Research Article

结合mRNA-seq和miRNA-seq分析,确定咖啡酸苯乙酯对人小细胞肺癌细胞系的抗癌作用中,c-MYC、YAP1和miR-3960起主要作用

卷 20, 期 1, 2020

页: [15 - 24] 页: 10

弟呕挨: 10.2174/1566523220666200523165159

价格: $65

conference banner
摘要

背景: 咖啡酸苯乙酯(CAPE)是蜂胶的一种活性提取物,最近有报道称它在各种癌症中有广泛的应用。然而,CAPE对小细胞肺癌(SCLC)的影响在很大程度上尚不清楚。因此,本研究的目的是通过高通量测序和生物信息学分析,确定CAPE的抗增殖作用,并探讨其在SCLC细胞中的潜在分子机制。 方法: 用CAPE治疗H446小细胞肺癌细胞,观察细胞增殖和凋亡情况。此外,在生物信息学分析中探索了miR-3960在CAPE治疗后的调控作用,并预测了改变的信号通路。 结果: CAPE明显抑制细胞增殖,诱导细胞凋亡。CAPE降低了yeah相关蛋白1 (YAP1)和细胞髓细胞增生癌基因(c-MYC)蛋白的表达。此外,CAPE上调miR-3960有助于cap诱导的细胞凋亡。miR-3960的敲除降低了cap诱导的细胞凋亡。 结论: 我们通过获得CAPE处理细胞的全面转录组图谱,证明了CAPE在人SCLC细胞中的抗癌作用,并研究其机制。

关键词: 咖啡酸苯乙酯

图形摘要
[1]
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65(2): 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[2]
Gkountakos A, Sartori G, Falcone I, et al. PTEN in lung cancer: Dealing with the problem, building on new knowledge and turning the game around. Cancers (Basel) 2019; 11(8): 1141-60.
[http://dx.doi.org/10.3390/cancers11081141] [PMID: 31404976]
[3]
Tie Y, Zheng H, He Z, et al. Targeting folate receptor β positive tumor-associated macrophages in lung cancer with a folate-modified liposomal complex. Signal Transduct Target Ther 2020; 5(1): 6.
[http://dx.doi.org/10.1038/s41392-020-0115-0] [PMID: 31993222]
[4]
Song Y, Liu P, Huang Y, Guan Y, Han X, Shi Y. Osimertinib quantitative and gene variation analyses in cerebrospinal fluid and plasma of a non-small cell lung cancer patient with leptomeningeal metastases. Curr Cancer Drug Targets 2019; 19(8): 666-73.
[http://dx.doi.org/10.2174/1568009618666181017114111] [PMID: 30332963]
[5]
Ma CC, Wang ZL, Xu T, He ZY, Wei YQ. The approved gene therapy drugs worldwide: from 1998 to 2019. Biotechnol Adv 2020; 40: 107502
[http://dx.doi.org/10.1016/j.biotechadv.2019.107502] [PMID: 31887345]
[6]
Pešek M, Mužík J. [Small-cell lung cancer: epidemiology, diagnostics and therapy]. Vnitr Lek 2018; 63(11): 876-83.
[PMID: 29303289]
[7]
Miller KD, Nogueira L, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin 2019; 69(5): 363-85.
[http://dx.doi.org/10.3322/caac.21565] [PMID: 31184787]
[8]
Esposito S, Bianco A, Russo R, Di Maro A, Isernia C, Pedone PV. Therapeutic perspectives of molecules from urtica dioica extracts for cancer treatment. Molecules 2019; 24(15): 2753.
[http://dx.doi.org/10.3390/molecules24152753] [PMID: 31362429]
[9]
Mileo AM, Nisticò P, Miccadei S. Polyphenols: Immunomodulatory and therapeutic implication in colorectal cancer. Front Immunol 2019; 10: 729.
[http://dx.doi.org/10.3389/fimmu.2019.00729] [PMID: 31031748]
[10]
Chen CY, Kao CL, Liu CM. The cancer prevention, anti-inflammatory and anti-oxidation of bioactive phytochemicals targeting the tlr4 signaling pathway. Int J Mol Sci 2018; 19(9): 2729.
[http://dx.doi.org/10.3390/ijms19092729] [PMID: 30213077]
[11]
Budisan L, Gulei D, Zanoaga OM, et al. Dietary intervention by phytochemicals and their role in modulating coding and non-coding genes in cancer. Int J Mol Sci 2017; 18(6): 1178.
[http://dx.doi.org/10.3390/ijms18061178] [PMID: 28587155]
[12]
Anjaly K, Tiku AB. Radio-Modulatory potential of caffeic acid phenethyl ester: A therapeutic perspective. Anticancer Agents Med Chem 2018; 18(4): 468-75.
[http://dx.doi.org/10.2174/1871520617666171113143945] [PMID: 29141565]
[13]
Budisan L, Gulei D, Jurj A, et al. Inhibitory effect of cape and kaempferol in colon cancer cell lines-possible implications in new therapeutic strategies. Int J Mol Sci 2019; 20(5): 1199.
[http://dx.doi.org/10.3390/ijms20051199] [PMID: 30857282]
[14]
Fraser SP, Hemsley F, Djamgoz MBA. Caffeic acid phenethyl ester: Inhibition of metastatic cell behaviours via voltage-gated sodium channel in human breast cancer in vitro. Int J Biochem Cell Biol 2016; 71: 111-8.
[http://dx.doi.org/10.1016/j.biocel.2015.12.012] [PMID: 26724521]
[15]
Abente EJ, Subramanian M, Ramachandran V, Najafi-Shoushtari SH. MicroRNAs in obesity-associated disorders. Arch Biochem Biophys 2016; 589: 108-19.
[http://dx.doi.org/10.1016/j.abb.2015.09.018] [PMID: 26416722]
[16]
Silvestro S, Bramanti P, Mazzon E. Role of MiRNAs in alzheimer’s disease and possible fields of application. Int J Mol Sci 2019; 20(16): 3979.
[http://dx.doi.org/10.3390/ijms20163979] [PMID: 31443326]
[17]
Flórez CAR, García-Perdomo HA, Escudero MM. MicroRNAs associated with overweight and obesity in childhood. Systematic review. MicroRNA 2019; 9(4): 1-11.
[http://dx.doi.org/10.2174/2211536609666191209152721] [PMID: 31814558]
[18]
Orso F, Quirico L, Dettori D, et al. Role of miRNAs in tumor and endothelial cell interactions during tumor progression. Semin Cancer Biol 2019; 60: 214-24.
[http://dx.doi.org/10.1016/j.semcancer.2019.07.024] [PMID: 31386907]
[19]
Karamitopoulou E, Haemmig S, Baumgartner U, Schlup C, Wartenberg M, Vassella E. MicroRNA dysregulation in the tumor microenvironment influences the phenotype of pancreatic cancer. Mod Pathol 2017; 30(8): 1116-25.
[http://dx.doi.org/10.1038/modpathol.2017.35] [PMID: 28548126]
[20]
Babu N, Advani J, Solanki HS, et al. miRNA and proteomic dysregulation in non-small cell lung cancer in response to cigarette smoke. MicroRNA 2018; 7(1): 38-53.
[http://dx.doi.org/10.2174/2211536607666180103165343] [PMID: 29299995]
[21]
Akgun S, Kucuksayan H, Ozes ON, et al. NF-κB-Induced Upregulation of miR-548as-3p Increases Invasion of NSCLC by Targeting PTEN. Anticancer Agents Med Chem 2019; 19(8): 1058-68.
[http://dx.doi.org/10.2174/1871520619666190206165215] [PMID: 30727918]
[22]
Bhardwaj V, Mandal AKA. Next-Generation sequencing reveals the role of Epigallocatechin-3-Gallate in regulating putative novel and known microRNAs which target the MAPK pathway in non-small-cell lung cancer A549 Cells. Molecules 2019; 24(2): 368.
[http://dx.doi.org/10.3390/molecules24020368] [PMID: 30669618]
[23]
Tripathi P, Singh J, Lal JA, Tripathi V. Next-Generation sequencing: An emerging tool for drug designing. Curr Pharm Des 2019; 25(31): 3350-7.
[http://dx.doi.org/10.2174/1381612825666190911155508] [PMID: 31544713]
[24]
Kavitha N, Vijayarathna S, Shanmugapriya , et al. MicroRNA profiling in MDA-MB-231 human breast cancer cell exposed to the Phaleria macrocarpa (Boerl.) fruit ethyl acetate fraction (PMEAF) through IIlumina Hi-Seq technologies and various in silico bioinformatics tools. J Ethnopharmacol 2018; 213: 118-31.
[http://dx.doi.org/10.1016/j.jep.2017.11.009] [PMID: 29154802]
[25]
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15(12): 550.
[http://dx.doi.org/10.1186/s13059-014-0550-8] [PMID: 25516281]
[26]
Ashburner M, Ball CA, Blake JA, et al. The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nat Genet 2000; 25(1): 25-9.
[http://dx.doi.org/10.1038/75556] [PMID: 10802651]
[27]
Ai C, Kong L. CGPS: A machine learning-based approach integrating multiple gene set analysis tools for better prioritization of biologically relevant pathways. J Genet Genomics 2018; 45(9): 489-504.
[http://dx.doi.org/10.1016/j.jgg.2018.08.002] [PMID: 30292791]
[28]
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9(4): 357-9.
[http://dx.doi.org/10.1038/nmeth.1923] [PMID: 22388286]
[29]
Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015., 4e05005
[http://dx.doi.org/10.7554/eLife.05005] [PMID: 26267216]
[30]
Shen J, Cao S, Sun X, et al. Sinoporphyrin Sodium-Mediated Sonodynamic therapy inhibits RIP3 Expression and induces apoptosis in the H446 small cell lung cancer cell line. Cell Physiol Biochem 2018; 51(6): 2938-54.
[http://dx.doi.org/10.1159/000496045] [PMID: 30562734]
[31]
Goan YG, Wu WT, Liu CI, Neoh CA, Wu YJ. Involvement of mitochondrial dysfunction, endoplasmic reticulum stress, and the PI3K/AKT/mTOR pathway in Nobiletin-Induced apoptosis of human bladder cancer cells. Molecules 2019; 24(16): 2881.
[http://dx.doi.org/10.3390/molecules24162881] [PMID: 31398899]
[32]
Fontes A, Alemany-Pagès M, Oliveira PJ, Ramalho-Santos J, Zischka H, Azul AM. Antioxidant versus pro-apoptotic effects of mushroom-enriched diets on mitochondria in liver disease. Int J Mol Sci 2019; 20(16): 3987.
[http://dx.doi.org/10.3390/ijms20163987] [PMID: 31426291]
[33]
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120(1): 15-20.
[http://dx.doi.org/10.1016/j.cell.2004.12.035] [PMID: 15652477]
[34]
Shen X, Liu Y, Luo X, Yang Z. Advances in biosynthesis, pharmacology, and pharmacokinetics of pinocembrin, a promising natural small-molecule drug. Molecules 2019; 24(12): 2323.
[http://dx.doi.org/10.3390/molecules24122323] [PMID: 31238565]
[35]
Liang Y, Feng G, Wu L, et al. Caffeic acid phenethyl ester suppressed growth and metastasis of nasopharyngeal carcinoma cells by inactivating the NF-κB pathway. Drug Des Devel Ther 2019; 13: 1335-45.
[http://dx.doi.org/10.2147/DDDT.S199182] [PMID: 31118570]
[36]
Shin EJ, Jo S, Choi HK, Choi S, Byun S, Lim TG. Caffeic acid phenethyl ester inhibits UV-Induced MMP-1 expression by targeting histone acetyltransferases in human skin. Int J Mol Sci 2019; 20(12): 3055.
[http://dx.doi.org/10.3390/ijms20123055] [PMID: 31234539]
[37]
Sorrenti V, Raffaele M, Vanella L, et al. Protective effects of Caffeic Acid Phenethyl Ester (CAPE) and novel cape analogue as inducers of Heme Oxygenase-1 in Streptozotocin-Induced Type 1 diabetic rats. Int J Mol Sci 2019; 20(10): 2441.
[http://dx.doi.org/10.3390/ijms20102441] [PMID: 31108850]
[38]
Li Y, Zhang X, Zhou X, Zhang X. LHPP suppresses bladder cancer cell proliferation and growth via inactivating AKT/p65 signaling pathway. Biosci Rep 2019; 39(7): BSR20182270
[http://dx.doi.org/10.1042/BSR20182270] [PMID: 31262971]
[39]
Cembrowski MS. Single-cell transcriptomics as a framework and roadmap for understanding the brain. J Neurosci Methods 2019; 326: 108353
[http://dx.doi.org/10.1016/j.jneumeth.2019.108353] [PMID: 31351971]
[40]
Dasgupta K, Chung JU, Asam K, Jeong J. Molecular patterning of the embryonic cranial mesenchyme revealed by genome-wide transcriptional profiling. Dev Biol 2019; 455(2): 434-48.
[http://dx.doi.org/10.1016/j.ydbio.2019.07.015] [PMID: 31351040]
[41]
Gaebler C, Lorenzi JCC, Oliveira TY, et al. Combination of quadruplex qPCR and next-generation sequencing for qualitative and quantitative analysis of the HIV-1 latent reservoir. J Exp Med 2019; 216(10): 2253-64.
[http://dx.doi.org/10.1084/jem.20190896] [PMID: 31350309]
[42]
Pant N, Rakshit S, Paul S, Saha I. Genome-wide analysis of multi-view data of miRNA-seq to identify miRNA biomarkers for stomach cancer. J Biomed Inform 2019; 97: 103254
[http://dx.doi.org/10.1016/j.jbi.2019.103254] [PMID: 31352060]
[43]
Chiu CM, Lin FM, Chang TH, et al. Clinical detection of human probiotics and human pathogenic bacteria by using a novel high-throughput platform based on next generation sequencing. J Clin Bioinforma 2014; 4(1): 1.
[http://dx.doi.org/10.1186/2043-9113-4-1] [PMID: 24418497]
[44]
Renaud L, da Silveira WA, Glen WB Jr, Hazard ES, Hardiman G. and Interplay Between MicroRNAs and Targeted Genes in Cellular Homeostasis of Adult Zebrafish (Danio rerio). Curr Genomics 2018; 19(7): 615-29.
[http://dx.doi.org/10.2174/1389202919666180503124522] [PMID: 30386173]
[45]
Bibi N, Niaz H, Hupp T, Kamal MA, Rashid S. Screening and identification of PLK1-Polo box binding peptides by high-throughput sequencing of phage-selected libraries. Protein Pept Lett 2019; 26(8): 620-33.
[http://dx.doi.org/10.2174/0929866526666190318101054] [PMID: 30887917]
[46]
Liu Q, Peng F, Chen J. The role of exosomal MicroRNAs in the tumor microenvironment of breast cancer. Int J Mol Sci 2019; 20(16): 3884.
[http://dx.doi.org/10.3390/ijms20163884] [PMID: 31395836]
[47]
Kang M, Lee KH, Lee HS, et al. Concurrent treatment with simvastatin and NF-κB inhibitor in human castration-resistant prostate cancer cells exerts synergistic anti-cancer effects via control of the NF-κB/LIN28/let-7 miRNA signaling pathway. PLoS One 2017; 12(9): e0184644
[http://dx.doi.org/10.1371/journal.pone.0184644] [PMID: 28910332]
[48]
Huang D, Huang Y, Huang Z, Weng J, Zhang S, Gu W. Relation of AURKB over-expression to low survival rate in BCRA and reversine-modulated aurora B kinase in breast cancer cell lines. Cancer Cell Int 2019; 19: 166.
[http://dx.doi.org/10.1186/s12935-019-0885-z] [PMID: 31244554]
[49]
Hu Y, Xu R, Chen CY, et al. Extracellular vesicles from human umbilical cord blood ameliorate bone loss in senile osteoporotic mice. Metabolism 2019; 95: 93-101.
[http://dx.doi.org/10.1016/j.metabol.2019.01.009] [PMID: 30668962]
[50]
Wu F, Xing T, Gao X, Liu F. miR‑501‑3p promotes colorectal cancer progression via activation of Wnt/β‑catenin signaling. Int J Oncol 2019; 55(3): 671-83.
[http://dx.doi.org/10.3892/ijo.2019.4852] [PMID: 31364752]
[51]
Yang Y, Xue K, Li Z, et al. c-Myc regulates the CDK1/cyclin B1 dependent‑G2/M cell cycle progression by histone H4 acetylation in Raji cells. Int J Mol Med 2018; 41(6): 3366-78.
[http://dx.doi.org/10.3892/ijmm.2018.3519] [PMID: 29512702]
[52]
Kim SH, Jin H, Meng RY, et al. Activating hippo pathway via Rassf1 by ursolic acid suppresses the tumorigenesis of gastric cancer. Int J Mol Sci 2019; 20(19): 4709.
[http://dx.doi.org/10.3390/ijms20194709] [PMID: 31547587]
[53]
Kang W, Tong JH, Chan AW, et al. Yes-associated protein 1 exhibits oncogenic property in gastric cancer and its nuclear accumulation associates with poor prognosis. Clin Cancer Res 2011; 17(8): 2130-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2467] [PMID: 21346147]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy