7(15): 2428-33.
[http://dx.doi.org/10.3889/oamjms.2019.666] [PMID: 31666841]
[18]
Bhat TM, Afari ME, Garcia LA. Neutrophil lymphocyte ratio in peripheral vascular disease: a review. Expert Rev Cardiovasc Ther 2016; 14(7): 871-5.
[http://dx.doi.org/10.1586/14779072.2016.1165091] [PMID: 26967241]
[19]
Yeagle PL. Cholesterol and the cell membrane. Biochim Biophys Acta 1985; 822(3-4): 267-87.
[http://dx.doi.org/10.1016/0304-4157(85)90011-5] [PMID: 3904832]
[20]
Stary HC, Chandler AB, Dinsmore RE, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol 1995; 15(9): 1512-31.
[http://dx.doi.org/10.1161/01.ATV.15.9.1512] [PMID: 7670967]
[21]
Kolodgie FD, Gold HK, Burke AP, et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 2003; 349(24): 2316-25.
[http://dx.doi.org/10.1056/NEJMoa035655] [PMID: 14668457]
[22]
Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol 2006; 47(8)(Suppl.): C13-8.
[http://dx.doi.org/10.1016/j.jacc.2005.10.065] [PMID: 16631505]
[23]
Yuan XM, Brunk UT, Olsson AG. Effects of iron- and hemoglobin-loaded human monocyte-derived macrophages on oxidation and uptake of LDL. Arterioscler Thromb Vasc Biol 1995; 15(9): 1345-51.
[http://dx.doi.org/10.1161/01.ATV.15.9.1345] [PMID: 7670948]
[24]
Paliogiannis P, Zinellu A, Mangoni AA, et al. Red blood cell distribution width in pregnancy: a systematic review. Biochem Med (Zagreb) 2018; 28(3): 030502.
[http://dx.doi.org/10.11613/BM.2018.030502] [PMID: 30429667]
[25]
Lippi G, Targher G, Montagnana M, Salvagno GL, Zoppini G, Guidi GC. Relation between red blood cell distribution width and inflammatory biomarkers in a large cohort of unselected outpatients. Arch Pathol Lab Med 2009; 133(4): 628-32.
[PMID: 19391664]
[26]
Comporti M, Signorini C, Buonocore G, Ciccoli L. Iron release, oxidative stress and erythrocyte ageing. Free Radic Biol Med 2002; 32(7): 568-76.
[http://dx.doi.org/10.1016/S0891-5849(02)00759-1] [PMID: 11909691]
[27]
Phillipson M, Kubes P. The neutrophil in vascular inflammation. Nat Med 2011; 17(11): 1381-90.
[http://dx.doi.org/10.1038/nm.2514] [PMID: 22064428]
[28]
Zhou X, Hansson GK. Detection of B cells and proinflammatory cytokines in atherosclerotic plaques of hypercholesterolaemic apolipoprotein E knockout mice. Scand J Immunol 1999; 50(1): 25-30.
[http://dx.doi.org/10.1046/j.1365-3083.1999.00559.x] [PMID: 10404048]
[29]
Tedgui A, Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 2006; 86(2): 515-81.
[http://dx.doi.org/10.1152/physrev.00024.2005] [PMID: 16601268]
[30]
Li J, Ley K. Lymphocyte migration into atherosclerotic plaque. Arterioscler Thromb Vasc Biol 2015; 35(1): 40-9.
[http://dx.doi.org/10.1161/ATVBAHA.114.303227] [PMID: 25301842]
[31]
Chistiakov DA, Orekhov AN, Bobryshev YV. Immune-inflammatory responses in atherosclerosis: Role of an adaptive immunity mainly driven by T and B cells. Immunobiology 2016; 221(9): 1014-33.
[http://dx.doi.org/10.1016/j.imbio.2016.05.010] [PMID: 27262513]
[32]
Ammirati E, Moroni F, Magnoni M, Camici PG. The role of T and B cells in human atherosclerosis and atherothrombosis. Clin Exp Immunol 2015; 179(2): 173-87.
[http://dx.doi.org/10.1111/cei.12477] [PMID: 25352024]
[33]
Dong ZM, Chapman SM, Brown AA, Frenette PS, Hynes RO, Wagner DD. The combined role of P- and E-selectins in atherosclerosis. J Clin Invest 1998; 102(1): 145-52.
[http://dx.doi.org/10.1172/JCI3001] [PMID: 9649568]
[34]
Massberg S, Brand K, Grüner S, et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 2002; 196(7): 887-96.
[http://dx.doi.org/10.1084/jem.20012044] [PMID: 12370251]
[35]
Boulaftali Y, Owens AP III, Beale A, et al. CalDAG-GEFI deficiency reduces atherosclerotic lesion development in mice. Arterioscler Thromb Vasc Biol 2016; 36(5): 792-9.
[http://dx.doi.org/10.1161/ATVBAHA.115.306347] [PMID: 26988592]
[36]
Becker RC, Sexton T, Smyth SS. Translational implications of platelets as vascular first responders. Circ Res 2018; 122(3): 506-22.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.310939] [PMID: 29420211]
[37]
Handtke S, Thiele T. Large and small platelets-(When) do they differ? J Thromb Haemost 2020; 18(6): 1256-67.
[http://dx.doi.org/10.1111/jth.14788] [PMID: 32108994]
[38]
Friedlander AH, Lee UK, Polanco JC, Tran HA, Chang TI, Redman RS. Positive association between Neutrophil-Lymphocyte Ratio and presence of panoramically imaged carotid atheromas among men. J Oral Maxillofac Surg 2019; 77(2): 321-7.
[http://dx.doi.org/10.1016/j.joms.2018.09.038] [PMID: 30395820]
[39]
ó Hartaigh B, Bosch JA, Thomas GN, et al. Which leukocyte subsets predict cardiovascular mortality? From the LUdwigshafen RIsk and Cardiovascular Health (LURIC) Study. Atherosclerosis 2012; 224(1): 161-9.
[http://dx.doi.org/10.1016/j.atherosclerosis.2012.04.012] [PMID: 22809446]
[40]
Corriere T, Di Marca S, Cataudella E, et al. Neutrophil-to-Lymphocyte Ratio is a strong predictor of atherosclerotic carotid plaques in older adults. Nutr Metab Cardiovasc Dis 2018; 28(1): 23-7.
[http://dx.doi.org/10.1016/j.numecd.2017.10.022] [PMID: 29241668]
[41]
Kim BJ, Cho SH, Cho KI, Kim HS, Heo JH, Cha TJ. The combined impact of Neutrophil-to-Lymphocyte Ratio and type 2 Diabetic Mellitus on significant coronary artery disease and carotid artery atherosclerosis. J Cardiovasc Ultrasound 2016; 24(2): 115-22.
[http://dx.doi.org/10.4250/jcu.2016.24.2.115] [PMID: 27358703]
[42]
Lee UK, Liu SY, Zeidler MR, Tran HA, Chang TI, Friedlander AH. Severe obstructive sleep apnea with imaged carotid plaque is significantly associated with systemic inflammation. J Oral Maxillofac Surg 2019; 77(8): 1636-42.
[http://dx.doi.org/10.1016/j.joms.2019.02.005] [PMID: 30851255]
[43]
Park JB. Neutrophil-to-Lymphocyte Ratio for risk assessment in coronary artery disease and carotid artery atherosclerosis. J Cardiovasc Ultrasound 2016; 24(2): 104-5.
[http://dx.doi.org/10.4250/jcu.2016.24.2.104] [PMID: 27358698]
[44]
Touboul PJ, Hennerici MG, Meairs S, et al. Advisory Board of the 3rd Watching the Risk Symposium 2004, 13th European Stroke Conference. Mannheim intima-media thickness consensus. Cerebrovasc Dis 2004; 18(4): 346-9.
[http://dx.doi.org/10.1159/000081812] [PMID: 15523176]
[45]
Demirkol S, Balta S, Unlu M, et al. Neutrophils/lymphocytes ratio in patients with cardiac syndrome X and its association with carotid intima-media thickness. Clin Appl Thromb Hemost 2014; 20(3): 250-5.
[http://dx.doi.org/10.1177/1076029612467227] [PMID: 23188887]
[46]
Cingoz F, Iyisoy A, Demirkol S, et al. Carotid intima-media thickness in patients with slow coronary flow and its association with neutrophil-to-lymphocyte ratio: a preliminary report. Clin Appl Thromb Hemost 2014; 20(4): 393-9.
[http://dx.doi.org/10.1177/1076029613485283] [PMID: 23613039]
[47]
Ozturk C, Balta S, Balta I, et al. Neutrophil-lymphocyte ratio and carotid-intima media thickness in patients with Behçet disease without cardiovascular involvement. Angiology 2015; 66(3): 291-6.
[http://dx.doi.org/10.1177/0003319714527638] [PMID: 24671132]
[48]
Hyun S, Kwon S, Cho S, et al. Can the Neutrophil-to-Lymphocyte Ratio appropriately predict carotid artery stenosis in patients with ischemic stroke? A retrospective study. J Stroke Cerebrovasc Dis 2015; 24(11): 2646-51.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2015.07.024] [PMID: 26316355]
[49]
Suárez-Cuenca JA, Ruíz-Hernández AS, Mendoza-Castañeda AA, et al. Neutrophil-to-lymphocyte ratio and its relation with pro-inflammatory mediators, visceral adiposity and carotid intima-media thickness in population with obesity. Eur J Clin Invest 2019; 49(5): e13085.
[http://dx.doi.org/10.1111/eci.13085] [PMID: 30740673]
[50]
Köklü E, Yüksel İÖ, Arslan Ş, et al. Is elevated Neutrophil-to-Lymphocyte Ratio a predictor of stroke in patients with intermediate carotid artery stenosis? J Stroke Cerebrovasc Dis 2016; 25(3): 578-84.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2015.10.031] [PMID: 26706445]
[51]
Massiot N, Lareyre F, Voury-Pons A, et al. High Neutrophil to Lymphocyte Ratio and Platelet to Lymphocyte Ratio are associated with symptomatic internal carotid artery stenosis. J Stroke Cerebrovasc Dis 2019; 28(1): 76-83.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2018.09.001] [PMID: 30268367]
[52]
Deşer SB, Yucel SM, Demirag MK, Guclu MM, Kolbakir F, Keceligil HT. The association between platelet/lymphocyte ratio, neutrophil/lymphocyte ratio, and carotid artery stenosis and stroke following carotid endarterectomy. Vascular 2019; 27(6): 604-11.
[http://dx.doi.org/10.1177/1708538119847390] [PMID: 31046628]
[53]
Dai Z, Li R, Zhao N, et al. Neutrophil to Lymphocyte Ratio as a predictor of restenosis after angioplasty and stenting for asymptomatic carotid stenosis. Angiology 2019; 70(2): 160-5.
[http://dx.doi.org/10.1177/0003319718784805] [PMID: 29940783]
[54]
Bao X, Zhou G, Xu W, Liu X, Ye Z, Jiang F. Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio: novel markers for the diagnosis and prognosis in patients with restenosis following CAS. Biomarkers Med 2020; 14(4): 271-82.
[http://dx.doi.org/10.2217/bmm-2019-0155] [PMID: 32134328]
[55]
Zuo B, Zhu S, Meng X, Zhao D, Zhang J. Monocyte/lymphocyte ratio is associated with carotid stenosis in ischemic stroke: A retrospective analysis. Brain Behav 2019; 9(10): e01429.
[http://dx.doi.org/10.1002/brb3.1429] [PMID: 31571420]
[56]
İdil Soylu A, Arıkan Cortcu S, Uzunkaya F, et al. The correlation of the platelet-to-lymphocyte ratio with the severity of stenosis and stroke in patients with carotid arterial disease. Vascular 2017; 25(3): 299-306.
[http://dx.doi.org/10.1177/1708538116673770] [PMID: 27770030]
[57]
Bonaventura A, Carbone F, Liberale L, et al. Platelet-to-lymphocyte ratio at the time of carotid endarterectomy is associated with acute coronary syndrome occurrence. J Cardiovasc Med (Hagerstown) 2020; 21(1): 80-2.
[http://dx.doi.org/10.2459/JCM.0000000000000869] [PMID: 31567635]
[58]
Tek M, Çetin MS, Diker E, Çelebi S, Amasyali B, Berkalp B. Platelet to lymphocyte ratio predicts all-cause mortality in patients with carotid arterial disease. Rom J Intern Med 2019; 57(2): 159-65.
[http://dx.doi.org/10.2478/rjim-2018-0040] [PMID: 30521474]
[59]
Furer A, Finkelstein A, Halkin A, et al. High red blood cell distribution width and preclinical carotid atherosclerosis. Biomarkers 2015; 20(6-7): 376-81.
[http://dx.doi.org/10.3109/1354750X.2015.1096304] [PMID: 26474348]
[60]
Söderholm M, Borné Y, Hedblad B, Persson M, Engström G. Red cell distribution width in relation to incidence of stroke and carotid atherosclerosis: a population-based cohort study. PLoS One 2015; 10(5): e0124957.
[http://dx.doi.org/10.1371/journal.pone.0124957] [PMID: 25950717]
[61]
Lappegård J, Ellingsen TS, Vik A, et al. Red cell distribution width and carotid atherosclerosis progression. The Tromsø Study. Thromb Haemost 2015; 113(3): 649-54.
[http://dx.doi.org/10.1160/TH14-07-0606] [PMID: 25631329]
[62]
Ren D, Wang J, Li H, Li Y, Li Z. Red blood cell distribution width and carotid intima-media thickness in patients with metabolic syndrome. BMC Cardiovasc Disord 2017; 17(1): 44.
[http://dx.doi.org/10.1186/s12872-017-0481-x] [PMID: 28129745]
[63]
Klein BE, Klein R, Lee KE. Components of the metabolic syndrome and risk of cardiovascular disease and diabetes in Beaver Dam. Diabetes Care 2002; 25(10): 1790-4.
[http://dx.doi.org/10.2337/diacare.25.10.1790] [PMID: 12351479]
[64]
Nam JS, Ahn CW, Kang S, Kim KR, Park JS. Red Blood Cell Distribution Width is associated with carotid atherosclerosis in people with type 2 Diabetes. J Diabetes Res 2018; •••: 20181792760.
[http://dx.doi.org/10.1155/2018/1792760] [PMID: 29770339]
[65]
Wonnerth A, Krychtiuk KA, Mayer FJ, et al. Red cell distribution width and mortality in carotid atherosclerosis. Eur J Clin Invest 2016; 46(2): 198-204.
[http://dx.doi.org/10.1111/eci.12584] [PMID: 26709235]
[66]
Kamath S, Blann AD, Lip GY. Platelet activation: assessment and quantification. Eur Heart J 2001; 22(17): 1561-71.
[http://dx.doi.org/10.1053/euhj.2000.2515] [PMID: 11492985]
[67]
Arévalo-Lorido JC, Carretero-Gómez J, Villar-Vaca P. Mean platelet volume predicting carotid atherosclerosis in atherothrombotic ischemic stroke. Ir J Med Sci 2012; 181(2): 179-83.
[http://dx.doi.org/10.1007/s11845-011-0755-8] [PMID: 21928050]
[68]
Arslan N, Makay B, Hızlı S, et al. Assessment of atherosclerosis in obese adolescents: positive correlation of mean platelet volume and carotid intima media thickness. J Paediatr Child Health 2013; 49(11): 963-8.
[http://dx.doi.org/10.1111/jpc.12301] [PMID: 23782071]
[69]
Kilciler G, Genc H, Tapan S, et al. Mean platelet volume and its relationship with carotid atherosclerosis in subjects with non-alcoholic fatty liver disease. Ups J Med Sci 2010; 115(4): 253-9.
[http://dx.doi.org/10.3109/03009734.2010.500062] [PMID: 20731535]
[70]
Adam G, Kocak E, Reşorlu M. Evaluation of platelet distribution width and mean platelet volume in patients with carotid artery stenosis: author’s reply. Angiology 2015; 66(4): 380.
[http://dx.doi.org/10.1177/0003319714565169] [PMID: 25550451]
[71]
Kim ES, Mo EY, Moon SD, Han JH. Mean Platelet Volume is closely associated with serum glucose level but not with arterial stiffness and carotid atherosclerosis in patients with type 2 Diabetes. J Clin Endocrinol Metab 2015; 100(9): 3502-8.
[http://dx.doi.org/10.1210/JC.2015-1540] [PMID: 26120789]
[72]
Gheissari A, Dehghan B, Ghaed Sharafi B, et al. Importance of Mean Platelet Volume in predicting cardiac mechanics parameters and carotid-intima media thickness in children with end-stage renal disease and comparison with healthy children. Ther Apher Dial 2019; 23(5): 451-9.
[http://dx.doi.org/10.1111/1744-9987.12794] [PMID: 30673163]
[73]
De Luca G, Secco GG, Verdoia M, et al. Combination between mean platelet volume and platelet distribution width to predict the prevalence and extent of coronary artery disease: results from a large cohort study. Blood Coagul Fibrinolysis 2014; 25(1): 86-91.
[http://dx.doi.org/10.1097/MBC.0b013e32836577a8] [PMID: 24126247]
[74]
Valkila EH, Salenius JP, Koivula TA. Platelet indices in patients with occlusive carotid artery disease. Angiology 1994; 45(5): 361-5.
[http://dx.doi.org/10.1177/000331979404500505] [PMID: 8172383]
[75]
Mayer FJ, Hoke M, Schillinger M, et al. Mean platelet volume predicts outcome in patients with asymptomatic carotid artery disease. Eur J Clin Invest 2014; 44(1): 22-8.
[http://dx.doi.org/10.1111/eci.12184] [PMID: 24117332]
[76]
Koklu E, Yuksel IO, Arslan S, et al. Predictors of symptom development in intermediate carotid artery stenosis: Mean Platelet Volume and Platelet Distribution Width. Angiology 2016; 67(7): 622-9.
[http://dx.doi.org/10.1177/0003319715613916] [PMID: 26514416]
[77]
Oz II, Yucel M, Bilici M, et al. Is Mean Platelet Volume a reliable marker to predict ischemic stroke in the follow-up of patients with carotid stenosis? J Stroke Cerebrovasc Dis 2016; 25(2): 404-9.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2015.10.012] [PMID: 26576699]
[78]
Dai Z, Gao J, Li S, et al. Mean Platelet Volume as a predictor for restenosis after carotid angioplasty and stenting. Stroke 2018; 49(4): 872-6.
[http://dx.doi.org/10.1161/STROKEAHA.117.019748] [PMID: 29559579]
[79]
Haidegger M, Kneihsl M, Niederkorn K, et al. Mean Platelet Volume does not predict restenosis after carotid artery stenting in whites. Stroke 2020; 51(3): 986-9.
[http://dx.doi.org/10.1161/STROKEAHA.119.028180] [PMID: 31847751]
[80]
Paliogiannis P, Ginesu GC, Tanda C, et al. Inflammatory cell indexes as preoperative predictors of hospital stay in open elective thoracic surgery. ANZ J Surg 2018; 88(6): 616-20.
[http://dx.doi.org/10.1111/ans.14557] [PMID: 29687547]
[81]
Chen JH, Zhai ET, Yuan YJ, et al. Systemic immune-inflammation index for predicting prognosis of colorectal cancer. World J Gastroenterol 2017; 23(34): 6261-72.
[http://dx.doi.org/10.3748/wjg.v23.i34.6261] [PMID: 28974892]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy