Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

SARS-CoV-2 Proteins: Are They Useful as Targets for COVID-19 Drugs and Vaccines?

Author(s): Mohammed Elimam Ahamed Mohammed*

Volume 22, Issue 1, 2022

Published on: 23 February, 2021

Page: [50 - 66] Pages: 17

DOI: 10.2174/1566524021666210223143243

Price: $65

conference banner
Abstract

The proteins of coronavirus are classified as non-structural, structural, and accessory. There are 16 non-structural viral proteins besides their precursors (1a and 1ab polyproteins). The non-structural proteins are named nsp1 to nsp16, and they act as enzymes, coenzymes, and binding proteins to facilitate the replication, transcription, and translation of the virus. The structural proteins are bound to the RNA in the nucleocapsid (N- protein) or to the lipid bilayer membrane of the viral envelope. The lipid bilayer proteins include the membrane protein (M), an envelope protein (E), and spike protein (S). Besides their role as structural proteins, they are essential for the host cells' binding and invasion. The SARS-CoV-2 contains six accessory proteins which participate in the viral replication, assembly and virus-host interactions. The SARS-CoV-2 accessory proteins are orf3a, orf6, orf7a, orf7b, orf8, and orf10. The functions of the SARS-CoV-2 are not well known, while the functions of their corresponding proteins in SARS-CoV are either well known or poorly studied. Recently, the Oxford University and Astrazeneca, Pfizer and BioNTech have made SARS-CoV-2 vaccines by targeting the spike protein gene. The US Food and Drug Administration (FDA) and the health authorities of the United Kingdom have approved and started conducting vaccinations using the Pfizer and BioNTech mRNA vaccine. Also, The FDA of the USA has approved the use of two monoclonal antibodies produced by Regeneron pharmaceuticals to target the spike protein for treating COVID-19. The SARS-CoV-2 proteins can be used for the diagnosis, as drug targets and in vaccination trials for COVID-19. In future COVID-19 research, more efforts should be made to elaborate the functions and structure of the SARS-CoV- 2 proteins so as to use them as targets for COVID-19 drugs and vaccines. Special attention should be paid to extensive research on the SARS-CoV-2 nsp3, orf8, and orf10.

Keywords: nsp3, spike protein, orf3, orf8, orf10, SARS-CoV.

[1]
Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J 2019; 16(1): 69.
[http://dx.doi.org/10.1186/s12985-019-1182-0] [PMID: 31133031]
[2]
Stadler K, Rappuoli R. SARS: understanding the virus and development of rational therapy. Curr Mol Med 2005; 5(7): 677-97.
[http://dx.doi.org/10.2174/156652405774641124] [PMID: 16305493]
[3]
NCBI reference sequence- NC_0455122 Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, complete genome https://www.ncbi.nlm.nih.gov/nuccore/NC_045512 [8 May 2020.];2020 Last modified: 30-MAR-2020.Retrieved from:.
[4]
NCBI Reference Sequence- NC_0047183 SARS coronavirus, complete genome https://www.ncbi.nlm.nih.gov/nuccore/NC_004718.32020.Last modified: 2-JUN-2020.Retrieved from:.
[5]
Wang C, Liu Z, Chen Z, et al. The establishment of reference sequence for SARS-CoV-2 and variation analysis. J Med Virol 2020; 92(6): 667-74.
[http://dx.doi.org/10.1002/jmv.25762] [PMID: 32167180]
[6]
Khailany RA, Safdar M, Ozaslan M. Genomic characterization of a novel SARS-CoV-2. Gene Rep 2020.19100682
[http://dx.doi.org/10.1016/j.genrep.2020.100682] [PMID: 32300673]
[7]
[8]
Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med 2020; 26(4): 450-2.
[http://dx.doi.org/10.1038/s41591-020-0820-9] [PMID: 32284615]
[9]
Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019; 17(3): 181-92.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[10]
Qiu Y, Xu K. Functional studies of the coronavirus nonstructural proteinsSTEMedicine 2020; 1(2): e39 https://stemedicine.org/index.php/stem/article/view/39[cited 2020Dec.13]Available from:.
[http://dx.doi.org/10.37175/stemedicine.v1i2.39]
[11]
Alonso AM, Diambra L. SARS-CoV-2 Codon Usage Bias Downregulates Host Expressed Genes With Similar Codon Usage. Front Cell Dev Biol 2020; 8: 831.
[http://dx.doi.org/10.3389/fcell.2020.00831] [PMID: 32974353]
[12]
Fung TS, Liu DX. Post-translational modifications of coronavirus proteins: roles and function. Future Virol 2018; 13(6): 405-30.
[http://dx.doi.org/10.2217/fvl-2018-0008] [PMID: 32201497]
[13]
Exact Science Laboratory- FDA. SARS-CoV-2 (E, N and5 RdRp detection) test; https://www.fda.gov/media/137095/downloadAvailable at:.
[16]
US- Food and Drug Administration (FDA) Fact sheet for health care providers administrating vaccine 2020 Dec; 11 https://www.fda.gov/media/144413/downloadAvailable at:.
[18]
Snijder EJ, Decroly E, Ziebuhr J. The Nonstructural Proteins Directing Coronavirus RNA Synthesis and Processing. Adv Virus Res 2016; 96: 59-126.
[http://dx.doi.org/10.1016/bs.aivir.2016.08.008] [PMID: 27712628]
[19]
Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol 2020; 92(4): 418-23.
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[20]
Yoshimoto FK. The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2 or n-COV19), the Cause of COVID-19. Protein J 2020; 39(3): 198-216.
[http://dx.doi.org/10.1007/s10930-020-09901-4] [PMID: 32447571]
[21]
UniProtKB - A7J8L2 (A7J8L2_CVHSA) Orf1ab polyprotein https://www.uniprot.org/uniprot/A7J8L2 [13 May 2020.];2020 Last modified: 22-APR-2020. Retrieved from:.
[22]
Lichinchi G, Zhao BS, Wu Y, et al. Dynamics of Human and Viral RNA Methylation during Zika Virus Infection. Cell Host Microbe 2016; 20(5): 666-73.
[http://dx.doi.org/10.1016/j.chom.2016.10.002] [PMID: 27773536]
[23]
Lim YX, Ng YL, Tam JP, Liu DX. Human coronaviruses: a review of virus-host interactions. Diseases 2016; 4(3): 26.
[http://dx.doi.org/10.3390/diseases4030026] [PMID: 28933406]
[24]
Wu C, Liu Y, Yang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 2020; 10(5): 766-88.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[25]
Mirza MU, Froeyen M. Structural elucidation of SARS-CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase. J Pharm Anal 2020; 10(4): 320-8.
[http://dx.doi.org/10.1016/j.jpha.2020.04.008] [PMID: 32346490]
[26]
NCBI Reference Sequence- YP_0097243891 orf1ab polyprotein [Severe acute respiratory syndrome coronavirus 2]. https://www.ncbi.nlm.nih.gov/protein/1796318597 [16 May 2020.];2020 Last modified: 30-MAR-2020. Retrieved from:
[28]
Narayanan K, Ramirez SI, Lokugamage KG, Makino S. Coronavirus nonstructural protein 1: Common and distinct functions in the regulation of host and viral gene expression. Virus Res 2015; 202: 89-100.
[http://dx.doi.org/10.1016/j.virusres.2014.11.019] [PMID: 25432065]
[29]
Thoms M, Buschauer R, Ameismeier M, et al. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science 2020; 369(6508): 1249-55.
[http://dx.doi.org/10.1126/science.abc8665] [PMID: 32680882]
[30]
Tanaka T, Kamitani W, DeDiego ML, Enjuanes L, Matsuura Y. Severe acute respiratory syndrome coronavirus nsp1 facilitates efficient propagation in cells through a specific translational shutoff of host mRNA. J Virol 2012; 86(20): 11128-37.
[http://dx.doi.org/10.1128/JVI.01700-12] [PMID: 22855488]
[31]
Huang C, Lokugamage KG, Rozovics JM, Narayanan K, Semler BL, Makino S. SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: viral mRNAs are resistant to nsp1-induced RNA cleavage. PLoS Pathog 2011; 7(12)e1002433
[http://dx.doi.org/10.1371/journal.ppat.1002433] [PMID: 22174690]
[32]
Gordon DE, Jang GM, Bouhaddou M, et al. A SARS-CoV-2- Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing bioRxiv 2020; 20200322002386
[http://dx.doi.org/10.1038/s41586-020-2286-9] [PMID: 32511329]
[33]
Graham RL, Sims AC, Brockway SM, Baric RS, Denison MR. The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication. J Virol 2005; 79(21): 13399-411.
[http://dx.doi.org/10.1128/JVI.79.21.13399-13411.2005] [PMID: 16227261]
[34]
Astuti I. Ysrafil. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab Syndr 2020; 14(4): 407-12.
[http://dx.doi.org/10.1016/j.dsx.2020.04.020] [PMID: 32335367]
[35]
Merkwirth C, Langer T. Prohibitin function within mitochondria: essential roles for cell proliferation and cristae morphogenesis. Biochim Biophys Acta 2009; 1793(1): 27-32.
[http://dx.doi.org/10.1016/j.bbamcr.2008.05.013] [PMID: 18558096]
[36]
Lei J, Kusov Y, Hilgenfeld R. Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein. Antiviral Res 2018; 149: 58-74.
[http://dx.doi.org/10.1016/j.antiviral.2017.11.001] [PMID: 29128390]
[37]
Chen X, Yang X, Zheng Y, Yang Y, Xing Y, Chen Z. SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex. Protein Cell 2014; 5(5): 369-81.
[http://dx.doi.org/10.1007/s13238-014-0026-3] [PMID: 24622840]
[38]
Devaraj SG, Wang N, Chen Z, et al. Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. J Biol Chem 2007; 282(44): 32208-21.
[http://dx.doi.org/10.1074/jbc.M704870200] [PMID: 17761676]
[39]
Angeletti S, Benvenuto D, Bianchi M, Giovanetti M, Pascarella S, Ciccozzi M. COVID-2019: The role of the nsp2 and nsp3 in its pathogenesis. J Med Virol 2020; 92(6): 584-8.
[http://dx.doi.org/10.1002/jmv.25719] [PMID: 32083328]
[40]
Gil C, Ginex T, Maestro I, et al. COVID-19. J Med Chem 2020; 63(21): 12359-86.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00606] [PMID: 32511912]
[41]
Sakai Y, Kawachi K, Terada Y, Omori H, Matsuura Y, Kamitani W. Two-amino acids change in the nsp4 of SARS coronavirus abolishes viral replication. Virology 2017; 510: 165-74.
[http://dx.doi.org/10.1016/j.virol.2017.07.019] [PMID: 28738245]
[42]
Anand K, Palm GJ, Mesters JR, Siddell SG, Ziebuhr J, Hilgenfeld R. Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. EMBO J 2002; 21(13): 3213-24.
[http://dx.doi.org/10.1093/emboj/cdf327] [PMID: 12093723]
[43]
Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 2003; 300(5626): 1763-7.
[http://dx.doi.org/10.1126/science.1085658] [PMID: 12746549]
[44]
Stobart CC, Sexton NR, Munjal H, et al. Chimeric exchange of coronavirus nsp5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity. J Virol 2013; 87(23): 12611-8.
[http://dx.doi.org/10.1128/JVI.02050-13] [PMID: 24027335]
[45]
de Wilde AH, Snijder EJ, Kikkert M, van Hemert MJ. Host factors in coronavirus replication. Curr Top Microbiol Immunol 2018; 419: 1-42.
[http://dx.doi.org/10.1007/82_2017_25] [PMID: 28643204]
[46]
Prajapat M, Sarma P, Shekhar N, et al. Drug targets for corona virus: A systematic review. Indian J Pharmacol 2020; 52(1): 56-65.
[http://dx.doi.org/10.4103/ijp.IJP_115_20] [PMID: 32201449]
[47]
Khodadadi E, Maroufi P, Khodadadi E, et al. Study of combining virtual screening and antiviral treatments of the Sars-CoV-2 (Covid-19). Microb Pathog 2020; •••146104241
[http://dx.doi.org/10.1016/j.micpath.2020.104241] [PMID: 32387389]
[48]
Neuman BW, Angelini MM, Buchmeier MJ. Does form meet function in the coronavirus replicative organelle? Trends Microbiol 2014; 22(11): 642-7.
[http://dx.doi.org/10.1016/j.tim.2014.06.003] [PMID: 25037114]
[49]
Cottam EM, Whelband MC, Wileman T. Coronavirus NSP6 restricts autophagosome expansion. Autophagy 2014; 10(8): 1426-41.
[http://dx.doi.org/10.4161/auto.29309] [PMID: 24991833]
[50]
Cottam EM, Maier HJ, Manifava M, et al. Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate. Autophagy 2011; 7(11): 1335-47.
[http://dx.doi.org/10.4161/auto.7.11.16642] [PMID: 21799305]
[51]
Kirchdoerfer RN, Ward AB. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat Commun 2019; 10(1): 2342.
[http://dx.doi.org/10.1038/s41467-019-10280-3] [PMID: 31138817]
[52]
Kumar P, Gunalan V, Liu B, et al. The nonstructural protein 8 (nsp8) of the SARS coronavirus interacts with its ORF6 accessory protein. Virology 2007; 366(2): 293-303.
[http://dx.doi.org/10.1016/j.virol.2007.04.029] [PMID: 17532020]
[53]
Egloff MP, Ferron F, Campanacci V, et al. The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. Proc Natl Acad Sci USA 2004; 101(11): 3792-6.
[http://dx.doi.org/10.1073/pnas.0307877101] [PMID: 15007178]
[54]
Su D, Lou Z, Sun F, et al. Dodecamer structure of severe acute respiratory syndrome coronavirus nonstructural protein nsp10. J Virol 2006; 80(16): 7902-8.
[http://dx.doi.org/10.1128/JVI.00483-06] [PMID: 16873247]
[55]
Wang Y, Sun Y, Wu A, et al. Coronavirus nsp10/nsp16 Methyltransferase Can Be Targeted by nsp10-Derived Peptide In Vitro and In Vivo To Reduce Replication and Pathogenesis. J Virol 2015; 89(16): 8416-27.
[http://dx.doi.org/10.1128/JVI.00948-15] [PMID: 26041293]
[56]
Chen Y, Su C, Ke M, et al. Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2′-O-methylation by nsp16/nsp10 protein complex. PLoS Pathog 2011; 7(10)e1002294
[http://dx.doi.org/10.1371/journal.ppat.1002294] [PMID: 22022266]
[57]
Zhang M, Li X, Deng Z, et al. Structural Biology of the Arterivirus nsp11 Endoribonucleases. J Virol 2016; 91(1): e01309-16.
[http://dx.doi.org/10.1128/JVI.01309-16] [PMID: 27795409]
[58]
Fang SG, Shen H, Wang J, Tay FPL, Liu DX. Proteolytic processing of polyproteins 1a and 1ab between non-structural proteins 10 and 11/12 of Coronavirus infectious bronchitis virus is dispensable for viral replication in cultured cells. Virology 2008; 379(2): 175-80.
[http://dx.doi.org/10.1016/j.virol.2008.06.038] [PMID: 18678384]
[59]
Ahlquist P, Noueiry AO, Lee WM, Kushner DB, Dye BT. Host factors in positive-strand RNA virus genome replication. J Virol 2003; 77(15): 8181-6.
[http://dx.doi.org/10.1128/JVI.77.15.8181-8186.2003] [PMID: 12857886]
[60]
Cheng A, Zhang W, Xie Y, et al. Expression, purification, and characterization of SARS coronavirus RNA polymerase. Virology 2005; 335(2): 165-76.
[http://dx.doi.org/10.1016/j.virol.2005.02.017] [PMID: 15840516]
[61]
Nyström K, Waldenström J, Tang K, Lagging M. Ribavirin: pharmacology, multiple modes of action and possible future perspectives. Future Virol 2019; 14(3): 153-60.
[http://dx.doi.org/10.2217/fvl-2018-0166]
[62]
Prentice E, McAuliffe J, Lu X, Subbarao K, Denison MR. Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins. J Virol 2004; 78(18): 9977-86.
[http://dx.doi.org/10.1128/JVI.78.18.9977-9986.2004] [PMID: 15331731]
[63]
Jia Z, Yan L, Ren Z, et al. Delicate structural coordination of the Severe Acute Respiratory Syndrome coronavirus Nsp13 upon ATP hydrolysis. Nucleic Acids Res 2019; 47(12): 6538-50.
[http://dx.doi.org/10.1093/nar/gkz409] [PMID: 31131400]
[64]
Jang KJ, Jeong S, Kang DY, Sp N, Yang YM, Kim DE. A high ATP concentration enhances the cooperative translocation of the SARS coronavirus helicase nsP13 in the unwinding of duplex RNA. Sci Rep 2020; 10(1): 4481.
[http://dx.doi.org/10.1038/s41598-020-61432-1] [PMID: 32161317]
[65]
Malle L. A map of SARS-CoV-2 and host cell interactions. Nat Rev Immunol 2020; 20(6): 351.
[http://dx.doi.org/10.1038/s41577-020-0318-1] [PMID: 32303698]
[66]
Yu MS, Lee J, Lee JM, et al. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg Med Chem Lett 2012; 22(12): 4049-54.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.081] [PMID: 22578462]
[67]
Kim MK, Yu MS, Park HR, et al. 2,6-Bis-arylmethyloxy-5-hydroxychromones with antiviral activity against both hepatitis C virus (HCV) and SARS-associated coronavirus (SCV). Eur J Med Chem 2011; 46(11): 5698-704.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.005] [PMID: 21925774]
[68]
Ma Y, Wu L, Shaw N, et al. Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. Proc Natl Acad Sci USA 2015; 112(30): 9436-41.
[http://dx.doi.org/10.1073/pnas.1508686112] [PMID: 26159422]
[69]
Becares M, Pascual-Iglesias A, Nogales A, Sola I, Enjuanes L, Zuñiga S. Mutagenesis of coronavirus nsp14 reveals its potential role in modulation of the innate immune response. J Virol 2016; 90(11): 5399-414.
[http://dx.doi.org/10.1128/JVI.03259-15] [PMID: 27009949]
[70]
Decroly E, Debarnot C, Ferron F, et al. Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2′-O-methyltransferase nsp10/nsp16 complex. PLoS Pathog 2011; 7(5)e1002059
[http://dx.doi.org/10.1371/journal.ppat.1002059] [PMID: 21637813]
[71]
Kim Y, Jedrzejczak R, Maltseva NI, et al. Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2. Protein Sci 2020; 29(7): 1596-605.
[http://dx.doi.org/10.1002/pro.3873] [PMID: 32304108]
[72]
Zhang L, Li L, Yan L, et al. Structural and biochemical characterization of endoribonuclease Nsp15 encoded by middle east respiratory syndrome coronavirus. J Virol 2018; 92(22): e00893-18.
[http://dx.doi.org/10.1128/JVI.00893-18] [PMID: 30135128]
[73]
Deng X, Hackbart M, Mettelman RC, et al. CoV nsp15 mediates evasion of dsRNA sensors. Proc Natl Acad Sci USA 2017; 114(21): E4251-60.
[http://dx.doi.org/10.1073/pnas.1618310114] [PMID: 28484023]
[74]
Ortiz-Alcantara J, Bhardwaj K, Palaninathan S, Frieman M, Baric R, Kao C. Small molecule inhibitors of the SARS-CoV Nsp15 endoribonuclease. Virus Adaptation and Treatment 2010; 2: 125-33.
[http://dx.doi.org/10.2147/VAAT.S12733]
[75]
Menachery VD, Debbink K, Baric RS. Coronavirus non-structural protein 16: evasion, attenuation, and possible treatments. Virus Res 2014; 194: 191-9.
[http://dx.doi.org/10.1016/j.virusres.2014.09.009] [PMID: 25278144]
[76]
Menachery VD, Yount BL Jr, Josset L, et al. Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2′-o-methyltransferase activity. J Virol 2014; 88(8): 4251-64.
[http://dx.doi.org/10.1128/JVI.03571-13] [PMID: 24478444]
[77]
Yong CY, Ong HK, Yeap SK, Ho KL, Tan WS. Recent Advances in the Vaccine Development Against Middle East Respiratory Syndrome-Coronavirus. Front Microbiol 2019; 10: 1781.
[http://dx.doi.org/10.3389/fmicb.2019.01781] [PMID: 31428074]
[78]
Züst R, Dong H, Li XF, et al. Rational design of a live attenuated dengue vaccine: 2′-o-methyltransferase mutants are highly attenuated and immunogenic in mice and macaques. PLoS Pathog 2013; 9(8)e1003521
[http://dx.doi.org/10.1371/journal.ppat.1003521] [PMID: 23935499]
[79]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[80]
Zheng J. SARS-CoV-2: an emerging coronavirus that causes a global threat. Int J Biol Sci 2020; 16(10): 1678-85.
[http://dx.doi.org/10.7150/ijbs.45053] [PMID: 32226285]
[81]
Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 2016; 3(1): 237-61.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301] [PMID: 27578435]
[82]
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 181(2): 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[83]
Pandey P, Rane JS, Chatterjee A, et al. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development. J Biomol Struct Dyn 2020; 1-11.
[http://dx.doi.org/10.1080/07391102.2020.1796811] [PMID: 32698689]
[84]
Shang J, Wan Y, Luo C, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci USA 2020; 117(21): 11727-34.
[http://dx.doi.org/10.1073/pnas.2003138117] [PMID: 32376634]
[85]
Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 2020; 11(1): 1620.
[http://dx.doi.org/10.1038/s41467-020-15562-9] [PMID: 32221306]
[86]
Xia S, Liu M, Wang C, et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res 2020; 30(4): 343-55.
[http://dx.doi.org/10.1038/s41422-020-0305-x] [PMID: 32231345]
[87]
University of Oxoford About the Oxford COVID-19 vaccine 2020.https://www.research.ox.ac.uk/Article/2020-07-19-the-oxford-covid-19-vaccine
[88]
Nieto-Torres JL, Dediego ML, Álvarez E, et al. Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein. Virology 2011; 415(2): 69-82.
[http://dx.doi.org/10.1016/j.virol.2011.03.029] [PMID: 21524776]
[89]
Álvarez E, DeDiego ML, Nieto-Torres JL, Jiménez-Guardeño JM, Marcos-Villar L, Enjuanes L. The envelope protein of severe acute respiratory syndrome coronavirus interacts with the non-structural protein 3 and is ubiquitinated. Virology 2010; 402(2): 281-91.
[http://dx.doi.org/10.1016/j.virol.2010.03.015] [PMID: 20409569]
[90]
Corse E, Machamer CE. The cytoplasmic tails of infectious bronchitis virus E and M proteins mediate their interaction. Virology 2003; 312(1): 25-34.
[http://dx.doi.org/10.1016/S0042-6822(03)00175-2] [PMID: 12890618]
[91]
Yuan Q, Liao Y, Torres J, Tam JP, Liu DX. Biochemical evidence for the presence of mixed membrane topologies of the severe acute respiratory syndrome coronavirus envelope protein expressed in mammalian cells. FEBS Lett 2006; 580(13): 3192-200.
[http://dx.doi.org/10.1016/j.febslet.2006.04.076] [PMID: 16684538]
[92]
Ruch TR, Machamer CE. The coronavirus E protein: assembly and beyond. Viruses 2012; 4(3): 363-82.
[http://dx.doi.org/10.3390/v4030363] [PMID: 22590676]
[93]
Hu Y, Wen J, Tang L, et al. The M protein of SARS-CoV: basic structural and immunological properties. Genomics Proteomics Bioinformatics 2003; 1(2): 118-30.
[http://dx.doi.org/10.1016/S1672-0229(03)01016-7] [PMID: 15626342]
[94]
Ma HC, Fang CP, Hsieh YC, Chen SC, Li HC, Lo SY. Expression and membrane integration of SARS-CoV M protein. J Biomed Sci 2008; 15(3): 301-10.
[http://dx.doi.org/10.1007/s11373-008-9235-1] [PMID: 18398701]
[95]
Neuman BW, Kiss G, Kunding AH, et al. A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol 2011; 174(1): 11-22.
[http://dx.doi.org/10.1016/j.jsb.2010.11.021] [PMID: 21130884]
[96]
Siu YL, Teoh KT, Lo J, et al. The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J Virol 2008; 82(22): 11318-30.
[http://dx.doi.org/10.1128/JVI.01052-08] [PMID: 18753196]
[97]
Siu KL, Kok KH, Ng MH, et al. Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3.TANK.TBK1/IKKepsilon complex. J Biol Chem 2009; 284(24): 16202-9.
[http://dx.doi.org/10.1074/jbc.M109.008227] [PMID: 19380580]
[98]
Ahmed SF, Quadeer AA, McKay MR. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses 2020; 12(3): 254.
[http://dx.doi.org/10.3390/v12030254] [PMID: 32106567]
[99]
Nadeem MS, Zamzami MA, Choudhry H, et al. Origin, Potential Therapeutic Targets and Treatment for Coronavirus Disease (COVID-19). Pathogens 2020; 9(4): 307.
[http://dx.doi.org/10.3390/pathogens9040307] [PMID: 32331255]
[100]
Kang S, Yang M, Hong Z, et al. Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm Sin B 2020; 10(7): 1228-38.
[http://dx.doi.org/10.1016/j.apsb.2020.04.009] [PMID: 32363136]
[101]
Cong YY, Ulasli M, Schepers H, et al. Nucleocapsid protein recruitment to replication-transcription complexes plays a crucial role in corona viral life cycle. J Virol 2020; 94(4): e01925-e0192519.
[http://dx.doi.org/10.1128/JVI.01925-19.]
[102]
Surjit M, Liu B, Chow VT, Lal SK. The nucleocapsid protein of severe acute respiratory syndrome-coronavirus inhibits the activity of cyclin-cyclin-dependent kinase complex and blocks S phase progression in mammalian cells. J Biol Chem 2006; 281(16): 10669-81.
[http://dx.doi.org/10.1074/jbc.M509233200] [PMID: 16431923]
[103]
Lin Y, Shen X, Yang RF, et al. Identification of an epitope of SARS-coronavirus nucleocapsid protein. Cell Res 2003; 13(3): 141-5.
[http://dx.doi.org/10.1038/sj.cr.7290158] [PMID: 12862314]
[104]
Narayanan K, Huang C, Makino S. SARS coronavirus accessory proteins. Virus Res 2008; 133(1): 113-21.
[http://dx.doi.org/10.1016/j.virusres.2007.10.009] [PMID: 18045721]
[105]
Liu DX, Fung TS, Chong KK, Shukla A, Hilgenfeld R. Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res 2014; 109: 97-109.
[http://dx.doi.org/10.1016/j.antiviral.2014.06.013] [PMID: 24995382]
[106]
von Brunn A, Teepe C, Simpson JC, et al. Analysis of intraviral protein-protein interactions of the SARS coronavirus ORFeome. PLoS One 2007; 2(5)e459
[http://dx.doi.org/10.1371/journal.pone.0000459] [PMID: 17520018]
[107]
Zhong X, Guo Z, Yang H, et al. Amino terminus of the SARS coronavirus protein 3a elicits strong, potentially protective humoral responses in infected patients. J Gen Virol 2006; 87(Pt 2): 369-73.
[http://dx.doi.org/10.1099/vir.0.81078-0] [PMID: 16432024]
[108]
Zeng R, Yang RF, Shi MD, et al. Characterization of the 3a protein of SARS-associated coronavirus in infected vero E6 cells and SARS patients. J Mol Biol 2004; 341(1): 271-9.
[http://dx.doi.org/10.1016/j.jmb.2004.06.016] [PMID: 15312778]
[109]
Yuan X, Yao Z, Wu J, et al. G1 phase cell cycle arrest induced by SARS-CoV 3a protein via the cyclin D3/pRb pathway. Am J Respir Cell Mol Biol 2007; 37(1): 9-19.
[http://dx.doi.org/10.1165/rcmb.2005-0345RC] [PMID: 17413032]
[110]
Marra MA, Jones SJ, Astell CR, et al. The Genome sequence of the SARS-associated coronavirus. Science 2003; 300(5624): 1399-404.
[http://dx.doi.org/10.1126/science.1085953] [PMID: 12730501]
[111]
Law PTW, Wong CH, Au TCC, et al. The 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in Vero E6 cells. J Gen Virol 2005; 86(Pt 7): 1921-30.
[http://dx.doi.org/10.1099/vir.0.80813-0] [PMID: 15958670]
[112]
Yu CJ, Chen YC, Hsiao CH, et al. Identification of a novel protein 3a from severe acute respiratory syndrome coronavirus. FEBS Lett 2004; 565(1-3): 111-6.
[http://dx.doi.org/10.1016/j.febslet.2004.03.086] [PMID: 15135062]
[113]
Gunalan V, Mirazimi A, Tan YJ. A putative diacidic motif in the SARS-CoV ORF6 protein influences its subcellular localization and suppression of expression of co-transfected expression constructs. BMC Res Notes 2011; 4: 446.
[http://dx.doi.org/10.1186/1756-0500-4-446] [PMID: 22026976]
[114]
Geng H, Liu YM, Chan WS, et al. The putative protein 6 of the severe acute respiratory syndrome-associated coronavirus: expression and functional characterization. FEBS Lett 2005; 579(30): 6763-8.
[http://dx.doi.org/10.1016/j.febslet.2005.11.007] [PMID: 16310783]
[115]
Pewe L, Zhou H, Netland J, et al. A severe acute respiratory syndrome-associated coronavirus-specific protein enhances virulence of an attenuated murine coronavirus. J Virol 2005; 79(17): 11335-42.
[http://dx.doi.org/10.1128/JVI.79.17.11335-11342.2005] [PMID: 16103185]
[116]
Tan YJ, Lim SG, Hong W. Understanding the accessory viral proteins unique to the severe acute respiratory syndrome (SARS) coronavirus. Antiviral Res 2006; 72(2): 78-88.
[http://dx.doi.org/10.1016/j.antiviral.2006.05.010] [PMID: 16820226]
[117]
Yount B, Roberts RS, Sims AC, et al. Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice. J Virol 2005; 79(23): 14909-22.
[http://dx.doi.org/10.1128/JVI.79.23.14909-14922.2005] [PMID: 16282490]
[118]
Schaecher SR, Touchette E, Schriewer J, Buller RM, Pekosz A. Severe acute respiratory syndrome coronavirus gene 7 products contribute to virus-induced apoptosis. J Virol 2007; 81(20): 11054-68.
[http://dx.doi.org/10.1128/JVI.01266-07] [PMID: 17686858]
[119]
Chen YY, Shuang B, Tan YX, et al. The protein X4 of severe acute respiratory syndrome-associated coronavirus is expressed on both virus-infected cells and lung tissue of severe acute respiratory syndrome patients and inhibits growth of Balb/c 3T3 cell line. Chin Med J (Engl) 2005; 118(4): 267-74.
[PMID: 15740663]
[120]
Fielding BC, Tan YJ, Shuo S, et al. Characterization of a unique group-specific protein (U122) of the severe acute respiratory syndrome coronavirus. J Virol 2004; 78(14): 7311-8.
[http://dx.doi.org/10.1128/JVI.78.14.7311-7318.2004] [PMID: 15220404]
[121]
Nelson CA, Pekosz A, Lee CA, Diamond MS, Fremont DH. Structure and intracellular targeting of the SARS-coronavirus Orf7a accessory protein. Structure 2005; 13(1): 75-85.
[http://dx.doi.org/10.1016/j.str.2004.10.010] [PMID: 15642263]
[122]
Schaecher SR, Mackenzie JM, Pekosz A. The ORF7b protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is expressed in virus-infected cells and incorporated into SARS-CoV particles. J Virol 2007; 81(2): 718-31.
[http://dx.doi.org/10.1128/JVI.01691-06] [PMID: 17079322]
[123]
Guo JP, Petric M, Campbell W, McGeer PL. SARS corona virus peptides recognized by antibodies in the sera of convalescent cases. Virology 2004; 324(2): 251-6.
[http://dx.doi.org/10.1016/j.virol.2004.04.017] [PMID: 15207612]
[124]
Keng CT, Tan YJ. Molecular and Biochemical Characterization of the SARS-CoV Accessory Proteins ORF8a, ORF8b and ORF8ab. Molecular Biology of the SARS-Coronavirus 2009; pp. 177-91.
[125]
Kakhki RK, Kakhki MK, Neshani A. COVID-19 target: A specific target for novel coronavirus detection. Gene Rep 2020.20100740
[http://dx.doi.org/10.1016/j.genrep.2020.100740] [PMID: 32510005]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy