摘要
外泌体是几乎所有细胞都分泌的纳米大小的囊泡,最近受到了广泛的关注。 除了它们在病理生理过程和诊断评估中的作用外,最近,一些研究还应用外泌体设计新的治疗应用。 外泌体可以衍生自多种细胞和组织,并基于来源,它们可以携带不同的天然成分,例如DNA,非编码小RNA,mRNA和蛋白质。 也可以通过添加所需的试剂(包括特定的生物分子或药物)来对它们进行工程改造。 两种形式都可以用于将其货物递送至靶细胞并理想地改变其功能。 本研究旨在对应用外泌体作为治疗不同类型疾病(包括癌症,心血管疾病,神经疾病,精神病学,肝脏和肾脏疾病)的治疗工具的各种研究提供全面的综述。
关键词: 外泌体,癌症,心血管疾病,神经系统疾病,肝脏疾病,肾脏疾病。
[1]
Qin J, Xu Q. Functions and application of exosomes. Acta Pol Pharm 2014; 71(4): 537-43.
[PMID: 25272880]
[PMID: 25272880]
[2]
Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta 2012; 1820(7): 940-8.
[http://dx.doi.org/10.1016/j.bbagen.2012.03.017] [PMID: 22503788]
[http://dx.doi.org/10.1016/j.bbagen.2012.03.017] [PMID: 22503788]
[3]
Ferguson SW, Nguyen J. Exosomes as therapeutics: The implications of molecular composition and exosomal heterogeneity. J Control Release 2016; 228: 179-90.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.037] [PMID: 26941033]
[http://dx.doi.org/10.1016/j.jconrel.2016.02.037] [PMID: 26941033]
[4]
Trams EG, Lauter CJ, Salem JN, Heine U. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochimica et Biophysica Acta (BBA)-. Biomembranes 1981; 645(1): 63-70.
[http://dx.doi.org/10.1016/0005-2736(81)90512-5]
[http://dx.doi.org/10.1016/0005-2736(81)90512-5]
[5]
Barile L, Vassalli G. Exosomes: Therapy delivery tools and biomarkers of diseases. Pharmacol Ther 2017; 174: 63-78.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.020] [PMID: 28202367]
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.020] [PMID: 28202367]
[6]
Masyuk AI, Masyuk TV, Larusso NF. Exosomes in the pathogenesis, diagnostics and therapeutics of liver diseases. J Hepatol 2013; 59(3): 621-5.
[http://dx.doi.org/10.1016/j.jhep.2013.03.028] [PMID: 23557871]
[http://dx.doi.org/10.1016/j.jhep.2013.03.028] [PMID: 23557871]
[7]
Munagala R, Aqil F, Jeyabalan J, Gupta RC. Bovine milk-derived exosomes for drug delivery. Cancer Lett 2016; 371(1): 48-61.
[http://dx.doi.org/10.1016/j.canlet.2015.10.020] [PMID: 26604130]
[http://dx.doi.org/10.1016/j.canlet.2015.10.020] [PMID: 26604130]
[8]
Bowers EC, Hassanin AAI, Ramos KS. In vitro models of exosome biology and toxicology: New frontiers in biomedical research. Toxicol In Vitro 2020.64104462
[http://dx.doi.org/10.1016/j.tiv.2019.02.016] [PMID: 31628015]
[http://dx.doi.org/10.1016/j.tiv.2019.02.016] [PMID: 31628015]
[9]
Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 2018; 75(2): 193-208.
[http://dx.doi.org/10.1007/s00018-017-2595-9] [PMID: 28733901]
[http://dx.doi.org/10.1007/s00018-017-2595-9] [PMID: 28733901]
[10]
Edgar JR Jr. Q&A: What are exosomes, exactly? BMC Biol 2016; 14(1): 46.
[http://dx.doi.org/10.1186/s12915-016-0268-z] [PMID: 27296830]
[http://dx.doi.org/10.1186/s12915-016-0268-z] [PMID: 27296830]
[11]
Yu L-L, Zhu J, Liu J-X, et al. A comparison of traditional and novel methods for the separation of exosomes from human samples. BioMed Research International 2018.
[http://dx.doi.org/10.1155/2018/3634563]
[http://dx.doi.org/10.1155/2018/3634563]
[12]
Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in exosome isolation techniques. Theranostics 2017; 7(3): 789-804.
[http://dx.doi.org/10.7150/thno.18133] [PMID: 28255367]
[http://dx.doi.org/10.7150/thno.18133] [PMID: 28255367]
[13]
Liu C, Su C. Design strategies and application progress of therapeutic exosomes. Theranostics 2019; 9(4): 1015-28.
[http://dx.doi.org/10.7150/thno.30853] [PMID: 30867813]
[http://dx.doi.org/10.7150/thno.30853] [PMID: 30867813]
[14]
Arslan F, Lai RC, Smeets MB, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res (Amst) 2013; 10(3): 301-12.
[http://dx.doi.org/10.1016/j.scr.2013.01.002] [PMID: 23399448]
[http://dx.doi.org/10.1016/j.scr.2013.01.002] [PMID: 23399448]
[15]
Li SP, Lin ZX, Jiang XY, Yu XY. Exosomal cargo-loading and synthetic exosome-mimics as potential therapeutic tools. Acta Pharmacol Sin 2018; 39(4): 542-51.
[http://dx.doi.org/10.1038/aps.2017.178] [PMID: 29417947]
[http://dx.doi.org/10.1038/aps.2017.178] [PMID: 29417947]
[16]
Lamichhane TN, Jeyaram A, Patel DB, et al. Oncogene knockdown via active loading of small RNAs into extracellular vesicles by sonication. Cell Mol Bioeng 2016; 9(3): 315-24.
[http://dx.doi.org/10.1007/s12195-016-0457-4] [PMID: 27800035]
[http://dx.doi.org/10.1007/s12195-016-0457-4] [PMID: 27800035]
[17]
Kooijmans SAA, Stremersch S, Braeckmans K, et al. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J Control Release 2013; 172(1): 229-38.
[http://dx.doi.org/10.1016/j.jconrel.2013.08.014] [PMID: 23994516]
[http://dx.doi.org/10.1016/j.jconrel.2013.08.014] [PMID: 23994516]
[18]
Jang SC, Kim OY, Yoon CM, et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano 2013; 7(9): 7698-710.
[http://dx.doi.org/10.1021/nn402232g] [PMID: 24004438]
[http://dx.doi.org/10.1021/nn402232g] [PMID: 24004438]
[19]
Clayton A, Turkes A, Dewitt S, Steadman R, Mason MD, Hallett MB. Adhesion and signaling by B cell-derived exosomes: the role of integrins. FASEB J 2004; 18(9): 977-9.
[http://dx.doi.org/10.1096/fj.03-1094fje] [PMID: 15059973]
[http://dx.doi.org/10.1096/fj.03-1094fje] [PMID: 15059973]
[20]
van Balkom BW, Pisitkun T, Verhaar MC, Knepper MA. Exosomes and the kidney: prospects for diagnosis and therapy of renal diseases. Kidney Int 2011; 80(11): 1138-45.
[http://dx.doi.org/10.1038/ki.2011.292] [PMID: 21881557]
[http://dx.doi.org/10.1038/ki.2011.292] [PMID: 21881557]
[21]
Inamdar S, Nitiyanandan R, Rege K. Emerging applications of exosomes in cancer therapeutics and diagnostics. Bioeng Transl Med 2017; 2(1): 70-80.
[http://dx.doi.org/10.1002/btm2.10059] [PMID: 28529978]
[http://dx.doi.org/10.1002/btm2.10059] [PMID: 28529978]
[22]
Lv L-H, Wan Y-L, Lin Y, et al. Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J Biol Chem 2012; 287(19): 15874-85.
[http://dx.doi.org/10.1074/jbc.M112.340588] [PMID: 22396543]
[http://dx.doi.org/10.1074/jbc.M112.340588] [PMID: 22396543]
[23]
Rao Q, Zuo B, Lu Z, et al. Tumor-derived exosomes elicit tumor suppression in murine hepatocellular carcinoma models and humans in vitro. Hepatology 2016; 64(2): 456-72.
[http://dx.doi.org/10.1002/hep.28549] [PMID: 26990897]
[http://dx.doi.org/10.1002/hep.28549] [PMID: 26990897]
[24]
Escudier B, Dorval T, Chaput N, et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J Transl Med 2005; 3(1): 10.
[http://dx.doi.org/10.1186/1479-5876-3-10] [PMID: 15740633]
[http://dx.doi.org/10.1186/1479-5876-3-10] [PMID: 15740633]
[25]
Lässer C. Exosomes in diagnostic and therapeutic applications: biomarker, vaccine and RNA interference delivery vehicle. Expert Opin Biol Ther 2015; 15(1): 103-17.
[http://dx.doi.org/10.1517/14712598.2015.977250] [PMID: 25363342]
[http://dx.doi.org/10.1517/14712598.2015.977250] [PMID: 25363342]
[26]
Raghavan V. Role of exosomes in psychiatric disorders. Asian J Psychiatr 2017; 28: 78-9.
[http://dx.doi.org/10.1016/j.ajp.2017.03.032] [PMID: 28784402]
[http://dx.doi.org/10.1016/j.ajp.2017.03.032] [PMID: 28784402]
[27]
Rufino-Ramos D, Albuquerque PR, Carmona V, Perfeito R, Nobre RJ, Pereira de Almeida L. Extracellular vesicles: Novel promising delivery systems for therapy of brain diseases. J Control Release 2017; 262: 247-58.
[http://dx.doi.org/10.1016/j.jconrel.2017.07.001] [PMID: 28687495]
[http://dx.doi.org/10.1016/j.jconrel.2017.07.001] [PMID: 28687495]
[28]
Yang T, Martin P, Fogarty B, et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res 2015; 32(6): 2003-14.
[http://dx.doi.org/10.1007/s11095-014-1593-y] [PMID: 25609010]
[http://dx.doi.org/10.1007/s11095-014-1593-y] [PMID: 25609010]
[29]
Fonsato V, Collino F, Herrera MB, et al. Human liver stem cell-derived microvesicles inhibit hepatoma growth in SCID mice by delivering antitumor microRNAs. Stem Cells 2012; 30(9): 1985-98.
[http://dx.doi.org/10.1002/stem.1161] [PMID: 22736596]
[http://dx.doi.org/10.1002/stem.1161] [PMID: 22736596]
[30]
Zhang Z, Dombroski JA, King MR. Engineering of Exosomes to Target Cancer Metastasis. Cell Mol Bioeng 2019; 13(1): 1-16.
[http://dx.doi.org/10.1007/s12195-019-00607-x] [PMID: 32030104]
[http://dx.doi.org/10.1007/s12195-019-00607-x] [PMID: 32030104]
[31]
Viaud S, Terme M, Flament C, et al. Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: a role for NKG2D ligands and IL-15Ralpha. PLoS One 2009; 4(3)e4942
[http://dx.doi.org/10.1371/journal.pone.0004942] [PMID: 19319200]
[http://dx.doi.org/10.1371/journal.pone.0004942] [PMID: 19319200]
[32]
Kamerkar S, LeBleu VS, Sugimoto H, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 2017; 546(7659): 498-503.
[http://dx.doi.org/10.1038/nature22341] [PMID: 28607485]
[http://dx.doi.org/10.1038/nature22341] [PMID: 28607485]
[33]
Herrera MB, Fonsato V, Gatti S, et al. Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats. J Cell Mol Med 2010; 14(6B): 1605-18.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00860.x] [PMID: 19650833]
[http://dx.doi.org/10.1111/j.1582-4934.2009.00860.x] [PMID: 19650833]
[34]
Li T, Yan Y, Wang B, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev 2013; 22(6): 845-54.
[http://dx.doi.org/10.1089/scd.2012.0395] [PMID: 23002959]
[http://dx.doi.org/10.1089/scd.2012.0395] [PMID: 23002959]
[35]
Tan CY, Lai RC, Wong W, Dan YY, Lim S-K, Ho HK. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther 2014; 5(3): 76.
[http://dx.doi.org/10.1186/scrt465] [PMID: 24915963]
[http://dx.doi.org/10.1186/scrt465] [PMID: 24915963]
[36]
Pan Q, Ramakrishnaiah V, Henry S, et al. Hepatic cell-to-cell transmission of small silencing RNA can extend the therapeutic reach of RNA interference (RNAi). Gut 2012; 61(9): 1330-9.
[http://dx.doi.org/10.1136/gutjnl-2011-300449] [PMID: 22198713]
[http://dx.doi.org/10.1136/gutjnl-2011-300449] [PMID: 22198713]
[37]
Haney MJ, Klyachko NL, Zhao Y, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release 2015; 207: 18-30.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.033] [PMID: 25836593]
[http://dx.doi.org/10.1016/j.jconrel.2015.03.033] [PMID: 25836593]
[38]
Kalani A, Tyagi A, Tyagi N. Exosomes: mediators of neurodegeneration, neuroprotection and therapeutics. Mol Neurobiol 2014; 49(1): 590-600.
[http://dx.doi.org/10.1007/s12035-013-8544-1] [PMID: 23999871]
[http://dx.doi.org/10.1007/s12035-013-8544-1] [PMID: 23999871]
[39]
Mehdizadeh A, Barzegar M, Negargar S, Yahyavi A, Raeisi S. The current and emerging therapeutic approaches in drug-resistant epilepsy management. Acta Neurol Belg 2019; 119(2): 155-62.
[http://dx.doi.org/10.1007/s13760-019-01120-8] [PMID: 30868468]
[http://dx.doi.org/10.1007/s13760-019-01120-8] [PMID: 30868468]
[40]
Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 2011; 29(4): 341-5.
[http://dx.doi.org/10.1038/nbt.1807] [PMID: 21423189]
[http://dx.doi.org/10.1038/nbt.1807] [PMID: 21423189]
[41]
Zhuang X, Xiang X, Grizzle W, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 2011; 19(10): 1769-79.
[http://dx.doi.org/10.1038/mt.2011.164] [PMID: 21915101]
[http://dx.doi.org/10.1038/mt.2011.164] [PMID: 21915101]
[42]
Lopez-Verrilli MA, Picou F, Court FA. Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system. Glia 2013; 61(11): 1795-806.
[http://dx.doi.org/10.1002/glia.22558] [PMID: 24038411]
[http://dx.doi.org/10.1002/glia.22558] [PMID: 24038411]
[43]
Jia L, Chopp M, Wang L, Lu X, Szalad A, Zhang ZG. Exosomes derived from high-glucose-stimulated Schwann cells promote development of diabetic peripheral neuropathy. FASEB J 2018; 32(12)fj201800597R
[http://dx.doi.org/10.1096/fj.201800597R] [PMID: 29932869]
[http://dx.doi.org/10.1096/fj.201800597R] [PMID: 29932869]
[44]
Ranganathan M, Rahman M, Ganesh S, et al. Analysis of Circulating Exosomes Reveals a Peripheral Signature of Astrocytic Pathology in Schizophrenia. bioRxiv 2020.
[45]
Ceylan D, Tufekci KU, Keskinoglu P, Genc S, Özerdem A. Circulating exosomal microRNAs in bipolar disorder. J Affect Disord 2020; 262: 99-107.
[http://dx.doi.org/10.1016/j.jad.2019.10.038] [PMID: 31726266]
[http://dx.doi.org/10.1016/j.jad.2019.10.038] [PMID: 31726266]
[46]
Amoah SK, Rodriguez BA, Logothetis CN, et al. Exosomal secretion of a psychosis-altered miRNA that regulates glutamate receptor expression is affected by antipsychotics. Neuropsychopharmacology 2020; 45(4): 656-65.
[http://dx.doi.org/10.1038/s41386-019-0579-1] [PMID: 31775160]
[http://dx.doi.org/10.1038/s41386-019-0579-1] [PMID: 31775160]
[47]
Poe AJ, Knowlton AA. Exosomes as agents of change in the cardiovascular system. J Mol Cell Cardiol 2017; 111: 40-50.
[http://dx.doi.org/10.1016/j.yjmcc.2017.08.002] [PMID: 28782514]
[http://dx.doi.org/10.1016/j.yjmcc.2017.08.002] [PMID: 28782514]
[48]
Wang X, Gu H, Huang W, et al. Hsp20-mediated activation of exosome biogenesis in cardiomyocytes improves cardiac function and angiogenesis in diabetic mice. Diabetes 2016; 65(10): 3111-28.
[http://dx.doi.org/10.2337/db15-1563] [PMID: 27284111]
[http://dx.doi.org/10.2337/db15-1563] [PMID: 27284111]
[49]
Vicencio JM, Yellon DM, Sivaraman V, et al. Plasma exosomes protect the myocardium from ischemia-reperfusion injury. J Am Coll Cardiol 2015; 65(15): 1525-36.
[http://dx.doi.org/10.1016/j.jacc.2015.02.026] [PMID: 25881934]
[http://dx.doi.org/10.1016/j.jacc.2015.02.026] [PMID: 25881934]
[50]
Gray WD, French KM, Ghosh-Choudhary S, et al. Identification of therapeutic covariant microRNA clusters in hypoxia-treated cardiac progenitor cell exosomes using systems biology. Circ Res 2015; 116(2): 255-63.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.304360] [PMID: 25344555]
[http://dx.doi.org/10.1161/CIRCRESAHA.116.304360] [PMID: 25344555]
[51]
Chen L, Wang Y, Pan Y, et al. Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochem Biophys Res Commun 2013; 431(3): 566-71.
[http://dx.doi.org/10.1016/j.bbrc.2013.01.015] [PMID: 23318173]
[http://dx.doi.org/10.1016/j.bbrc.2013.01.015] [PMID: 23318173]
[52]
Khan M, Nickoloff E, Abramova T, et al. Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction Circul Res 2015.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.305990]
[http://dx.doi.org/10.1161/CIRCRESAHA.117.305990]
[53]
Sahoo S, Klychko E, Thorne T, et al. Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circ Res 2011; 109(7): 724-8.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.253286] [PMID: 21835908]
[http://dx.doi.org/10.1161/CIRCRESAHA.111.253286] [PMID: 21835908]
[54]
Kawamoto A, Iwasaki H, Kusano K, et al. CD34-positive cells exhibit increased potency and safety for therapeutic neovascularization after myocardial infarction compared with total mononuclear cells. Circulation 2006; 114(20): 2163-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.644518] [PMID: 17075009]
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.644518] [PMID: 17075009]
[55]
Gallet R, Dawkins J, Valle J, et al. Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction. Eur Heart J 2017; 38(3): 201-11.
[PMID: 28158410]
[PMID: 28158410]
[56]
Teng X, Chen L, Chen W, Yang J, Yang Z, Shen Z. Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cell Physiol Biochem 2015; 37(6): 2415-24.
[http://dx.doi.org/10.1159/000438594] [PMID: 26646808]
[http://dx.doi.org/10.1159/000438594] [PMID: 26646808]
[57]
Zhang Z, Yang J, Yan W, Li Y, Shen Z, Asahara T. Pretreatment of cardiac stem cells with exosomes derived from mesenchymal stem cells enhances myocardial repair. J Am Heart Assoc 2016; 5(1)e002856
[http://dx.doi.org/10.1161/JAHA.115.002856] [PMID: 26811168]
[http://dx.doi.org/10.1161/JAHA.115.002856] [PMID: 26811168]
[58]
Hergenreider E, Heydt S, Tréguer K, et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 2012; 14(3): 249-56.
[http://dx.doi.org/10.1038/ncb2441] [PMID: 22327366]
[http://dx.doi.org/10.1038/ncb2441] [PMID: 22327366]
[59]
Davidson SM, Yellon DM. Exosomes and cardioprotection–A critical analysis. Mol Aspects Med 2017.
[PMID: 29122678]
[PMID: 29122678]
[60]
Emanueli C, Shearn AI, Angelini GD, Sahoo S. Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vascul Pharmacol 2015; 71: 24-30.
[http://dx.doi.org/10.1016/j.vph.2015.02.008] [PMID: 25869502]
[http://dx.doi.org/10.1016/j.vph.2015.02.008] [PMID: 25869502]
[61]
Huang L, Ma W, Ma Y, Feng D, Chen H, Cai B. Exosomes in mesenchymal stem cells, a new therapeutic strategy for cardiovascular diseases? Int J Biol Sci 2015; 11(2): 238-45.
[http://dx.doi.org/10.7150/ijbs.10725] [PMID: 25632267]
[http://dx.doi.org/10.7150/ijbs.10725] [PMID: 25632267]
[62]
Zhou Y, Xu H, Xu W, et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther 2013; 4(2): 34.
[http://dx.doi.org/10.1186/scrt194] [PMID: 23618405]
[http://dx.doi.org/10.1186/scrt194] [PMID: 23618405]
[63]
Zou X, Zhang G, Cheng Z, et al. Microvesicles derived from human Wharton’s Jelly mesenchymal stromal cells ameliorate renal ischemia-reperfusion injury in rats by suppressing CX3CL1. Stem Cell Res Ther 2014; 5(2): 40.
[http://dx.doi.org/10.1186/scrt428] [PMID: 24646750]
[http://dx.doi.org/10.1186/scrt428] [PMID: 24646750]
[64]
Bruno S, Grange C, Deregibus MC, et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 2009; 20(5): 1053-67.
[http://dx.doi.org/10.1681/ASN.2008070798] [PMID: 19389847]
[http://dx.doi.org/10.1681/ASN.2008070798] [PMID: 19389847]
[65]
He J, Wang Y, Sun S, et al. Bone marrow stem cells-derived microvesicles protect against renal injury in the mouse remnant kidney model. Nephrology (Carlton) 2012; 17(5): 493-500.
[http://dx.doi.org/10.1111/j.1440-1797.2012.01589.x] [PMID: 22369283]
[http://dx.doi.org/10.1111/j.1440-1797.2012.01589.x] [PMID: 22369283]
[66]
Reis LA, Borges FT, Simões MJ, Borges AA, Sinigaglia-Coimbra R, Schor N. Bone marrow-derived mesenchymal stem cells repaired but did not prevent gentamicin-induced acute kidney injury through paracrine effects in rats. PLoS One 2012; 7(9)e44092
[http://dx.doi.org/10.1371/journal.pone.0044092] [PMID: 22970165]
[http://dx.doi.org/10.1371/journal.pone.0044092] [PMID: 22970165]
62
1