Abstract
Knowing the mutational basis of a disease does not always explain the mechanism of pathogenesis, particularly when little is known about the disease-associated proteins themselves. This is very likely to be an ever-growing problem in the genomics era. The polyglutamine (polyQ) repeat disorders are an intriguing example of such a scientific dilemma. These human diseases presently include the spinocerebellar ataxia type 1 (SCA1, SCA2, SCA3, SCA6, SCA7), Huntington disease (HD), spinal and bulbar muscular atrophy (SBMA), and dentatorubropallidoluysian atrophy (DRPLA) (1). With the exception of SBMA and SCA6, due to the expansion of a polyQ in the androgen receptor and alpha1A voltage-dependent calcium channel, respectively, the wild-type function of the gene products are not understood. While the cloning of the polyQ genes has provided important genetic information, the biochemical mechanism responsible for each was not readily apparent. To gain insight into the molecular basis of polyQ-induced pathogenesis, investigators have turned to the development and characterization of disease models. Transgenic mice, in combination with cell culture models, have proven to be very useful tools for elucidating factors important for polyQ pathogenesis. This review focuses on those polyQ diseases for which informative studies have been undertaken using transgenic mice. For each disease, relevant information gleaned from other experimental approaches is also incorporated into the discussion.
Keywords: polyglutamine disease, transgenic mice, huntington, calcium channel, polyQ gene, SCA2, SBMA, protein misfolding, proteolysis
Current Genomics
Title: Expanding our Understanding of Polyglutamine Disease Through Transgenic Mice
Volume: 2 Issue: 1
Author(s): Jennifer D. Davidson and Harry T. Orr
Affiliation:
Keywords: polyglutamine disease, transgenic mice, huntington, calcium channel, polyQ gene, SCA2, SBMA, protein misfolding, proteolysis
Abstract: Knowing the mutational basis of a disease does not always explain the mechanism of pathogenesis, particularly when little is known about the disease-associated proteins themselves. This is very likely to be an ever-growing problem in the genomics era. The polyglutamine (polyQ) repeat disorders are an intriguing example of such a scientific dilemma. These human diseases presently include the spinocerebellar ataxia type 1 (SCA1, SCA2, SCA3, SCA6, SCA7), Huntington disease (HD), spinal and bulbar muscular atrophy (SBMA), and dentatorubropallidoluysian atrophy (DRPLA) (1). With the exception of SBMA and SCA6, due to the expansion of a polyQ in the androgen receptor and alpha1A voltage-dependent calcium channel, respectively, the wild-type function of the gene products are not understood. While the cloning of the polyQ genes has provided important genetic information, the biochemical mechanism responsible for each was not readily apparent. To gain insight into the molecular basis of polyQ-induced pathogenesis, investigators have turned to the development and characterization of disease models. Transgenic mice, in combination with cell culture models, have proven to be very useful tools for elucidating factors important for polyQ pathogenesis. This review focuses on those polyQ diseases for which informative studies have been undertaken using transgenic mice. For each disease, relevant information gleaned from other experimental approaches is also incorporated into the discussion.
Export Options
About this article
Cite this article as:
Davidson D. Jennifer and Orr T. Harry, Expanding our Understanding of Polyglutamine Disease Through Transgenic Mice, Current Genomics 2001; 2 (1) . https://dx.doi.org/10.2174/1389202013351183
DOI https://dx.doi.org/10.2174/1389202013351183 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Advanced AI Techniques in Big Genomic Data Analysis
The thematic issue on "Advanced AI Techniques in Big Genomic Data Analysis" aims to explore the cutting-edge methodologies and applications of artificial intelligence (AI) in the realm of genomic research, where vast amounts of data pose both challenges and opportunities. This issue will cover a broad spectrum of AI-driven strategies, ...read more
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Genomic Insights into Oncology: Harnessing Machine Learning for Breakthroughs in Cancer Genomics.
This special issue aims to explore the cutting-edge intersection of genomics and oncology, with a strong emphasis on original data and experimental validation. While maintaining the focus on how machine learning and advanced data analysis techniques are revolutionizing our understanding and treatment of cancer, this issue will prioritize contributions that ...read more
Integrating Artificial Intelligence and Omics Approaches in Complex Diseases
Recent advancements in AI and omics methodologies have revolutionized the landscape of biomedical research, enabling us to extract valuable information from vast amounts of complex data. By combining AI algorithms with omics technologies such as genomics, proteomics, metabolomics, and transcriptomics, researchers can obtain a more comprehensive and multi-dimensional analysis of ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Advances in the Understanding of the Gabaergic Neurobiology of FMR1 Expanded Alleles Leading to Targeted Treatments for Fragile X Spectrum Disorder
Current Pharmaceutical Design A Case of Ischemic Stroke in Acute Promyelocytic Leukemia at Initial Presentation: Relevance of All-Trans Retinoic Acid Treatment
Cardiovascular & Hematological Disorders-Drug Targets Expanded Temporal Binding Windows in People with Mild Cognitive Impairment
Current Alzheimer Research Agonism of Peroxisome Proliferator Receptor-Gamma may have Therapeutic Potential for Neuroinflammation and Parkinsons Disease
Current Neuropharmacology The Effects of Maternally Administered Methadone, Buprenorphine and Naltrexone on Offspring: Review of Human and Animal Data
Current Neuropharmacology Neural Stem Cell Niches in Health and Diseases
Current Pharmaceutical Design Therapeutic Targeting of Developmental Signaling Pathways in Medulloblastoma: Hedgehog, Notch, Wnt and Myc
Current Signal Transduction Therapy Recent Advances in Targeted Therapy for Glioma
Current Medicinal Chemistry Snake Venom: From Deadly Toxins to Life-saving Therapeutics
Current Medicinal Chemistry The Biology of Neurotrophins, Signalling Pathways, and Functional Peptide Mimetics of Neurotrophins and their Receptors
CNS & Neurological Disorders - Drug Targets Neuroprotective Methodologies of Co-Enzyme Q10 Mediated Brain Hemorrhagic Treatment: Clinical and Pre-Clinical Findings
CNS & Neurological Disorders - Drug Targets Eph Receptor Tyrosine Kinases in Tumor and Tumor Microenvironment
Current Pharmaceutical Design Expression and Function of Organic Cation and Anion Transporters (SLC22 Family) in the CNS
Current Pharmaceutical Design Effects of LPA and S1P on the Nervous System and Implications for Their Involvement in Disease
Current Drug Targets Autoimmune Channelopathies of the Nervous System
Current Neuropharmacology Targeting the Nogo-A Signalling Pathway to Promote Recovery Following Acute CNS Injury
Current Pharmaceutical Design The Mechanism of Action of Praziquantel: Can New Drugs Exploit Similar Mechanisms?
Current Medicinal Chemistry Modulation of the FGF14:FGF14 Homodimer Interaction Through Short Peptide Fragments
CNS & Neurological Disorders - Drug Targets BMPS and Liver: More Questions than Answers
Current Pharmaceutical Design Phycobilins and Phycobiliproteins Used in Food Industry and Medicine
Mini-Reviews in Medicinal Chemistry