摘要
背景:癌症基因治疗的一种方法依赖于在肿瘤特异性启动子的控制下用编码毒素的DNA转染肿瘤。方法:在这里,我们使用了由人类端粒酶启动子或普遍存在的CAG启动子(pTERT-ETA和pCAG-ETA)和线性聚乙烯亚胺驱动的编码非常有效的抗ERBB2靶向毒素的DNA质粒。结果:我们表明,pTERT-ETA质粒杀死癌细胞的选择性高度依赖于DNA-聚乙烯亚胺复合物的制备方法。调整复杂的制备方案后,可以通过用pTERT-ETA质粒转染选择性杀死具有端粒酶启动子活性的细胞系。我们还显示,用pTERT-ETA和pCAG-ETA质粒转染的细胞在体外没有任何可检测到的旁观者效应。结论:尽管如此,质粒-聚乙烯亚胺复合物的三个肿瘤内注射导致小鼠中可转染性差的D2F2 / E2肿瘤的实质性生长迟缓。具有端粒酶或CAG启动子的DNA构建体在体内的抗肿瘤特性方面无显着差异。
关键词: 基因疗法,假单胞菌外毒素A,PE40,靶向疗法,转染,聚乙烯亚胺。
[1]
Lin B, Gao A, Zhang R, et al. Use of a novel integrase-deficient lentivirus for targeted anti-cancer therapy with survivin promoter-driven diphtheria toxin A. Medicine (Baltimore) 2015; 94(31)e1301
[http://dx.doi.org/10.1097/MD.0000000000001301]
[http://dx.doi.org/10.1097/MD.0000000000001301]
[2]
Candolfi M, Xiong W, Yagiz K, et al. Gene therapy-mediated delivery of targeted cytotoxins for glioma therapeutics. Proc Natl Acad Sci USA 2010; 107(46): 20021-6.
[http://dx.doi.org/10.1073/pnas.1008261107]
[http://dx.doi.org/10.1073/pnas.1008261107]
[3]
Liu X, Li J, Tian Y, et al. Enhanced pancreatic cancer gene therapy by combination of adenoviral vector expressing c-erb-B2 (Her-2/neu)-targeted immunotoxin with a replication-competent adenovirus or etoposide. Hum Gene Ther 2010; 21(2): 157-70.
[http://dx.doi.org/10.1089/hum.2009.083]
[http://dx.doi.org/10.1089/hum.2009.083]
[4]
Cemazar M, Sersa G, Wilson J, et al. Effective gene transfer to solid tumors using different nonviral gene delivery techniques: Electroporation, liposomes, and integrin-targeted vector. Cancer Gene Ther 2002; 9: 399-406.
[http://dx.doi.org/10.1038/sj.cgt.7700454]
[http://dx.doi.org/10.1038/sj.cgt.7700454]
[5]
Sokolova E, Proshkina G, Kutova O, et al. Recombinant targeted toxin based on HER2-specific DARPin possesses a strong selective cytotoxic effect in vitro and a potent antitumor activity in vivo. J Control Release 2016; 233: 48-56.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.020]
[http://dx.doi.org/10.1016/j.jconrel.2016.05.020]
[6]
Yamaizumi M, Mekada E, Uchida T, Okada Y. One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell 1978; 15: 245-50.
[http://dx.doi.org/10.1016/0092-8674(78)90099-5]
[http://dx.doi.org/10.1016/0092-8674(78)90099-5]
[7]
Yerushalmi N, Brinkmann U, Brinkmann E, Pai L, Pastan I. Attenuating the growth of tumors by intratumoral administration of DNA encoding Pseudomonas exotoxin via cationic liposomes. Cancer Gene Ther 2000; 7(1): 91-6.
[http://dx.doi.org/10.1038/sj.cgt.7700115]
[http://dx.doi.org/10.1038/sj.cgt.7700115]
[8]
Kimchi-Sarfaty C, Vieira WD, Dodds D, et al. SV40 Pseudovirion gene delivery of a toxin to treat human adenocarcinomas in mice. Cancer Gene Ther 2006; 13(7): 648-57.
[http://dx.doi.org/10.1038/sj.cgt.7700943]
[http://dx.doi.org/10.1038/sj.cgt.7700943]
[9]
Showalter SL, Huang YH, Witkiewicz A, et al. Nanoparticulate delivery of diphtheria toxin DNA effectively kills Mesothelin expressing pancreatic cancer cells. Cancer Biol Ther 2008; 7(10): 1584-90.
[http://dx.doi.org/10.4161/cbt.7.10.6562]
[http://dx.doi.org/10.4161/cbt.7.10.6562]
[10]
Tholey RM, Lal S, Jimbo M, et al. MUC1 promoter-driven DTA as a targeted therapeutic strategy against pancreatic cancer. Mol Cancer Res 2015; 13(3): 439-48.
[http://dx.doi.org/10.1158/1541-7786.MCR-14-0199]
[http://dx.doi.org/10.1158/1541-7786.MCR-14-0199]
[11]
Michalska M, Wolf P. Pseudomonas exotoxin A: optimized by evolution for effective killing. Front Microbiol 2015; 6: 963.
[http://dx.doi.org/10.3389/fmicb.2015.00963]
[http://dx.doi.org/10.3389/fmicb.2015.00963]
[12]
Stuckey DW, Hingtgen SD, Karakas N, Rich BE, Shah K. Engineering toxin-resistant therapeutic stem cells to treat brain tumors. Stem Cells 2015; 33(2): 589-600.
[http://dx.doi.org/10.1002/stem.1874]
[http://dx.doi.org/10.1002/stem.1874]
[13]
Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266(5193): 2011-5.
[http://dx.doi.org/10.1126/science.7605428]
[http://dx.doi.org/10.1126/science.7605428]
[14]
Elias A, Gritsenko N, Gorovits R, et al. Anti-cancer binary system activated by bacteriophage HK022 integrase. Oncotarget 2018; 9(44): 27487-501.
[http://dx.doi.org/10.18632/oncotarget.25512]
[http://dx.doi.org/10.18632/oncotarget.25512]
[15]
Nissim L, Bar-Ziv RH. A tunable dual-promoter integrator for targeting of cancer cells. Mol Syst Biol 2010; 6: 444.
[http://dx.doi.org/10.1038/msb.2010.99]
[http://dx.doi.org/10.1038/msb.2010.99]
[16]
Khodarovich YM, Rakhmaninova DD, Barishnikova AM, Deyev SM. Doxycycline sensitive two-promoter integrator based on the TET-ON 3G Transactivator. Mol Biol (Mosk) 2020; 54(2): 308-12.
[17]
Amit D, Hochberg A. Development of targeted therapy for bladder cancer mediated by a double promoter plasmid expressing diphtheria toxin under the control of H19 and IGF2-P4 regulatory sequences. J Transl Med 2010; 8: 134.
[http://dx.doi.org/10.1186/1479-5876-8-134]
[http://dx.doi.org/10.1186/1479-5876-8-134]
[18]
Rock KL, Lai JJ, Kono H. Innate and adaptive immune responses to cell death. Immunol Rev 2011; 243(1): 191-205.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01040.x]
[http://dx.doi.org/10.1111/j.1600-065X.2011.01040.x]
28
1